Advances in the Management of Central Nervous System Metastases in Non-Small Cell Lung Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Local Treatments
2.1. Radiotherapy
2.2. Surgery
3. Systemic Therapy
3.1. Molecular Targeted Therapy
3.2. Systemic and Local Therapy Combinations
3.3. CNS Progression on TKIs
3.4. Immunotherapy
4. Leptomeningeal Disease
5. Directions for Future Research
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Barnholtz-Sloan, J.S.; Sloan, A.E.; Davis, F.G.; Vigneau, F.D.; Lai, P.; Sawaya, R.E. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J. Clin. Oncol. 2004, 22, 2865–2872. [Google Scholar] [CrossRef]
- Ali, A.; Goffin, J.R.; Arnold, A.; Ellis, P.M. Survival of patients with non-small-cell lung cancer after a diagnosis of brain metastases. Curr. Oncol. 2013, 20, e300–e306. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.Y.; Na, I.I.; Kim, C.H.; Park, S.; Baek, H.; Yang, S.H. EGFR mutation and brain metastasis in pulmonary adenocarcinomas. J. Thorac. Oncol. 2014, 9, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Johung, K.L.; Yeh, N.; Desai, N.B.; Williams, T.M.; Lautenschlaeger, T.; Arvold, N.D.; Ning, M.S.; Attia, A.; Lovly, C.M.; Goldberg, S.; et al. Extended Survival and Prognostic Factors for Patients With ALK-Rearranged Non-Small-Cell Lung Cancer and Brain Metastasis. J. Clin. Oncol. 2016, 34, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Zhang, I.; Zaorsky, N.G.; Palmer, J.D.; Mehra, R.; Lu, B. Targeting brain metastases in ALK-rearranged non-small-cell lung cancer. Lancet Oncol. 2015, 16, e510–e521. [Google Scholar] [CrossRef]
- Brown, P.D.; Jaeckle, K.; Ballman, K.V.; Farace, E.; Cerhan, J.H.; Anderson, S.K.; Carrero, X.W.; Barker, F.G.; Deming, R.; Burri, S.H.; et al. Effect of Radiosurgery Alone vs Radiosurgery With Whole Brain Radiation Therapy on Cognitive Function in Patients With 1 to 3 Brain Metastases: A Randomized Clinical Trial. JAMA 2016, 316, 401–409. [Google Scholar] [CrossRef]
- Tallet, A.V.; Azria, D.; Barlesi, F.; Spano, J.P.; Carpentier, A.F.; Gonçalves, A.; Metellus, P. Neurocognitive function impairment after whole brain radiotherapy for brain metastases: Actual assessment. Radiat. Oncol. 2012, 7, 77. [Google Scholar] [CrossRef] [Green Version]
- Chang, E.L.; Wefel, J.S.; Hess, K.R.; Allen, P.K.; Lang, F.F.; Kornguth, D.G.; Arbuckle, R.B.; Swint, J.M.; Shiu, A.S.; Maor, M.H.; et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: A randomised controlled trial. Lancet Oncol. 2009, 10, 1037–1044. [Google Scholar] [CrossRef]
- Mulvenna, P.; Nankivell, M.; Barton, R.; Faivre-Finn, C.; Wilson, P.; McColl, E.; Moore, B.; Brisbane, I.; Ardron, D.; Holt, T.; et al. Dexamethasone and supportive care with or without whole brain radiotherapy in treating patients with non-small cell lung cancer with brain metastases unsuitable for resection or stereotactic radiotherapy (QUARTZ): Results from a phase 3, non-inferiority, randomised trial. Lancet 2016, 388, 2004–2014. [Google Scholar] [CrossRef] [Green Version]
- Brown, P.D.; Gondi, V.; Pugh, S.; Tome, W.A.; Wefel, J.S.; Armstrong, T.S.; Bovi, J.A.; Robinson, C.; Konski, A.; Khuntia, D.; et al. Hippocampal Avoidance During Whole-Brain Radiotherapy Plus Memantine for Patients With Brain Metastases: Phase III Trial NRG Oncology CC001. J. Clin. Oncol. 2020, 38, 1019–1029. [Google Scholar] [CrossRef]
- Yamamoto, M.; Serizawa, T.; Shuto, T.; Akabane, A.; Higuchi, Y.; Kawagishi, J.; Yamanaka, K.; Sato, Y.; Jokura, H.; Yomo, S.; et al. Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): A multi-institutional prospective observational study. Lancet Oncol. 2014, 15, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Vogelbaum, M.A.; Brown, P.D.; Messersmith, H.; Brastianos, P.K.; Burri, S.; Cahill, D.; Dunn, I.F.; Gaspar, L.E.; Gatson, N.T.N.; Gondi, V.; et al. Treatment for Brain Metastases: ASCO-SNO-ASTRO Guideline. J. Clin. Oncol. 2022, 40, 492–516. [Google Scholar] [CrossRef] [PubMed]
- Tsao, M.N.; Lloyd, N.; Wong, R.K.; Chow, E.; Rakovitch, E.; Laperriere, N.; Xu, W.; Sahgal, A. Whole brain radiotherapy for the treatment of newly diagnosed multiple brain metastases. Cochrane Database Syst. Rev. 2012, 2012, CD003869. [Google Scholar] [CrossRef]
- Minniti, G.; Scaringi, C.; Paolini, S.; Lanzetta, G.; Romano, A.; Cicone, F.; Osti, M.; Enrici, R.M.; Esposito, V. Single-Fraction Versus Multifraction (3 × 9 Gy) Stereotactic Radiosurgery for Large (>2 cm) Brain Metastases: A Comparative Analysis of Local Control and Risk of Radiation-Induced Brain Necrosis. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 1142–1148. [Google Scholar] [CrossRef] [PubMed]
- Levin, V.A.; Bidaut, L.; Hou, P.; Kumar, A.J.; Wefel, J.S.; Bekele, B.N.; Grewal, J.; Prabhu, S.; Loghin, M.; Gilbert, M.R.; et al. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 1487–1495. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Zhu, X.; Wang, H.; Qiu, M.; Li, N. Should aggressive thoracic therapy be performed in patients with synchronous oligometastatic non-small cell lung cancer? A meta-analysis. J. Thorac. Dis. 2017, 9, 310–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabors, L.B.; Portnow, J.; Ahluwalia, M.; Baehring, J.; Brem, H.; Brem, S.; Butowski, N.; Campian, J.L.; Clark, S.W.; Fabiano, A.J.; et al. Central Nervous System Cancers, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2020, 18, 1537–1570. [Google Scholar] [CrossRef] [PubMed]
- Skoulidis, F.; Heymach, J.V. Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nat. Rev. Cancer 2019, 19, 495–509. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.S.P.; Harries, L.; Decker, B.; Hiemenz, M.C.; Murugesan, K.; Creeden, J.; Tolba, K.; Stabile, L.P.; Ramkissoon, S.H.; Burns, T.F.; et al. Clinicopathologic and Genomic Landscape of Non-Small Cell Lung Cancer Brain Metastases. Oncologist 2022, 27, 839–848. [Google Scholar] [CrossRef]
- Dagogo-Jack, I.; Shaw, A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2018, 15, 81–94. [Google Scholar] [CrossRef]
