Intraoperative Imaging Techniques to Improve Surgical Resection Margins of Oropharyngeal Squamous Cell Cancer: A Comprehensive Review of Current Literature †
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Superficial and Deep Margin
3.1.1. Frozen Section Assessment
3.1.2. (Auto) Fluorescence Imaging
3.2. Superficial Margin
3.2.1. Narrow Band Imaging
3.2.2. Confocal Laser Endomicroscopy
3.2.3. High-Resolution Microendoscopic Imaging
3.3. Deep Margin
3.3.1. Ultrasound (US)
3.3.2. Computed Tomography and Magnetic Resonance Imaging
4. Discussion
4.1. Resection Margins and Adequate Margins
4.2. Most-Applicable Techniques for Oropharynx
4.3. Future Developments
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Search String per Database
Pubmed: |
“oropharynx”[Mesh] OR “oropharyngeal neoplasms”[Mesh] OR tonsil*[tiab] OR oropharyn*[tiab] OR mesopharyn*[tiab] OR oro-pharyn*[tiab] OR meso-pharyn*[tiab] |
“cryoultramicrotomy”[Mesh] OR “diagnostic imaging” [subheading] OR “endoscopy”[Mesh:NoExp] OR “fluorescence”[Mesh] OR “magnetic resonance imaging”[Mesh] OR “microscopy, confocal”[Mesh] OR “narrow band imaging”[Mesh] OR “optical imaging”[Mesh] OR “spectrum analysis, Raman”[Mesh] OR “tomography, optical coherence”[Mesh] OR “ultrasonics”[Mesh] OR “ultrasonography”[Mesh] OR autofluorescence[tiab] OR confocal[tiab] OR contact endoscop*[tiab] OR endomicroscop*[tiab] OR ultraso*[tiab] OR fluorescence[tiab] OR frozen[tiab] OR intraoperative[tiab] OR intra-operative[tiab] OR imaging[tiab] OR MRI[tiab] OR narrow band imaging[tiab] OR NBI[tiab] OR OCT[tiab] OR optical coherence[tiab] OR Raman[tiab] OR tomograph*[tiab] OR TOUSS[tiab] OR ultraso*[tiab] |
“margins of excision”[Mesh] OR excision*[tiab] OR margin*[tiab] OR resection*[tiab] OR surgic*[tiab] OR tumor-free[tiab] OR dissection*[tiab] |
Embase: |
oropharynx/OR exp oropharynx tumor/OR tonsil*.ti,ab,kf. OR oropharyn*.ti,ab,kf. OR mesopharyn*.ti,ab,kf. OR oro-pharyn*.ti,ab,kf. OR meso-pharyn*.ti,ab,kf. |
ultramicrotomy/OR diagnostic imaging/OR endoscopy/ OR exp fluorescence/OR nuclear magnetic resonance imaging/OR exp confocal microscopy/ OR narrow band imaging/OR exp fluorescence imaging/OR exp Raman spectrometry/OR exp optical coherence tomography/OR ultrasound/ OR exp echography/OR autofluorescence.ti,ab,kf. OR confocal.ti,ab,kf. OR contact endoscop*.ti,ab,kf. OR endomicroscop*.ti,ab,kf. OR ultraso*.ti,ab,kf. OR fluorescence.ti,ab,kf. OR frozen.ti,ab,kf. OR intraoperative.ti,ab,kf. OR intra-operative.ti,ab,kf. OR imaging.ti,ab,kf. OR MRI.ti,ab,kf. OR narrow band imaging.ti,ab,kf. OR NBI.ti,ab,kf. OR OCT.ti,ab,kf. OR optical coherence.ti,ab,kf. OR Raman.ti,ab,kf. OR tomograph*.ti,ab,kf. OR TOUSS.ti,ab,kf. OR ultraso*.ti,ab,kf. |
surgical margin/ OR excision*.ti,ab,kf. OR margin*.ti,ab,kf. OR resection*.ti,ab,kf. OR surgic*.ti,ab,kf. OR tumor-free.ti,ab,kf. OR dissection*.ti,ab,kf. |
Cochrane: |
[mh oropharynx] OR [mh “oropharyngeal neoplasms”] OR tonsil*:ti,ab,kw OR oropharyn*:ti,ab,kw OR mesopharyn*:ti,ab,kw OR oro-pharyn*:ti,ab,kw OR meso-pharyn*:ti,ab,kw |
