Uterine Cavity Lavage Mutation Analysis in Lithuanian Ovarian Cancer Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Cohort
2.2. Uterine Cavity Lavage and Ovarian Tissue Sample Collection and DNA Extraction
2.3. Targeted Next-Generation Sequencing
2.4. Statistical Analysis
3. Results
3.1. Mutation Analysis in Uterine Cavity Lavage Samples
3.2. Mutation Analysis in Ovarian Tissue Samples
3.3. Uterine Lavage Mutation Correlation with Clinical Features
3.4. Diagnostic and Predictive Value of Uterine Lavage Mutations
3.5. Prognostic Value of Uterine Lavage Mutations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howlader, N.; Noone, A.M.; Krapcho, M.; Garshell, J.; Neyman, N.; Altekruse, S.F.; Kosary, C.L.; Yu, M.; Ruhl, J.; Tatalovich, Z.; et al. SEER Cancer Statistics Review, 1975–2014; National Cancer Institute: Bethesda, MD, USA, 2017. Available online: https://seer.cancer.gov/csr/1975_2014/ (accessed on 1 March 2018).
- Kurman, R. Origin and molecular pathogenesis of ovarian high-grade serous carcinoma. Ann. Oncol. 2013, 24, x16–x21. [Google Scholar] [CrossRef] [PubMed]
- Kurman, R.J.; Shih, I. The Dualistic Model of Ovarian Carcinogenesis: Revisited, Revised, and Expanded. Am. J. Pathol. 2016, 186, 733–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labidi-Galy, S.I.; Papp, E.; Hallberg, D.; Niknafs, N.; Adleff, V.; Noe, M.; Bhattacharya, R.; Novak, M.; Jones, S.; Phallen, J.; et al. High grade serous ovarian carcinomas originate in the fallopian tube. Nat. Commun. 2017, 8, 1093. [Google Scholar] [CrossRef] [Green Version]
- Tuna, M.; Ju, Z.; Yoshihara, K.; Christopher, I.; Janos, L.T.; Gordon, B.M. Clinical relevance of TP53 hotspot mutations in high-grade serous ovarian cancers. Br. J. Cancer 2020, 122, 405–412. [Google Scholar] [CrossRef]
- Bell, D.; Berchuck, A.; Birrer, M.; Chien, J.; Cramer, D.W.; Dao, F.; Dhir, R.; Disaia, P.; Gabra, H.; Glenn, P.; et al. Integrated 360, genomic analyses of ovarian carcinoma. Nature 2011, 474, 609–615. [Google Scholar] [CrossRef] [Green Version]
- Žilovič, D.; Čiurlienė, R.; Sabaliauskaitė, R.; Jarmalaitė, S. Future Screening Prospects for Ovarian Cancer. Cancers 2021, 13, 3840. [Google Scholar] [CrossRef]
- The Cancer Genome Aklas Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474, 609–615. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Dong, X.; Xie, S.; Zhang, L.; Zeng, P.; Zhang, L. Cellular Mechanism of Gene Mutations and Potential Therapeutic Targets in Ovarian Cancer. Cancer Manag. Res. 2021, 13, 3081–3100. [Google Scholar] [CrossRef]
- Pennington, K.P.; Walsh, T.; Harrell, M.I.; Lee, M.K.; Pennil, C.C.; Rendi, M.H.; Thornton, A.; Norquis, B.M.; Casadei, S.; Nord, A.S.; et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin. Cancer Res. 2014, 20, 764–775. [Google Scholar] [CrossRef]