- Ramkissoon, L.A.; Pegram, W.; Haberberger, J.; Danziger, N.; Lesser, G.; Strowd, R.; Dahiya, S.; Cummings, T.J.; Bi, W.L.; Abedalthagafi, M.; et al. Genomic Profiling of Circulating Tumor DNA From Cerebrospinal Fluid to Guide Clinical Decision Making for Patients With Primary and Metastatic Brain Tumors. Front. Neurol. 2020, 11, 544680. [Google Scholar] [CrossRef]
- De Mattos-Arruda, L.; Mayor, R.; Ng, C.K.Y.; Weigelt, B.; Martínez-Ricarte, F.; Torrejon, D.; Oliveira, M.; Arias, A.; Raventos, C.; Tang, J.; et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat. Commun. 2015, 6, 8839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.S.; Jiang, B.Y.; Yang, J.J.; Zhang, X.C.; Zhang, Z.; Ye, J.Y.; Zhong, W.Z.; Tu, H.Y.; Chen, H.J.; Wang, Z.; et al. Unique genetic profiles from cerebrospinal fluid cell-free DNA in leptomeningeal metastases of EGFR-mutant non-small-cell lung cancer: A new medium of liquid biopsy. Ann. Oncol. 2018, 29, 945–952. [Google Scholar] [CrossRef] [PubMed]
- Marchiò, C.; Mariani, S.; Bertero, L.; Di Bello, C.; Francia Di Celle, P.; Papotti, M.; Rudà, R.; Soffietti, R.; Cassoni, P. Liquoral liquid biopsy in neoplastic meningitis enables molecular diagnosis and mutation tracking: A proof of concept. Neuro. Oncol. 2017, 19, 451–453. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.L.; Ahn, M.J.; Garassino, M.C.; Han, J.Y.; Katakami, N.; Kim, H.R.; Hodge, R.; Kaur, P.; Brown, A.P.; Ghiorghiu, D.; et al. CNS Efficacy of Osimertinib in Patients With T790M-Positive Advanced Non-Small-Cell Lung Cancer: Data From a Randomized Phase III Trial (AURA3). J. Clin. Oncol. 2018, 36, 2702–2709. [Google Scholar] [CrossRef]
- Reungwetwattana, T.; Nakagawa, K.; Cho, B.C.; Cobo, M.; Cho, E.K.; Bertolini, A.; Bohnet, S.; Zhou, C.; Lee, K.H.; Nogami, N.; et al. CNS Response to Osimertinib Versus Standard Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Patients With Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2018, 36, JCO2018783118. [Google Scholar] [CrossRef]
- Kawashima, Y.; Fukuhara, T.; Saito, H.; Furuya, N.; Watanabe, K.; Sugawara, S.; Iwasawa, S.; Tsunezuka, Y.; Yamaguchi, O.; Okada, M.; et al. Bevacizumab plus erlotinib versus erlotinib alone in Japanese patients with advanced, metastatic, EGFR-mutant non-small-cell lung cancer (NEJ026): Overall survival analysis of an open-label, randomised, multicentre, phase 3 trial. Lancet Respir. Med. 2022, 10, 72–82. [Google Scholar] [CrossRef]
- Ou, S.H.; Ahn, J.S.; De Petris, L.; Govindan, R.; Yang, J.C.; Hughes, B.; Lena, H.; Moro-Sibilot, D.; Bearz, A.; Ramirez, S.V.; et al. Alectinib in Crizotinib-Refractory ALK-Rearranged Non-Small-Cell Lung Cancer: A Phase II Global Study. J. Clin. Oncol. 2016, 34, 661–668. [Google Scholar] [CrossRef] [Green Version]
- Gadgeel, S.; Peters, S.; Mok, T.; Shaw, A.T.; Kim, D.W.; Ou, S.I.; Pérol, M.; Wrona, A.; Novello, S.; Rosell, R.; et al. Alectinib versus crizotinib in treatment-naive anaplastic lymphoma kinase-positive (ALK+) non-small-cell lung cancer: CNS efficacy results from the ALEX study. Ann. Oncol. 2018, 29, 2214–2222. [Google Scholar] [CrossRef] [Green Version]
- Nishio, M.; Nakagawa, K.; Mitsudomi, T.; Yamamoto, N.; Tanaka, T.; Kuriki, H.; Zeaiter, A.; Tamura, T. Analysis of central nervous system efficacy in the J-ALEX study of alectinib versus crizotinib in ALK-positive non-small-cell lung cancer. Lung Cancer 2018, 121, 37–40. [Google Scholar] [CrossRef]
- Camidge, D.R.; Kim, D.W.; Tiseo, M.; Langer, C.J.; Ahn, M.J.; Shaw, A.T.; Huber, R.M.; Hochmair, M.J.; Lee, D.H.; Bazhenova, L.A.; et al. Exploratory Analysis of Brigatinib Activity in Patients With Anaplastic Lymphoma Kinase-Positive Non-Small-Cell Lung Cancer and Brain Metastases in Two Clinical Trials. J. Clin. Oncol. 2018, 36, 2693–2701. [Google Scholar] [CrossRef]
- Camidge, D.R.; Kim, H.R.; Ahn, M.J.; Yang, J.C.H.; Han, J.Y.; Hochmair, M.J.; Lee, K.H.; Delmonte, A.; García Campelo, M.R.; Kim, D.W.; et al. Brigatinib Versus Crizotinib in Advanced ALK Inhibitor-Naive ALK-Positive Non-Small Cell Lung Cancer: Second Interim Analysis of the Phase III ALTA-1L Trial. J. Clin. Oncol. 2020, 38, 3592–3603. [Google Scholar] [CrossRef]
- Soria, J.C.; Tan, D.S.W.; Chiari, R.; Wu, Y.L.; Paz-Ares, L.; Wolf, J.; Geater, S.L.; Orlov, S.; Cortinovis, D.; Yu, C.J.; et al. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): A randomised, open-label, phase 3 study. Lancet 2017, 389, 917–929. [Google Scholar] [CrossRef]
- Shaw, A.T.; Kim, T.M.; Crinò, L.; Gridelli, C.; Kiura, K.; Liu, G.; Novello, S.; Bearz, A.; Gautschi, O.; Mok, T.; et al. Ceritinib versus chemotherapy in patients with ALK-rearranged non-small-cell lung cancer previously given chemotherapy and crizotinib (ASCEND-5): A randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2017, 18, 874–886. [Google Scholar] [CrossRef]
- Solomon, B.J.; Besse, B.; Bauer, T.M.; Felip, E.; Soo, R.A.; Camidge, D.R.; Chiari, R.; Bearz, A.; Lin, C.C.; Gadgeel, S.M.; et al. Lorlatinib in patients with ALK-positive non-small-cell lung cancer: Results from a global phase 2 study. Lancet Oncol. 2018, 19, 1654–1667. [Google Scholar] [CrossRef]
- Felip, E.; Shaw, A.T.; Bearz, A.; Camidge, D.R.; Solomon, B.J.; Bauman, J.R.; Bauer, T.M.; Peters, S.; Toffalorio, F.; Abbattista, A.; et al. Intracranial and extracranial efficacy of lorlatinib in patients with ALK-positive non-small-cell lung cancer previously treated with second-generation ALK TKIs. Ann. Oncol. 2021, 32, 620–630. [Google Scholar] [CrossRef]
- Shaw, A.T.; Bauer, T.M.; de Marinis, F.; Felip, E.; Goto, Y.; Liu, G.; Mazieres, J.; Kim, D.W.; Mok, T.; Polli, A.; et al. First-Line Lorlatinib or Crizotinib in Advanced. N. Engl. J. Med. 2020, 383, 2018–2029. [Google Scholar] [CrossRef]
- Dziadziuszko, R.; Krebs, M.G.; De Braud, F.; Siena, S.; Drilon, A.; Doebele, R.C.; Patel, M.R.; Cho, B.C.; Liu, S.V.; Ahn, M.J.; et al. Updated Integrated Analysis of the Efficacy and Safety of Entrectinib in Locally Advanced or Metastatic. J. Clin. Oncol. 2021, 39, 1253–1263. [Google Scholar] [CrossRef]