[mh cryoultramicrotomy] OR [mh “diagnostic imaging”] OR [mh ^endoscopy] OR [mh fluorescence] OR [mh “magnetic resonance imaging”] OR [mh “microscopy, confocal”] OR [mh “narrow band imaging”] OR [mh “optical imaging”] OR [mh “spectrum analysis, Raman”] OR [mh “tomography, optical coherence”] OR [mh ultrasonics] OR [mh ultrasonography] OR autofluorescence:ti,ab,kw OR confocal:ti,ab,kw OR contact endoscop*:ti,ab,kw OR endomicroscop*:ti,ab,kw OR ultraso*:ti,ab,kw OR fluorescence:ti,ab,kw OR frozen:ti,ab,kw OR intraoperative:ti,ab,kw OR intra-operative:ti,ab,kw OR imaging:ti,ab,kw OR MRI:ti,ab,kw OR narrow band imaging:ti,ab,kw OR NBI:ti,ab,kw OR OCT:ti,ab,kw OR optical coherence:ti,ab,kw OR Raman:ti,ab,kw OR tomograph*:ti,ab,kw OR TOUSS:ti,ab,kw OR ultraso*:ti,ab,kw |
[mh “margins of excision”] OR excision*:ti,ab,kw OR margin*:ti,ab,kw OR resection*:ti,ab,kw OR surgical:ti,ab,kw OR tumor-free:ti,ab,kw OR dissection*:ti,ab,kw |
References
- Zhang, Y.; Fakhry, C.; D’Souza, G. Projected Association of Human Papillomavirus Vaccination with Oropharynx Cancer Incidence in the US, 2020-2045. JAMA Oncol. 2021, 7, e212907. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, A.K.; Engels, E.A.; Pfeiffer, R.M.; Hernandez, B.Y.; Xiao, W.; Kim, E.; Jiang, B.; Goodman, M.T.; Sibug-Saber, M.; Cozen, W.; et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J. Clin. Oncol. 2011, 29, 4294–4301. [Google Scholar] [CrossRef] [PubMed]
- Cohan, D.M.; Popat, S.; Kaplan, S.E.; Rigual, N.; Loree, T.; Hicks, W.L., Jr. Oropharyngeal cancer: Current understanding and management. Curr. Opin. Otolaryngol. Head Neck Surg. 2009, 17, 88–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rütten, H.; Pop, L.A.; Janssens, G.O.; Takes, R.P.; Knuijt, S.; Rooijakkers, A.F.; van den Berg, M.; Merkx, M.A.; van Herpen, C.M.; Kaanders, J.H. Long-term outcome and morbidity after treatment with accelerated radiotherapy and weekly cisplatin for locally advanced head-and-neck cancer: Results of a multidisciplinary late morbidity clinic. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 923–929. [Google Scholar] [CrossRef]
- Soldatova, L.; Mirza, N. Long-Term Voice and Swallowing Outcomes for Oral and Oropharyngeal Cancer following Primary or Adjuvant Chemoradiation. Ann. Otol. Rhinol. Laryngol. 2019, 128, 802–810. [Google Scholar] [CrossRef]
- Nichols, A.C.; Theurer, J.; Prisman, E.; Read, N.; Berthelet, E.; Tran, E.; Fung, K.; de Almeida, J.R.; Bayley, A.; Goldstein, D.P.; et al. Randomized Trial of Radiotherapy versus Transoral Robotic Surgery for Oropharyngeal Squamous Cell Carcinoma: Long-Term Results of the ORATOR Trial. J. Clin. Oncol. 2022, 40, 866–875. [Google Scholar] [CrossRef]
- Yu, J.; Pham, T.T.; Wandrey, N.; Daly, M.; Karam, S.D. Multimodality Management of EBV-Associated Nasopharyngeal Carcinoma. Cancers 2021, 13, 6078. [Google Scholar] [CrossRef]
- Bulsara, V.M.; Worthington, H.V.; Glenny, A.M.; Clarkson, J.E.; Conway, D.I.; Macluskey, M. Interventions for the treatment of oral and oropharyngeal cancers: Surgical treatment. Cochrane Database Syst. Rev. 2018, 12, CD006205. [Google Scholar] [CrossRef]