- Kroeger, P.T., Jr.; Drapkin, R. Pathogenesis and heterogeneity of ovarian cancer. Curr. Opin. Obstet. Gynecol. 2017, 29, 26–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chava, S.; Gupta, R. Identification of the Mutational Landscape of Gynecological Malignancies. J. Cancer 2020, 11, 4870–4883. [Google Scholar] [CrossRef] [PubMed]
- Mogos, R.A.; Popovici, R.; Tanase, A.E.; Calistru, T.; Popovici, P.; Grigore, M.; Carauleanu, A. New approaches in ovarian cancer based on genetics and carcinogenesis hypotheses (Review). Exp. Ther. Med. 2023, 423, 202. [Google Scholar] [CrossRef] [PubMed]
- Feeney, L.; Harley, I.J.; McCluggage, W.G.; Mullan, P.B.; Beirne, J.P. Liquid biopsy in ovarian cancer: Catching the silent killer before it strikes. World J. Clin. Oncol. 2020, 11, 868–889. [Google Scholar] [CrossRef]
- Maritschnegg, E.; Wang, Y.; Pecha, N.; Horvat, R.; Van Nieuwenhuysen, E.; Vergote, I.; Heitz, F.; Sehouli, J.; Kinde, I.; Diaz, L.A.; et al. Lavage of the Uterine Cavity for Molecular Detection of Müllerian Duct Carcinomas: A Proof-of-Concept Study. J. Clin. Oncol. 2015, 33, 4293–4300. [Google Scholar] [CrossRef]
- Maritschnegg, E.; Heitz, F.; Pecha, N.; Bouda, J.; Trillsch, F.; Grimm, C.; Vanderstichele, A.; Agreiter, C.; Harter, P.; Obermayr, E.; et al. Uterine and Tubal Lavage for Earlier Cancer Detection Using an Innovative Catheter: A Feasibility and Safety Study. Int. J. Gynecol. Cancer 2018, 28, 1692–1698. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.; Douville, C.; Cohen, J.D.; Yen, T.T.; Kinde, I.; Sundfelt, K.; Kjær, S.K.; Hruban, R.H.; Shih, I.M.; et al. Evaluation of liquid from the Papanicolaou test and other liquid biopsies for the detection of endometrial and ovarian cancers. Sci. Transl. Med. 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Salk, J.; Loubet-Senear, K.; Maritschnegg, E.; Valentine, C.C.; Williams, L.N.; Jacob, E.; Horvat, E.; Vanderstichele, A.; Nachmanson, D.; Baker, K.T.; et al. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat. Rev. Genet. 2018, 19, 269–285. [Google Scholar] [CrossRef]
- Salk, J.K.; Loubent-Senear, K.; Maritschnegg, E.; Valentine, C.C.; Williams, L.N.; Higgins, J.E.; Horvat, R.; Vanderstichele, A.; Nachmanson, D.; Baker, K.T.; et al. Ultra-Sensitive TP53 Sequencing for Cancer Detection Reveals Progressive Clonal Selection in Normal Tissue over a Century of Human Lifespan. Cell Rep. 2019, 28, 132–144. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Li, W.; Yang, J.; Wang, S.; Cao, D.; Yu, M.; Shen, K.; Bai, J.; Gao, Y. Identification of Somatic Mutations in Papanicolaou 386 Smear DNA and Plasma Circulating Cell-Free DNA for Detection of Endometrial and Epithelial Ovarian Cancers: A Pilot Study. Front. Oncol. 2020, 10. [Google Scholar] [CrossRef]