- Shaw, A.T.; Solomon, B.J.; Chiari, R.; Riely, G.J.; Besse, B.; Soo, R.A.; Kao, S.; Lin, C.C.; Bauer, T.M.; Clancy, J.S.; et al. Lorlatinib in advanced ROS1-positive non-small-cell lung cancer: A multicentre, open-label, single-arm, phase 1-2 trial. Lancet Oncol. 2019, 20, 1691–1701. [Google Scholar] [CrossRef]
- Cho, B.C.; Drilon, A.E.; Doebele, R.C.; Kim, D.W.; Lin, J.J.; Lee, J.; Ahn, M.-J.; Zhu, V.W.; Ejadi, S.; Camidge, D.R.; et al. Safety and preliminary clinical activity of repotrectinib in patients with advanced ROS1 fusion-positive non-small cell lung cancer (TRIDENT-1 study). J. Clin. Oncol. 2019, 37, 9011. [Google Scholar] [CrossRef]
- Skoulidis, F.; Li, B.T.; Dy, G.K.; Price, T.J.; Falchook, G.S.; Wolf, J.; Italiano, A.; Schuler, M.; Borghaei, H.; Barlesi, F.; et al. Sotorasib for Lung Cancers with. N. Engl. J. Med. 2021, 384, 2371–2381. [Google Scholar] [CrossRef] [PubMed]
- Jänne, P.A.; Riely, G.J.; Gadgeel, S.M.; Heist, R.S.; Ou, S.I.; Pacheco, J.M.; Johnson, M.L.; Sabari, J.K.; Leventakos, K.; Yau, E.; et al. Adagrasib in Non-Small-Cell Lung Cancer Harboring a. N. Engl. J. Med. 2022, 387, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Planchard, D.; Besse, B.; Groen, H.J.M.; Souquet, P.J.; Quoix, E.; Baik, C.S.; Barlesi, F.; Kim, T.M.; Mazieres, J.; Novello, S.; et al. Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: An open-label, multicentre phase 2 trial. Lancet Oncol. 2016, 17, 984–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Planchard, D.; Smit, E.F.; Groen, H.J.M.; Mazieres, J.; Besse, B.; Helland, Å.; Giannone, V.; D′Amelio, A.M.; Zhang, P.; Mookerjee, B.; et al. Dabrafenib plus trametinib in patients with previously untreated BRAF. Lancet Oncol. 2017, 18, 1307–1316. [Google Scholar] [CrossRef] [PubMed]
- John, T.; Chiu, C.; Cho, B.C.; Fakih, M.; Farago, A.F.; Demetri, G.D.; Goto, K.; Doebele, R.C.; Siena, S.; Drilon, A.; et al. 364O—Intracranial efficacy of entrectinib in patients with NTRK fusion-positive solid tumours and baseline CNS metastases. Ann. Oncol. 2020, 31, S397–S398. [Google Scholar] [CrossRef]
- Drilon, A.E.; DuBois, S.G.; Farago, A.F.; Geoerger, B.; Grilley-Olson, J.E.; Hong, D.S.; Sohal, D.; van Tilburg, C.M.; Ziegler, D.S.; Ku, N.; et al. Activity of larotrectinib in TRK fusion cancer patients with brain metastases or primary central nervous system tumors. Clin. Oncol. 2019. [Google Scholar] [CrossRef]
- Wolf, J.; Seto, T.; Han, J.Y.; Reguart, N.; Garon, E.B.; Groen, H.J.M.; Tan, D.S.W.; Hida, T.; de Jonge, M.; Orlov, S.V.; et al. Capmatinib in MET Exon 14–Mutated or MET-Amplified Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 944–957. [Google Scholar] [CrossRef]
- Le, X.; Sakai, H.; Felip, E.; Veillon, R.; Garassino, M.C.; Raskin, J.; Cortot, A.B.; Viteri, S.; Mazieres, J.; Smit, E.F.; et al. Tepotinib Efficacy and Safety in Patients with MET Exon 14 Skipping NSCLC: Outcomes in Patient Subgroups from the VISION Study with Relevance for Clinical Practice. Clin. Cancer Res. 2022, 28, 1117–1126. [Google Scholar] [CrossRef]
- Gainor, J.F.; Curigliano, G.; Kim, D.W.; Lee, D.H.; Besse, B.; Baik, C.S.; Doebele, R.C.; Cassier, P.A.; Lopes, G.; Tan, D.S.W.; et al. Pralsetinib for RET fusion-positive non-small-cell lung cancer (ARROW): A multi-cohort, open-label, phase 1/2 study. Lancet Oncol. 2021, 22, 959–969. [Google Scholar] [CrossRef]
- Subbiah, V.; Gainor, J.F.; Oxnard, G.R.; Tan, D.S.W.; Owen, D.H.; Cho, B.C.; Loong, H.H.; McCoach, C.E.; Weiss, J.; Kim, Y.J.; et al. Intracranial Efficacy of Selpercatinib in RET Fusion-Positive Non–Small Cell Lung Cancers on the LIBRETTO-001 Trial. Clin. Cancer Res. 2021, 27, 4160–4167. [Google Scholar] [CrossRef]
- Li, B.T.; Smit, E.F.; Goto, Y.; Nakagawa, K.; Udagawa, H.; Mazières, J.; Nagasaka, M.; Bazhenova, L.; Saltos, A.N.; Felip, E.; et al. Trastuzumab Deruxtecan in HER2-Mutant Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2022, 386, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.; Sequist, L.V.; Geater, S.L.; Tsai, C.M.; Mok, T.S.; Schuler, M.; Yamamoto, N.; Yu, C.J.; Ou, S.H.; Zhou, C.; et al. Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon EGFR mutations: A combined post-hoc analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6. Lancet Oncol. 2015, 16, 830–838. [Google Scholar] [CrossRef] [PubMed]
- Riely, G.J.; Neal, J.W.; Camidge, D.R.; Spira, A.I.; Piotrowska, Z.; Costa, D.B.; Tsao, A.S.; Patel, J.D.; Gadgeel, S.M.; Bazhenova, L.; et al. Activity and Safety of Mobocertinib (TAK-788) in Previously Treated Non-Small Cell Lung Cancer with EGFR Exon 20 Insertion Mutations from a Phase I/II TrialMobocertinib in NSCLC with EGFR Exon 20 Insertions. Cancer Discov. 2021, 11, 1688–1699. [Google Scholar] [CrossRef]
- Park, K.; Haura, E.B.; Leighl, N.B.; Mitchell, P.; Shu, C.A.; Girard, N.; Viteri, S.; Han, J.Y.; Kim, S.W.; Lee, C.K.; et al. Amivantamab in EGFR Exon 20 Insertion-Mutated Non-Small-Cell Lung Cancer Progressing on Platinum Chemotherapy: Initial Results From the CHRYSALIS Phase I Study. J. Clin. Oncol. 2021, 39, 3391–3402. [Google Scholar] [CrossRef]
- Nakagawa, K.; Garon, E.B.; Seto, T.; Nishio, M.; Ponce Aix, S.; Paz-Ares, L.; Chiu, C.H.; Park, K.; Novello, S.; Nadal, E.; et al. Ramucirumab plus erlotinib in patients with untreated, EGFR-mutated, advanced non-small-cell lung cancer (RELAY): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 1655–1669. [Google Scholar] [CrossRef] [Green Version]
- Sabari, J.K.; Velcheti, V.; Shimizu, K.; Strickland, M.R.; Heist, R.S.; Singh, M.; Nayyar, N.; Giobbie-Hurder, A.; Digumarthy, S.R.; Gainor, J.F.; et al. Activity of Adagrasib (MRTX849) in Brain Metastases: Preclinical Models and Clinical Data from Patients with KRASG12C-Mutant Non-Small Cell Lung Cancer. Clin. Cancer Res. 2022, 28, 3318–3328. [Google Scholar] [CrossRef]
- Magnuson, W.J.; Lester-Coll, N.H.; Wu, A.J.; Yang, T.J.; Lockney, N.A.; Gerber, N.K.; Beal, K.; Amini, A.; Patil, T.; Kavanagh, B.D.; et al. Management of Brain Metastases in Tyrosine Kinase Inhibitor-Naïve Epidermal Growth Factor Receptor-Mutant Non-Small-Cell Lung Cancer: A Retrospective Multi-Institutional Analysis. J. Clin. Oncol. 2017, 35, 1070–1077. [Google Scholar] [CrossRef]