- Grégoire, V.; Giraud, P.; Vieillevigne, L.; Maingon, P. Management of oropharyngeal squamous cell carcinoma. Cancer Radiother. 2022, 26, 174–188. [Google Scholar] [CrossRef]
- Tirelli, G.; Boscolo Nata, F.; Piovesana, M.; Quatela, E.; Gardenal, N.; Hayden, R.E. Transoral surgery (TOS) in oropharyngeal cancer: Different tools, a single mini-invasive philosophy. Surg. Oncol. 2018, 27, 643–649. [Google Scholar] [CrossRef]
- Cracchiolo, J.R.; Baxi, S.S.; Morris, L.G.; Ganly, I.; Patel, S.G.; Cohen, M.A.; Roman, B.R. Increase in primary surgical treatment of T1 and T2 oropharyngeal squamous cell carcinoma and rates of adverse pathologic features: National Cancer Data Base. Cancer 2016, 122, 1523–1532. [Google Scholar] [CrossRef] [Green Version]
- Castellano, A.; Sharma, A. Systematic Review of Validated Quality of Life and Swallow Outcomes after Transoral Robotic Surgery. Otolaryngol. Head Neck Surg. 2019, 161, 561–567. [Google Scholar] [CrossRef]
- Hutcheson, K.A.; Holsinger, F.C.; Kupferman, M.E.; Lewin, J.S. Functional outcomes after TORS for oropharyngeal cancer: A systematic review. Eur. Arch. Otorhinolaryngol. 2015, 272, 463–471. [Google Scholar] [CrossRef] [Green Version]
- Hinni, M.L.; Nagel, T.; Howard, B. Oropharyngeal cancer treatment: The role of transoral surgery. Curr. Opin. Otolaryngol. Head Neck Surg. 2015, 23, 132–138. [Google Scholar] [CrossRef]
- Meulemans, J.; Vanermen, M.; Goeleven, A.; Clement, P.; Nuyts, S.; Laenen, A.; Delaere, P.; Vander Poorten, V. Transoral robotic surgery (TORS) using the da Vinci Xi: Prospective analysis of feasibility, safety, and outcomes. Head Neck 2022, 44, 143–157. [Google Scholar] [CrossRef]
- Hardman, J.C.; Holsinger, F.C.; Brady, G.C.; Beharry, A.; Bonifer, A.T.; D’Andréa, G.; Dabas, S.K.; de Almeida, J.R.; Duvvuri, U.; Floros, P.; et al. Transoral Robotic Surgery for Recurrent Tumors of the Upper Aerodigestive Tract (RECUT): An International Cohort Study. J. Natl. Cancer Inst. 2022, 114, 1400–1409. [Google Scholar] [CrossRef]
- Hutcheson, K.A.; Warneke, C.L.; Yao, C.; Zaveri, J.; Elgohari, B.E.; Goepfert, R.; Hessel, A.C.; Kupferman, M.E.; Lai, S.Y.; Fuller, C.D.; et al. Dysphagia After Primary Transoral Robotic Surgery with Neck Dissection vs Nonsurgical Therapy in Patients with Low- to Intermediate-Risk Oropharyngeal Cancer. JAMA Otolaryngol. Head Neck Surg. 2019, 145, 1053–1063. [Google Scholar] [CrossRef]
- Nichols, A.C.; Theurer, J.; Prisman, E.; Read, N.; Berthelet, E.; Tran, E.; Fung, K.; de Almeida, J.R.; Bayley, A.; Goldstein, D.P.; et al. Radiotherapy versus transoral robotic surgery and neck dissection for oropharyngeal squamous cell carcinoma (ORATOR): An open-label, phase 2, randomised trial. Lancet Oncol. 2019, 20, 1349–1359. [Google Scholar] [CrossRef]
- Mercante, G.; Ruscito, P.; Pellini, R.; Cristalli, G.; Spriano, G. Transoral robotic surgery (TORS) for tongue base tumours. Acta Otorhinolaryngol. Ital. 2013, 33, 230–235. [Google Scholar]