- Bieg-Bourne, C.C.; Okamura, R.; Kurzrock, R. Concordance between TP53 alterations in blood and tissue: Impact of time interval, 389 biopsy site, cancer type and circulating tumor DNA burden. Mol. Oncol. 2020, 14, 1242–1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toss, A.; Piombino, C.; Tenedini, E.; Bologna, A.; Gasparini, E.; Tarantino, V.; Filieri, M.E.; Cottafavi, L.; Giovanardi, F.; Madrigali, S.; et al. The prognostic and predictive role of somatic brca mutations in ovarian cancer: Results from a multicenter cohort study. Diagnostics 2021, 11, 565. [Google Scholar] [CrossRef] [PubMed]
- Kinde, I.; Bettegowda, C.; Wang, Y.; Wu, J.; Agrawal, N.; Shih, I.M.; Kurman, R.; Dao, F.; Levine, D.A.; Giuntoli, R.; et al. Evaluation of DNA from the Papanicolaou test to detect ovarian and endometrial cancers. Sci. Transl. Med. 2013, 5, 167ra4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.W.; Charkhchi, P.; Akbari, M.R. Potential clinical utility of liquid biopsies in ovarian cancer. Mol. Cancer 2022, 21, 395. [Google Scholar] [CrossRef] [PubMed]
Disease Group | HGSOC (%) | Other Ovarian Cancers (%) | Endometrial Cancer (%) | Benign Gynecologic Tumor (%) | RRS Group (%) | Overall (%) |
---|---|---|---|---|---|---|
n = | 37 | 9 | 12 | 19 | 13 | 90 |
Average Age, years (min-max) | 58.2 (42–82) | 62.6 (49–75) | 62.8 (56–74) | 55.9 (41–83) | 46.3 (35–65) | 57.0 (35–83) |
Average CA125 pre-operative concentration U/mL (N/A) | 848.7 (1 N/A) | 152.1 (3 N/A) | 25.3 (10 N/A) | 51.5 (2 N/A) | 20.0 (12 N/A) | 538.5 (29 N/A) |
FIGO Stage | ||||||
IA | 8 (88.9) | 6 (50.0) | 14 (15.6) | |||
IB | 1 (11.1) | 4 (33.3) | 5 (5.6) | |||
IIB | 1 (2.7) | 1 (1.1) | ||||
IIIA | 1 (2.7) | 1 (1.1) | ||||
IIIB | 4 (10.8) | 4 (4.4) | ||||
IIIC | 19 (51.4) | 2 (16.7) | 21 (23.3) | |||
IVB | 12 (32.4) | 12 (13.3) | ||||
N/A 1 | 19 N/A | 13 N/A | 32 (35.6) | |||
Tumour differentiation grade | ||||||
G1 | 3 (33.3) | 7 (58.3) | 10 (11.1) | |||
G2 | 1 (11.1) | 5 (41.7) | 6 (6.7) | |||
G3 | 37 (100.0) | 1 (11.1) | 38 (42.2) | |||
BD 2 | 3 (33.3) | 3 (3.3) | ||||
N/A 1 | 1 (11.1) | 19 (100.0) | 13 (100.0) | 33 (36.7) | ||
Progressed disease | ||||||
Yes | 18 (48.7) | 1 (8.3) | 12 (13.3) | |||
No | 19 (51.4) | 9 (100.0) | 11 (91.7) | 46 (51.1) | ||
N/A | 19 N/A | 13 N/A | 32 (35.6) | |||
Deceased | ||||||
Yes | 5 (13.5) | 1 (8.3) | 6 (6.7) | |||
No | 32 (86.5) | 9 (100.0) | 11 (91.7) | 52 (57.8) | ||
N/A 1 | 19 N/A | 13 N/A | 32 (35.5) | |||
Mutation status (uterine lavage samples) | ||||||
TP53 | 10 (27.0) | 10 (11.1) | ||||
BRCA1 | 13 (35.1) | 11 (84.6) | 24 (26.6) | |||
BRCA2 | 4 (10.8) | 2 (15.4) | 6 (6.6) | |||
PI3KCA | 1 (2.7) | 4 (33.3) | 5 (5.5) | |||
PTEN | 4 (33.3) | 4 (4.4) | ||||