- Dai, L.; Luo, C.Y.; Hu, G.X.; Chen, G.; Wu, C.X.; Yin, J.; Jiang, Z.Y.; Hu, G.F.; Zhao, J.; Fu, W.F. Comparative analysis of first-line treatment regimens for advanced EGFR-mutant non-small cell lung cancer patients with stable brain metastases. Ann. Palliat. Med. 2020, 9, 2062–2071. [Google Scholar] [CrossRef]
- Thomas, N.J.; Myall, N.J.; Sun, F.; Patil, T.; Mushtaq, R.; Yu, C.; Sinha, S.; Pollom, E.L.; Nagpal, S.; Camidge, D.R.; et al. Brain Metastases in EGFR- and ALK-Positive NSCLC: Outcomes of Central Nervous System-Penetrant Tyrosine Kinase Inhibitors Alone Versus in Combination With Radiation. J. Thorac. Oncol. 2022, 17, 116–129. [Google Scholar] [CrossRef]
- Weickhardt, A.J.; Scheier, B.; Burke, J.M.; Gan, G.; Lu, X.; Bunn, P.A.; Aisner, D.L.; Gaspar, L.E.; Kavanagh, B.D.; Doebele, R.C.; et al. Local ablative therapy of oligoprogressive disease prolongs disease control by tyrosine kinase inhibitors in oncogene-addicted non-small-cell lung cancer. J. Thorac. Oncol. 2012, 7, 1807–1814. [Google Scholar] [CrossRef]
- Goldstein, I.M.; Roisman, L.C.; Keren-Rosenberg, S.; Dudnik, J.; Nechushtan, H.; Shelef, I.; Fuchs, V.; Kian, W.; Peled, N. Dose escalation of osimertinib for intracranial progression in EGFR mutated non-small-cell lung cancer with brain metastases. Neurooncol. Adv. 2020, 2, vdaa125. [Google Scholar] [CrossRef] [PubMed]
- Remon, J.; Hendriks, L.E.L.; Besse, B. Paving the Way for Long-Term Survival in Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2021, 39, 2321–2323. [Google Scholar] [CrossRef] [PubMed]
- Engelhardt, B.; Vajkoczy, P.; Weller, R.O. The movers and shapers in immune privilege of the CNS. Nat. Immunol. 2017, 18, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, D.; Chambers, A.F.; Felding-Habermann, B.; Huang, S.; Steeg, P.S. The biology of metastasis to a sanctuary site. Clin. Cancer Res. 2007, 13, 1656–1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tawbi, H.A.; Forsyth, P.A.; Algazi, A.; Hamid, O.; Hodi, F.S.; Moschos, S.J.; Khushalani, N.I.; Lewis, K.; Lao, C.D.; Postow, M.A.; et al. Combined Nivolumab and Ipilimumab in Melanoma Metastatic to the Brain. N. Engl. J. Med. 2018, 379, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Leibold, A.T.; Monaco, G.N.; Dey, M. The role of the immune system in brain metastasis. Curr. Neurobiol. 2019, 10, 33–48. [Google Scholar]
- Fakhoury, K.R.; Ney, D.E.; Ormond, D.R.; Rusthoven, C.G. Immunotherapy and radiation for high-grade glioma: A narrative review. Transl. Cancer Res. 2021, 10, 2537–2570. [Google Scholar] [CrossRef]
- Klemm, F.; Maas, R.R.; Bowman, R.L.; Kornete, M.; Soukup, K.; Nassiri, S.; Brouland, J.P.; Iacobuzio-Donahue, C.A.; Brennan, C.; Tabar, V.; et al. Interrogation of the Microenvironmental Landscape in Brain Tumors Reveals Disease-Specific Alterations of Immune Cells. Cell 2020, 181, 1643–1660.e1617. [Google Scholar] [CrossRef]
- Berghoff, A.S.; Fuchs, E.; Ricken, G.; Mlecnik, B.; Bindea, G.; Spanberger, T.; Hackl, M.; Widhalm, G.; Dieckmann, K.; Prayer, D.; et al. Density of tumor-infiltrating lymphocytes correlates with extent of brain edema and overall survival time in patients with brain metastases. Oncoimmunology 2016, 5, e1057388. [Google Scholar] [CrossRef]
- Mansfield, A.S.; Aubry, M.C.; Moser, J.C.; Harrington, S.M.; Dronca, R.S.; Park, S.S.; Dong, H. Temporal and spatial discordance of programmed cell death-ligand 1 expression and lymphocyte tumor infiltration between paired primary lesions and brain metastases in lung cancer. Ann. Oncol. 2016, 27, 1953–1958. [Google Scholar] [CrossRef]
- El Rassy, E.; Botticella, A.; Kattan, J.; Le Péchoux, C.; Besse, B.; Hendriks, L. Non-small cell lung cancer brain metastases and the immune system: From brain metastases development to treatment. Cancer Treat. Rev. 2018, 68, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, S.B.; Schalper, K.A.; Gettinger, S.N.; Mahajan, A.; Herbst, R.S.; Chiang, A.C.; Lilenbaum, R.; Wilson, F.H.; Omay, S.B.; Yu, J.B.; et al. Pembrolizumab for management of patients with NSCLC and brain metastases: Long-term results and biomarker analysis from a non-randomised, open-label, phase 2 trial. Lancet Oncol. 2020, 21, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, L.E.L.; Henon, C.; Auclin, E.; Mezquita, L.; Ferrara, R.; Audigier-Valette, C.; Mazieres, J.; Lefebvre, C.; Rabeau, A.; Le Moulec, S.; et al. Outcome of Patients with Non-Small Cell Lung Cancer and Brain Metastases Treated with Checkpoint Inhibitors. J. Thorac. Oncol. 2019, 14, 1244–1254. [Google Scholar] [CrossRef] [PubMed]
- Bjørnhart, B.; Hansen, K.H.; Jørgensen, T.L.; Herrstedt, J.; Schytte, T. Efficacy and safety of immune checkpoint inhibitors in a Danish real life non-small cell lung cancer population: A retrospective cohort study. Acta Oncol. 2019, 58, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Davis, C.W.; Hwang, W.T.; Jeffries, S.; Sulyok, L.F.; Marmarelis, M.E.; Singh, A.P.; Berman, A.T.; Feigenberg, S.J.; Levin, W.; et al. Outcomes in Patients With Non-small-cell Lung Cancer With Brain Metastases Treated With Pembrolizumab-based Therapy. Clin. Lung Cancer 2021, 22, 58–66.e53. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Xing, L.; Sun, X. Navigate Towards the Immunotherapy Era: Value of Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer Patients With Brain Metastases. Front. Immunol. 2022, 13, 852811. [Google Scholar] [CrossRef]
- Gadgeel, S.M.; Lukas, R.V.; Goldschmidt, J.; Conkling, P.; Park, K.; Cortinovis, D.; de Marinis, F.; Rittmeyer, A.; Patel, J.D.; von Pawel, J.; et al. Atezolizumab in patients with advanced non-small cell lung cancer and history of asymptomatic, treated brain metastases: Exploratory analyses of the phase III OAK study. Lung Cancer 2019, 128, 105–112. [Google Scholar] [CrossRef]
- Sezer, A.; Kilickap, S.; Gümüş, M.; Bondarenko, I.; Özgüroğlu, M.; Gogishvili, M.; Turk, H.M.; Cicin, I.; Bentsion, D.; Gladkov, O.; et al. Cemiplimab monotherapy for first-line treatment of advanced non-small-cell lung cancer with PD-L1 of at least 50%: A multicentre, open-label, global, phase 3, randomised, controlled trial. Lancet 2021, 397, 592–604. [Google Scholar] [CrossRef]