- Yu, H.Y.; Friedlander, D.F.; Patel, S.; Hu, J.C. The current status of robotic oncologic surgery. CA Cancer J. Clin. 2013, 63, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Blanco, R.G.; Fakhry, C.; Ha, P.K.; Ryniak, K.; Messing, B.; Califano, J.A.; Saunders, J.R. Transoral robotic surgery experience in 44 cases. J. Laparoendosc. Adv. Surg. Tech. A 2013, 23, 900–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, H.; Ford, S.; Bush, B.; Holsinger, F.C.; Moore, E.; Ghanem, T.; Carroll, W.; Rosenthal, E.; Sweeny, L.; Magnuson, J.S. Salvage surgery for recurrent cancers of the oropharynx: Comparing TORS with standard open surgical approaches. JAMA Otolaryngol. Head Neck Surg. 2013, 139, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.M.; Roman, S.A.; Kraus, D.H.; Sosa, J.A.; Judson, B.L. Transoral Robotic Surgery: A Population-Level Analysis. Otolaryngol. Head Neck Surg. 2014, 150, 968–975. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.T.; Luu, M.; Mallen-St Clair, J.; Mita, A.C.; Scher, K.S.; Lu, D.J.; Shiao, S.L.; Ho, A.S.; Zumsteg, Z.S. Comparison of Survival After Transoral Robotic Surgery vs Nonrobotic Surgery in Patients with Early-Stage Oropharyngeal Squamous Cell Carcinoma. JAMA Oncol. 2020, 6, 1555–1562. [Google Scholar] [CrossRef] [PubMed]
- Persky, M.J.; Albergotti, W.G.; Rath, T.J.; Kubik, M.W.; Abberbock, S.; Geltzeiler, M.; Kim, S.; Duvvuri, U.; Ferris, R.L. Positive Margins by Oropharyngeal Subsite in Transoral Robotic Surgery for T1/T2 Squamous Cell Carcinoma. Otolaryngol. Head Neck Surg. 2018, 158, 660–666. [Google Scholar] [CrossRef]
- Gorphe, P.; Simon, C. A systematic review and meta-analysis of margins in transoral surgery for oropharyngeal carcinoma. Oral Oncol. 2019, 98, 69–77. [Google Scholar] [CrossRef]
- McMahon, J.; O’Brien, C.J.; Pathak, I.; Hamill, R.; McNeil, E.; Hammersley, N.; Gardiner, S.; Junor, E. Influence of condition of surgical margins on local recurrence and disease-specific survival in oral and oropharyngeal cancer. Br. J. Oral Maxillofac. Surg. 2003, 41, 224–231. [Google Scholar] [CrossRef]
- Baliga, S.; Klamer, B.; Jhawar, S.; Gamez, M.; Mitchell, D.; Blakaj, A.; Grecula, J.; Gardner, U.; Dibs, K.; Old, M.; et al. Identification of Clinical and Socioeconomic Predictors of Adjuvant Therapy after Trans-Oral Robotic Surgery in Patients with Oropharyngeal Squamous Cell Carcinoma. Cancers 2020, 12, 2474. [Google Scholar] [CrossRef]
- van Lanschot, C.G.F.; Mast, H.; Hardillo, J.A.; Monserez, D.; Ten Hove, I.; Barroso, E.M.; Cals, F.L.J.; Smits, R.W.H.; van der Kamp, M.F.; Meeuwis, C.A.; et al. Relocation of inadequate resection margins in the wound bed during oral cavity oncological surgery: A feasibility study. Head Neck 2019, 41, 2159–2166. [Google Scholar] [CrossRef] [Green Version]
- Hinni, M.L.; Zarka, M.A.; Hoxworth, J.M. Margin mapping in transoral surgery for head and neck cancer. Laryngoscope 2013, 123, 1190–1198. [Google Scholar] [CrossRef]