KRAS | 1 (11.1) | 3 (25.0) | 4 (4.4) | |||
Mutation status (ovarian tissue samples) | ||||||
TP53 | 23 (79.3) | 1 (14.2) | 24 (52.2) | |||
BRCA1 | 10 (34.4) | 10 (21.7) | ||||
BRCA2 | 4 (13.8) | 4 (8.7) | ||||
PI3KCA | 2 (6.8) | 2 (28.6) | 4 (8.7) | |||
PTEN | 1 (14.2) | 1 (2.2) | ||||
KRAS | 1 (14.2) | 1 (2.2) |
Tissue | Overall Concordance Rate % | Positive Concordance Rate % | Kappa (SE) | |||
---|---|---|---|---|---|---|
ctDNA | + | − | ||||
TP53 | + | 10 | 0 | 69.565 | 41.667 | 0.406 (0.107) |
− | 14 | 22 | ||||
BRCA1/2 | + | 15 | 0 | 100.000 | 100.000 | 1(0) |
− | 0 | 31 | ||||
PI3K pathway | + | 2 | 0 | 91.304 | 33.304 | 0.465 (0.216) |
− | 4 | 40 | ||||
Any mutation | + | 15 | 0 | 65.217 | 48.487 | 0.379 (0.098) |
− | 16 | 15 |
Performance of HGSOC vs. other Cases Except for the RSS Group | Sensitivity% | Specificity% | Accuracy% | PPV% | NPV% |
---|---|---|---|---|---|
TP53 | 27.03 | 100.0 | 64.94 | 100.0 | 59.70 |
BRCA1/2 + TP53 | 62.16 | 100.0 | 81.82 | 100.0 | 74.07 |
BRCA1 | 35.14 | 100.0 | 68.83 | 100.0 | 62.50 |
BRCA2 | 10.81 | 100.0 | 57.14 | 100.0 | 54.79 |
PI3K pathway mutations | 2.70 | 87.50 | 46.75 | 16.67 | 49.30 |
Any gene mutation | 62.16 | 87.50 | 75.32 | 82.14 | 71.43 |
Predictive Risk of HGSOC vs. Other Cases Except the RSS Group | Risk Ratio | Risk Ratio 95% CI | OR (Fishers Test) | OR 95% CI | Fishers Test, p-Value |
---|---|---|---|---|---|
TP53 | 2.481 | 1.854–3.321 | INF | 2.956-INF | 0.0003 |
BRCA1/2 + TP53 | 3.857 | 2.457–6.054 | INF | 13.444-INF | <0.0001 |
BRCA1 | 2.667 | 1.944–3.659 | INF | 4.456-INF | <0.0001 |
BRCA2 | 2.212 | 1.718–2.847 | INF | 0.740-INF | 0.0488 |
PI3K pathway mutations | 0.329 | 0.0542–1.996 | 0.198 | 0.004–1.898 | 0.2022 |
Any gene mutation | 2.875 | 1.788–4.624 | 11.072 | 3.287–45.033 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žilovič, D.; Vaicekauskaitė, I.; Čiurlienė, R.; Sabaliauskaitė, R.; Jarmalaitė, S. Uterine Cavity Lavage Mutation Analysis in Lithuanian Ovarian Cancer Patients. Cancers 2023, 15, 868. https://doi.org/10.3390/cancers15030868
Žilovič D, Vaicekauskaitė I, Čiurlienė R, Sabaliauskaitė R, Jarmalaitė S. Uterine Cavity Lavage Mutation Analysis in Lithuanian Ovarian Cancer Patients. Cancers. 2023; 15(3):868. https://doi.org/10.3390/cancers15030868
Chicago/Turabian StyleŽilovič, Diana, Ieva Vaicekauskaitė, Rūta Čiurlienė, Rasa Sabaliauskaitė, and Sonata Jarmalaitė. 2023. "Uterine Cavity Lavage Mutation Analysis in Lithuanian Ovarian Cancer Patients" Cancers 15, no. 3: 868. https://doi.org/10.3390/cancers15030868
APA StyleŽilovič, D., Vaicekauskaitė, I., Čiurlienė, R., Sabaliauskaitė, R., & Jarmalaitė, S. (2023). Uterine Cavity Lavage Mutation Analysis in Lithuanian Ovarian Cancer Patients. Cancers, 15(3), 868. https://doi.org/10.3390/cancers15030868