- Spigel, D.R.; Chaft, J.E.; Gettinger, S.; Chao, B.H.; Dirix, L.; Schmid, P.; Chow, L.Q.M.; Hicks, R.J.; Leon, L.; Fredrickson, J.; et al. FIR: Efficacy, Safety, and Biomarker Analysis of a Phase II Open-Label Study of Atezolizumab in PD-L1-Selected Patients With NSCLC. J. Thorac. Oncol. 2018, 13, 1733–1742. [Google Scholar] [CrossRef] [Green Version]
- Mansfield, A.S.; Herbst, R.S.; de Castro, G.; Hui, R.; Peled, N.; Kim, D.W.; Novello, S.; Satouchi, M.; Wu, Y.L.; Garon, E.B.; et al. Outcomes With Pembrolizumab Monotherapy in Patients With Programmed Death-Ligand 1-Positive NSCLC With Brain Metastases: Pooled Analysis of KEYNOTE-001, 010, 024, and 042. JTO Clin. Res. Rep. 2021, 2, 100205. [Google Scholar] [CrossRef]
- Borghae, H.; Pluzanski, A.; Caro, R.B.; Provencio, M.; Burgers, S.; Carcereny, E.; Park, K.; Alexandru, A.; Lupinacci, L.; Sangha, R.; et al. Abstract CT221: Nivolumab (NIVO) + ipilimumab (IPI) as first-line (1L) treatment for patients with advanced non-small cell lung cancer (NSCLC) with brain metastases: Results from CheckMate 227. Cancer Res. 2020, 80, CT221. [Google Scholar] [CrossRef]
- Demaria, S.; Golden, E.B.; Formenti, S.C. Role of Local Radiation Therapy in Cancer Immunotherapy. JAMA Oncol. 2015, 1, 1325–1332. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Deng, W.; Li, N.; Neri, S.; Sharma, A.; Jiang, W.; Lin, S.H. Combining Immunotherapy and Radiotherapy for Cancer Treatment: Current Challenges and Future Directions. Front. Pharmacol. 2018, 9, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twyman-Saint Victor, C.; Rech, A.J.; Maity, A.; Rengan, R.; Pauken, K.E.; Stelekati, E.; Benci, J.L.; Xu, B.; Dada, H.; Odorizzi, P.M.; et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 2015, 520, 373–377. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Deng, L.; Zhang, T.; Wu, Y.; Wang, L.; Bi, N. Efficacy and Safety of Combined Brain Radiotherapy and Immunotherapy in Non-Small-Cell Lung Cancer With Brain Metastases: A Systematic Review and Meta-Analysis. Clin. Lung Cancer 2022, 23, 95–107. [Google Scholar] [CrossRef]
- Lehrer, E.J.; Peterson, J.; Brown, P.D.; Sheehan, J.P.; Quiñones-Hinojosa, A.; Zaorsky, N.G.; Trifiletti, D.M. Treatment of brain metastases with stereotactic radiosurgery and immune checkpoint inhibitors: An international meta-analysis of individual patient data. Radiother. Oncol. 2019, 130, 104–112. [Google Scholar] [CrossRef]
- Leonetti, A.; Wever, B.; Mazzaschi, G.; Assaraf, Y.G.; Rolfo, C.; Quaini, F.; Tiseo, M.; Giovannetti, E. Molecular basis and rationale for combining immune checkpoint inhibitors with chemotherapy in non-small cell lung cancer. Drug Resist. Updates 2019, 46, 100644. [Google Scholar] [CrossRef]
- Gadgeel, S.; Rodríguez-Abreu, D.; Speranza, G.; Esteban, E.; Felip, E.; Dómine, M.; Hui, R.; Hochmair, M.J.; Clingan, P.; Powell, S.F.; et al. Updated Analysis From KEYNOTE-189: Pembrolizumab or Placebo Plus Pemetrexed and Platinum for Previously Untreated Metastatic Nonsquamous Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2020, 38, 1505–1517. [Google Scholar] [CrossRef]
- Powell, S.F.; Rodríguez-Abreu, D.; Langer, C.J.; Tafreshi, A.; Paz-Ares, L.; Kopp, H.G.; Rodríguez-Cid, J.; Kowalski, D.M.; Cheng, Y.; Kurata, T.; et al. Outcomes With Pembrolizumab Plus Platinum-Based Chemotherapy for Patients With NSCLC and Stable Brain Metastases: Pooled Analysis of KEYNOTE-021, -189, and -407. J. Thorac. Oncol. 2021, 16, 1883–1892. [Google Scholar] [CrossRef]
- Huang, Y.; Yuan, J.; Righi, E.; Kamoun, W.S.; Ancukiewicz, M.; Nezivar, J.; Santosuosso, M.; Martin, J.D.; Martin, M.R.; Vianello, F.; et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc. Natl. Acad. Sci. USA 2012, 109, 17561–17566. [Google Scholar] [CrossRef] [Green Version]
- Nogami, N.; Barlesi, F.; Socinski, M.A.; Reck, M.; Thomas, C.A.; Cappuzzo, F.; Mok, T.S.K.; Finley, G.; Aerts, J.G.; Orlandi, F.; et al. IMpower150 Final Exploratory Analyses for Atezolizumab Plus Bevacizumab and Chemotherapy in Key NSCLC Patient Subgroups With EGFR Mutations or Metastases in the Liver or Brain. J. Thorac. Oncol. 2022, 17, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Chu, T.; Zhong, R.; Zhong, H.; Zhang, B.; Zhang, W.; Shi, C.; Qian, J.; Zhang, Y.; Chang, Q.; Zhang, X.; et al. Phase 1b Study of Sintilimab Plus Anlotinib as First-line Therapy in Patients With Advanced NSCLC. J. Thorac. Oncol. 2021, 16, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.S.; Jiang, B.Y.; Yang, J.J.; Tu, H.Y.; Zhou, Q.; Guo, W.B.; Yan, H.H.; Wu, Y.L. Leptomeningeal Metastases in Patients with NSCLC with EGFR Mutations. J. Thorac. Oncol. 2016, 11, 1962–1969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, M.M.; Li, Y.S.; Jiang, B.Y.; Tu, H.Y.; Tang, W.F.; Yang, J.J.; Zhang, X.C.; Ye, J.Y.; Yan, H.H.; Su, J.; et al. Clinical Utility of Cerebrospinal Fluid Cell-Free DNA as Liquid Biopsy for Leptomeningeal Metastases in ALK-Rearranged NSCLC. J. Thorac. Oncol. 2019, 14, 924–932. [Google Scholar] [CrossRef] [PubMed]
- Remon, J.; Le Rhun, E.; Besse, B. Leptomeningeal carcinomatosis in non-small cell lung cancer patients: A continuing challenge in the personalized treatment era. Cancer Treat. Rev. 2017, 53, 128–137. [Google Scholar] [CrossRef]
- Cheng, H.; Perez-Soler, R. Leptomeningeal metastases in non-small-cell lung cancer. Lancet Oncol. 2018, 19, e43–e55. [Google Scholar] [CrossRef] [PubMed]
- Wasserstrom, W.R.; Glass, J.P.; Posner, J.B. Diagnosis and treatment of leptomeningeal metastases from solid tumors: Experience with 90 patients. Cancer 1982, 49, 759–772. [Google Scholar] [CrossRef] [PubMed]
- Boire, A.; Brandsma, D.; Brastianos, P.K.; Le Rhun, E.; Ahluwalia, M.; Junck, L.; Glantz, M.; Groves, M.D.; Lee, E.Q.; Lin, N.; et al. Liquid biopsy in central nervous system metastases: A RANO review and proposals for clinical applications. Neuro. Oncol. 2019, 21, 571–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, B.Y.; Li, Y.S.; Guo, W.B.; Zhang, X.C.; Chen, Z.H.; Su, J.; Zhong, W.Z.; Yang, X.N.; Yang, J.J.; Shao, Y.; et al. Detection of Driver and Resistance Mutations in Leptomeningeal Metastases of NSCLC by Next-Generation Sequencing of Cerebrospinal Fluid Circulating Tumor Cells. Clin. Cancer Res. 2017, 23, 5480–5488. [Google Scholar] [CrossRef] [Green Version]
- Tu, Q.; Wu, X.; Le Rhun, E.; Blonski, M.; Wittwer, B.; Taillandier, L.; De Carvalho Bittencourt, M.; Faure, G.C. CellSearch technology applied to the detection and quantification of tumor cells in CSF of patients with lung cancer leptomeningeal metastasis. Lung Cancer 2015, 90, 352–357. [Google Scholar] [CrossRef]
- Yang, J.C.H.; Kim, S.W.; Kim, D.W.; Lee, J.S.; Cho, B.C.; Ahn, J.S.; Lee, D.H.; Kim, T.M.; Goldman, J.W.; Natale, R.B.; et al. Osimertinib in Patients With Epidermal Growth Factor Receptor Mutation-Positive Non-Small-Cell Lung Cancer and Leptomeningeal Metastases: The BLOOM Study. J. Clin. Oncol. 2020, 38, 538–547. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, M.; Junck, L.; Brandsma, D.; Soffietti, R.; Rudà, R.; Raizer, J.; Boogerd, W.; Taillibert, S.; Groves, M.D.; Le Rhun, E.; et al. Leptomeningeal metastases: A RANO proposal for response criteria. Neuro. Oncol. 2017, 19, 484–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piper-Vallillo, A.J.; Rotow, J.K.; Aredo, J.V.; Shaverdashvili, K.; Luo, J.; Carlisle, J.W.; Husain, H.; Muzikansky, A.; Heist, R.S.; Rangachari, D.; et al. High-Dose Osimertinib for CNS Progression in EGFR+ NSCLC: A Multi-Institutional Experience. JTO Clin. Res. Rep. 2022, 3, 100328. [Google Scholar] [CrossRef] [PubMed]
- Geraud, A.; Mezquita, L.; Bigot, F.; Caramella, C.; Planchard, D.; Le Pechoux, C.; Besse, B. Prolonged Leptomeningeal Responses with Brigatinib in Two Heavily Pretreated ALK-Rearranged Non-Small Cell Lung Cancer Patients. J. Thorac. Oncol. 2018, 13, e215–e217. [Google Scholar] [CrossRef] [Green Version]
- Gainor, J.F.; Sherman, C.A.; Willoughby, K.; Logan, J.; Kennedy, E.; Brastianos, P.K.; Chi, A.S.; Shaw, A.T. Alectinib salvages CNS relapses in ALK-positive lung cancer patients previously treated with crizotinib and ceritinib. J. Thorac. Oncol. 2015, 10, 232–236. [Google Scholar] [CrossRef] [Green Version]
- Gainor, J.F.; Chi, A.S.; Logan, J.; Hu, R.; Oh, K.S.; Brastianos, P.K.; Shih, H.A.; Shaw, A.T. Alectinib Dose Escalation Reinduces Central Nervous System Responses in Patients with Anaplastic Lymphoma Kinase-Positive Non-Small Cell Lung Cancer Relapsing on Standard Dose Alectinib. J. Thorac. Oncol. 2016, 11, 256–260. [Google Scholar] [CrossRef] [Green Version]
- Network, N.C.C. Central Nervous System Cancers (Version 2.2022). Available online: https://www.nccn.org/professionals/physician_gls/pdf/cns.pdf (accessed on 23 January 2023).
- Le Rhun, E.; Preusser, M.; van den Bent, M.; Andratschke, N.; Weller, M. How we treat patients with leptomeningeal metastases. ESMO Open 2019, 4 (Suppl. 2), e000507. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.J.; Wijetunga, N.A.; Yamada, J.; Wolden, S.; Mehallow, M.; Goldman, D.A.; Zhang, Z.; Young, R.J.; Kris, M.G.; Yu, H.A.; et al. Clinical trial of proton craniospinal irradiation for leptomeningeal metastases. Neuro. Oncol. 2021, 23, 134–143. [Google Scholar] [CrossRef]
- Yang, J.T.; Wijetunga, N.A.; Pentsova, E.; Wolden, S.; Young, R.J.; Correa, D.; Zhang, Z.; Zheng, J.; Steckler, A.; Bucwinska, W.; et al. Randomized Phase II Trial of Proton Craniospinal Irradiation Versus Photon Involved-Field Radiotherapy for Patients With Solid Tumor Leptomeningeal Metastasis. J. Clin. Oncol. 2022, 40, 3858–3867. [Google Scholar] [CrossRef]
- Choi, M.; Keam, B.; Ock, C.Y.; Kim, M.; Kim, T.M.; Kim, D.W.; Heo, D.S. Pemetrexed in the Treatment of Leptomeningeal Metastasis in Patients With EGFR-mutant Lung Cancer. Clin. Lung Cancer 2019, 20, e442–e451. [Google Scholar] [CrossRef]
- Wu, Y.L.; Zhou, L.; Lu, Y. Intrathecal chemotherapy as a treatment for leptomeningeal metastasis of non-small cell lung cancer: A pooled analysis. Oncol. Lett. 2016, 12, 1301–1314. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.Q.; Cai, J.; Wang, X.; Wei, J.P.; Zeng, Z.M.; Huang, L.; Liu, A.W. Osimertinib combined with bevacizumab for leptomeningeal metastasis from EGFR-mutation non-small cell lung cancer: A phase II single-arm prospective clinical trial. Thorac. Cancer 2021, 12, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, N.J.; Young, R.J.; Sellitti, M.; Miller, A.; Drilon, A. Lorlatinib and Bevacizumab Activity in ALK-rearranged lung cancers after lorlatinib progression. JCO Precis. Oncol. 2020, 4, PO.20.00271. [Google Scholar] [CrossRef] [PubMed]
- Brastianos, P.K.; Lee, E.Q.; Cohen, J.V.; Tolaney, S.M.; Lin, N.U.; Wang, N.; Chukwueke, U.; White, M.D.; Nayyar, N.; Kim, A.; et al. Single-arm, open-label phase 2 trial of pembrolizumab in patients with leptomeningeal carcinomatosis. Nat. Med. 2020, 26, 1280–1284. [Google Scholar] [CrossRef]
- Naidoo, J.; Schreck, K.C.; Fu, W.; Hu, C.; Carvajal-Gonzalez, A.; Connolly, R.M.; Santa-Maria, C.A.; Lipson, E.J.; Holdhoff, M.; Forde, P.M.; et al. Pembrolizumab for patients with leptomeningeal metastasis from solid tumors: Efficacy, safety, and cerebrospinal fluid biomarkers. J. Immunother. Cancer 2021, 9, e002473. [Google Scholar] [CrossRef]
- Ullah, A.; Leong, S.W.; Wang, J.; Wu, Q.; Ghauri, M.A.; Sarwar, A.; Su, Q.; Zhang, Y. Cephalomannine inhibits hypoxia-induced cellular function via the suppression of APEX1/HIF-1α interaction in lung cancer. Cell Death Dis. 2021, 12, 490. [Google Scholar] [CrossRef]
- Cheng, H.; Feng, M.; Fan, N.; Sokol, E.S.; Wang, F.; Zou, Y.; Farran, B.; Ross, J.S.; Frampton, G.M.; Bhagat, T.D.; et al. 1696O—Genomic profiling and molecular targeting of lung cancer brain metastases. Ann. Oncol. 2022, 33, S772–S784. [Google Scholar] [CrossRef]
Trial | Phase | Systemic Therapy | Setting/CNS Inclusion Criteria | Sample Size (with CNS Disease) | Key Results (CNS Outcomes) | Publication Year | Reference |
---|---|---|---|---|---|---|---|
EGFR Typical Mutations (Exon 19 Deletions and Exon 21 L858R Mutations) | |||||||
AURA 3 | III | Osimertinib (Osi) vs. Platinum-based chemotherapy (chemo) | T790M+ NSCLC patients with asymptomatic, stable BM following POD with prior EGFR-TKI | Measurable BM: Osi (n = 30) vs. Chemo (n = 26) All BM: Osi (n = 75) vs. Chemo (n = 41) | All BM: CNS ORR, Osi (40%) vs. chemo (17%), OR 3.24 (p = 0.014) CNS median DOR: Osi (8.9 mo) vs. Chemo (5.7 mo) Median iPFS: Osi (11.7 mo) vs. Chemo (5.6 mo) Median PFS: Osi (8.5 mo) vs. Chemo (4.2 mo); HR 0.32; 95% CI: 0.21–0.49) | 2018 | [25] |
FLAURA | III | Osimertinib (Osi) vs. SOC EGFR-TKI | Treatment-naïve EGFR-mutated NSCLC Patients with asymptomatic or stable BM Symptomatic pts must have stable neurologic status ≥ 2 weeks following definitive local therapy | Measurable BM: Osi (n = 22), SOC EGFR-TKI (n = 19) All BM: Osi (n = 61) vs. SOC EGFR-TKI (n = 67) | All BM CNS ORR: Osi (66%) vs. SOC EGFR-TKI (43%) CNS Median DOR: Osi (15.2 mo) vs. SOC EGR-TKI (18.7 mo) Median iPFS: Osi (NR) vs. SOC EGFR-TKI (13.9 mo) PFS at 18 months: 58% (95% CI: 40–72) in osimertinib group OS (BM subgroup): HR 0.83 (0.53–1.30) | 2018 | [26] |
EGFR Exon 20 Insertion | |||||||
NCT02716116 | I, II | Mobocertinib | Previously treated Patients with active and symptomatic BM included | N = 12 | CNS ORR: N/A Overall CNS ORR: 25%, among the patients with BM | 2021 | [25] |
Combined EGFR and VEGF Inhibition | |||||||
NEJ026 | III | Erlotnib vs. Erlotinib/bevacizumab | EGFR-positive advanced NSCLC Patients with BM requiring anti-edema drugs excluded | All BM: Erlotnib (n = 36) vs. Erlotinib/bevacizumab (n = 36) | OS (BM subgroup): HR 0.839 (0.432–1.629) | 2021 | [27] |
ALK Rearrangement | |||||||
NCT02075840 | II | Alectinib | Disease progression on crizotinib Patients with stable, treated brain and/or leptomeningeal metastases or asymptomatic untreated brain and/or leptomeningeal metastases were allowed | All BM (n = 84) | CNS ORR 57% (95% CI, 39% to 74%) CNS disease control rate 83% (95% CI, 74% to 91%), CNS DOR was 10.3 months (95% CI, 7.6 to 11.2 months) CNS CR in 43% of patients with baseline CNS metastases | 2016 | [28] |
ALEX | III | Alectinib vs. Crizotinib | Treatment of naïve patients with asymptomatic BM (treatment with local therapy allowed) | All BM: Alectinib (n = 64) vs. Crizotinib (n = 58) Measurable BM: Alectinib (n = 21) vs. Crizotinib (n = 22) | All BM: CNS ORR, Alectinib (36%) vs. Crizotinib (28.6%) with prior radiation; Alectinib (74.4%) vs. Crizotinib (24.3%) without prior radiation CNS Median DOR: Alectinib (NR) vs. Crizotinib (17.3 mo) | 2018 | [29] |
J-ALEX | III | Alectinib vs. Crizotinib | Treatment naïve, or failed one line of chemotherapy regimen Asymptomatic BM (treated or untreated allowed) | Alectinib (n = 14) vs. Crizotinib (n = 29) | Time to CNS progression (alectinib superior): HR = 0.51, p = 0.2502 with baseline BM vs. HR = 0.19, p = 0.0004 without baseline BM 1-year CNS Cumulative Incidence Rate: Alectinib (5.9%) vs. Crizotinib (16.8%) | 2018 | [30] |
ALTA | II | Brigatinib (Arm A—90 mg QD, Arm B—180 mg QD) | Disease progression on crizotinib | All BM: 154 | CNS ORR 42% in arm A and 67% in arm B | 2018 | [31] |
ALTA-1L | III | Brigatinib vs. Crizotinib | Treatment-naïve Patients with asymptomatic or stable BM not requiring steroids or anticonvulsive therapy 7 days prior to randomization | All BM: Brigatinib (n = 47) vs. Crizotinib (n = 49) Measurable BM: Brigatinib (n = 18) vs. Crizotinib (n = 23) | Measurable BM: CNS ORR, Brigatinib (78%) vs. Crizotinib (26%), OR 11.67 (p = 0.0014) Median iPFS: Brigatinib (24 mo) vs. Crizotinib (5.6 mo) in patients with baseline BM; 32.3 mo (Brigatinib) vs. Crizotinib (NR) in patients without baseline BM | 2020 | [31,32] |
ASCEND-4 | III | Ceritinib vs. Platinum-based chemotherapy | Treatment-naïve Patients with asymptomatic brain metastases (prior treatment allowed) | All B: Ceritinib (n = 59) vs. Chemotherapy (n = 80) | CNS ORR ceritinib (72.7%) vs. chemotherapy (27.3%) Median CNS DOR ceritinib (16.6 mo-NR) vs. chemotherapy (NE) | 2017 | [33] |
ASCEND-5 | III | Ceritinib vs. Single-agent chemotherapy | Progression following crizotinib and platinum-based doublet chemotherapy Patients with brain metastases | All BM: Ceritinib (n = 47) vs. chemotherapy (n = 48) | CNS ORR ceritinib (35%) vs. chemotherapy (5%) DOR ceritinib 6.9 mo (95% CI 2·7–8·3 vs. chemotherapy (not evaluable) | 2017 | [34] |
NCT01970865 | II | Lorlatinib | Treatment-naïve (cohort 1), progression on crizotinib (cohort 2), progression on crizotinib and chemotherapy (cohort 3), progression on non-crizotinib ALK inhibitor +/- chemotherapy, progression on 2 or 3 non-crizotinib ALK inhibitors +/- chemotherapy (cohort 4) Patients with asymptomatic BM (prior treatment allowed) | All BM: 141 Measurable BM: cohort 1 (n = 3), cohort 2 (n = 23), cohort 3 (n = 9), cohort 4 (n = 49) | CNS ORR cohort 1 (66.7%), cohort 2 (87%), cohort 3 (55.6%), cohort 4 (53.1%) Median DOR (months), cohort 1 [NR (NR–NR)], cohort 2 [NR (8·4–NR)], cohort 3 [NR (4·1–NR)], | 2018, 2021 | [35,36] |
CROWN | III | Lorlatinib vs. Crizotinib | Treatment-naïve Patients with asymptomatic BM (prior treatment allowed) | All BM: Lorlatinib (n = 38) vs. Crizotinib (n = 40) Measurable BM: Lorlatinib (n = 17) vs. Crizotinib (n = 13) | All BM: CNS ORR, Lorlatinib (66%) vs. Crizotinib (20%); OR 8.41 (95% CI: 2.59–27.23) Measurable BM: CNS ORR, Lorlatinib (82%) vs. Crizotinib (23%); OR 16.83 (95% CI: 1.95–163.23) 12-month iPFS: Lorlatinib (95%) vs. Crizotinib (60%); HR 0.07 (95% CI: 0.03–0.17) | 2020 | [37] |
ROS1 Rearrangement | |||||||
ALKA-372-001 STARTRK-1 STARTRK-2 | I or II | Entrectinib | Treatment- naïve and previously treated Patients with asymptomatic or stable BM with pretreatment | All BM (n = 46) Measurable BM (n = 24) | All BM: CNS ORR, 52.2%; Median DOR: 12.9 mo; iPFS: 8.3 mo Measurable BM: CNS ORR, 79.2%; Median DOR: 12.9 mo; iPFS: 12 mo | 2021 | [38] |
NCT01970865 | II | Lorlatinib | Treatment- naïve and previously treated Patients with asymptomatic BM (prior treatment allowed) | Treatment-naïve (n = 11) Previously treated (n = 24) | Treatment-naïve: CNS ORR, 64%; Median DOR: NR (95% CI: 5.7 to NR) Previously treated: CNS ORR, 50%; Median DOR: NR (95% CI: 11.0 to NR) | 2019 | [39] |
TRIDENT-1 | II | Repotretinib | Treatment- naïve and previously treated Patients with asymptomatic BM (prior treatment allowed) and/or asymptomatic leptomeningeal disease included | Treatment- naïve (n = 3) Previously treated (n = 4) | Treatment- naïve: CNS ORR, 100% (3/3) Previously treated: CNS ORR, 50% (2/4) | 2019 | [40] |
KRAS G12C | |||||||
CodeBreak 100 | II | Sotorasib | Previously treated Patients with active BMs were excluded | N = 26 | No CNS results reported | 2021 | [41] |
KRYSTAL-1 | I | Adagrasib | Previously treated Patients with active and/or stable previously treated BMs included | N = 42 | CNS ORR 33% | 2022 | [42] |
BRAF V600E Mutation | |||||||
NCT01336634 | II | Dabrafenib and trametinib | Treatment -naïve and previously treated patients Patients with asymptomatic BM (if untreated, BM must be <1 cm, and if treated, must be stable for at least 3 weeks prior to enrollment) | All BM: (n = 3); Treatment naïve (n = 2) vs. Previously treated (n = 1) | Treatment- naïve group: (n = 2), best response of non-CR or non-PD reported Previously treated: (n = 1), N/A | 2016, 2017 | [43,44] |
NTRK1/2/3 Gene Fusion | |||||||
ALKA-372-001 STARTRK-1 STARTRK-2 | I or II | Entrectinib | TRK inhibitor-naïve patients Patients with asymptomatic BMs (prior treatment allowed) | All BM: (n = 16) Measurable BM: (n = 8) | All BM: CNS ORR, 50%; Median iPFS: 8.9 mo Measurable BM: CNS ORR, 62.5%; Median iPFS 10.1 mo | 2020 | [45] |
NCT02576431, NCT02637687 | I or II | Larotrectinib | Non-primary CNS malignancy with BM or primary CNS malignancy Patients with asymptomatic BM | All BM: (n = 5) BM in lung cancer: (n = 3) | All BM: CNS ORR, 60% | 2019 | [46] |
MET Exon 14 Skipping | |||||||
GEOMETRY | II | Capmatinib | Treatment-naïve and previously treated patients Patients with non-enlarging BM (steroids therapy allowed, but no dose escalation in 2 weeks before enrollment) | All BM: (n = 13) | CNS ORR: 54% | 2020 | [47] |
VISION | II | Tepotinib | Treatment-naïve and previously treated patients Patients with asymptomatic BM | All BM: (n = 15) Measurable BM: (n = 7) | CNS ORR: 71% (5/7) CNS DOR: 87% (13/15) | 2022 | [48] |
RET Rearrangement | |||||||
ARROW | I or II | Pralsetinib | Treatment-naïve and previously treated patients Patients with stable, non-enlarging BM and absence of neurologic symptoms | Measurable BM (n = 9) | CNS ORR: 56%, all complete responders | 2021 | [49] |
LIBRETTO-001 | I or II | Selpercatinib | Treatment-naïve and previously treated patients Patients with stable neurologic diseases at baseline (steroids allowed, 14 days before enrollment; no neurosurgery or radiation for 28 days; SRS allowed, 14 days before enrollment) | Measurable BM (n = 22) | Overall CNS ORR 81.8%; Prior RT (85.7%) vs. RT-naïve (75%) CNS Median DOR: 9.4 mo | 2021 | [50] |
ERBB2 (HER2) Mutation Positive | |||||||
DESTINY-Lung01 | II | Trastuzumab Deruxtecan | Patients with asymptomatic brain metastases Progression following standard of care | BM (n = 33) | PFS was 7.1 mo (95% CI, 5.5 to 9.8) and OS 13.8 mo (95% CI, 9.8 to 20.9) No CNS-specific outcomes | 2022 | [51] |
Trial | Phase | Systemic Therapy | Setting/CNS Inclusion Criteria | Sample Size (with CNS Disease) | Key Results | Publication Year | Reference |
---|---|---|---|---|---|---|---|
NCT 02085070 | II | Pembrolizumab | PD-1 or PD-L1 therapy-naïve Patients with >1 asymptomatic BM (5–20 mm) which was not previously treated or with unequivocal PD following local therapy | PD-L1 ≥ 1% (n = 37) PD-L1 < 1% (n = 5) | PD-L1 ≥ 1%: CNS ORR, 29.7% iPFS: 2.3 mo Median CNS DOR: 5.7 mo PFS: 1.9 mo OS: 9.9 mo PD-L1 < 1%: CNS ORR (0%) PFS: NR OS: NR | 2020 | [72] |
OAK | III | Atezolizumab vs. Docetaxel | PDL-1 unselected, previously treated advanced or metastatic NSCLC Patients with asymptomatic treated BM | All BM: Atezolizumab (n = 61) vs. Docetaxel (n = 62) | Time to radiographic identification of new symptomatic BM: NR (Atezolizumab) vs. 9.5 mo (HR 0.38, 95% CI: 0.16–0.91) OS: 16.0 mo vs. 11.9 mo (HR = 0.74, p = 0.1633), atezolizumab vs. chemotherapy, respectively | 2019 | [77] |
EMPOWER-Lung 1 | III | Cemiplimab vs. Platinum doublet chemotherapy | Stage IIIB/C, IV squamous or nonsquamous NSCLC with PD-L1 > 50% Patients with asymptomatic BM (prior treatment allowed) | Cemiplimab (n = 34) vs. Chemotherapy (n = 34) | CNS outcomes not reported PFS: HR = 0.45 (favoring cemiplimab) OS: HR = 0.17 (favoring cemiplimab) | 2021 | [78] |
FIR | II | Atezolizumab | Previously treated Patients with asymptomatic or treated brain metastases | Atezolizumab (n = 13) | CNS outcomes not reported sORR: 23% PFS: 4.3 mo OS: 6.8 mo | 2018 | [79] |
Post hoc analysis of data from KEYNOTE-001, 010, 024, 042 | Post hoc analysis | Pembrolizumab vs. Chemotherapy | Previously treated or untreated PD-L1 positive NSCLC Patients with asymptomatic BM | Pembrolizumab: (n = 199) Chemotherapy (n = 94) | PD-L1 ≥ 50% (IO vs. Chemo, respectively): sORR 33.9% vs. 4.6% PFS: 4.1 mo vs. 4.6 mo OS: 19.7 mo vs. 9.7 mo PD-L1 ≥ 1%: sORR: 26.1% vs. 18.1% PFS: 2.3 mo vs. 5.2 mo OS: 13.4 mo vs. 10.3 mo | 2021 | [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Aiello, A.; Miao, E.; Cheng, H. Advances in the Management of Central Nervous System Metastases in Non-Small Cell Lung Cancer. Cancers 2023, 15, 844. https://doi.org/10.3390/cancers15030844
D’Aiello A, Miao E, Cheng H. Advances in the Management of Central Nervous System Metastases in Non-Small Cell Lung Cancer. Cancers. 2023; 15(3):844. https://doi.org/10.3390/cancers15030844
Chicago/Turabian StyleD’Aiello, Angelica, Emily Miao, and Haiying Cheng. 2023. "Advances in the Management of Central Nervous System Metastases in Non-Small Cell Lung Cancer" Cancers 15, no. 3: 844. https://doi.org/10.3390/cancers15030844
APA StyleD’Aiello, A., Miao, E., & Cheng, H. (2023). Advances in the Management of Central Nervous System Metastases in Non-Small Cell Lung Cancer. Cancers, 15(3), 844. https://doi.org/10.3390/cancers15030844