- Herruer, J.M.; Taylor, S.M.; MacKay, C.A.; Ubayasiri, K.M.; Lammers, D.; Kuta, V.; Bullock, M.J.; Corsten, M.J.; Trites, J.R.B.; Rigby, M.H. Intraoperative Primary Tumor Identification and Margin Assessment in Head and Neck Unknown Primary Tumors. Otolaryngol. Head Neck Surg. 2020, 162, 313–318. [Google Scholar] [CrossRef]
- Tirelli, G.; Boscolo Nata, F.; Gatto, A.; Bussani, R.; Spinato, G.; Zacchigna, S.; Piovesana, M. Intraoperative Margin Control in Transoral Approach for Oral and Oropharyngeal Cancer. Laryngoscope 2019, 129, 1810–1815. [Google Scholar] [CrossRef]
- Horwich, P.; MacKay, C.; Bullock, M.; Taylor, S.M.; Hart, R.; Trites, J.; Geldenhuys, L.; Williams, B.; Rigby, M.H. Specimen oriented intraoperative margin assessment in oral cavity and oropharyngeal squamous cell carcinoma. J. Otolaryngol. Head Neck Surg. 2021, 50, 37. [Google Scholar] [CrossRef]
- MacKay, C.; Turner, B.; Bullock, M.; Taylor, S.M.; Trites, J.; Corsten, M.; Geldenhuys, L.; Rigby, M.H. Margin Sampling and Survival Outcomes in Oral Cavity and p16-Positive Oropharyngeal Squamous Cell Carcinoma. OTO Open 2022, 6, 2473974x221101024. [Google Scholar] [CrossRef]
- Yu, A.C.; Afework, D.D.; Goldstein, J.D.; Abemayor, E.; Mendelsohn, A.H. Association of Intraoperative Frozen Section Controls with Improved Margin Assessment During Transoral Robotic Surgery for Human Papillomavirus-Positive Oropharyngeal Squamous Cell Carcinoma. JAMA Otolaryngol. Head Neck Surg. 2022, 148, 1029–1037. [Google Scholar] [CrossRef]
- Thomas Robbins, K.; Triantafyllou, A.; Suárez, C.; López, F.; Hunt, J.L.; Strojan, P.; Williams, M.D.; Braakhuis, B.J.M.; de Bree, R.; Hinni, M.L.; et al. Surgical margins in head and neck cancer: Intra- and postoperative considerations. Auris Nasus Larynx 2019, 46, 10–17. [Google Scholar] [CrossRef]
- Serinelli, S.; Bryant, S.M.; Williams, M.P.A.; Marzouk, M.; Zaccarini, D.J. Frozen-Permanent Section Discrepancy Rate in Oral Cavity and Oropharyngeal Squamous Cell Carcinoma. Head Neck Pathol. 2022, 16, 466–475. [Google Scholar] [CrossRef]
- Vonk, J.; de Wit, J.G.; Voskuil, F.J.; Witjes, M.J.H. Improving oral cavity cancer diagnosis and treatment with fluorescence molecular imaging. Oral Dis. 2021, 27, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Marsden, M.; Weyers, B.W.; Bec, J.; Sun, T.; Gandour-Edwards, R.F.; Birkeland, A.C.; Abouyared, M.; Bewley, A.F.; Farwell, D.G.; Marcu, L. Intraoperative Margin Assessment in Oral and Oropharyngeal Cancer Using Label-Free Fluorescence Lifetime Imaging and Machine Learning. IEEE Trans. Biomed. Eng. 2021, 68, 857–868. [Google Scholar] [CrossRef]
- de Wit, J.G.; van Schaik, J.E.; Voskuil, F.J.; Vonk, J.; de Visscher, S.; Schepman, K.P.; van der Laan, B.; Doff, J.J.; van der Vegt, B.; Plaat, B.E.C.; et al. Comparison of narrow band and fluorescence molecular imaging to improve intraoperative tumour margin assessment in oral cancer surgery. Oral Oncol. 2022, 134, 106099. [Google Scholar] [CrossRef]
- Weyers, B.W.; Birkeland, A.C.; Marsden, M.A.; Tam, A.; Bec, J.; Frusciante, R.P.; Gui, D.; Bewley, A.F.; Abouyared, M.; Marcu, L.; et al. Intraoperative delineation of p16+ oropharyngeal carcinoma of unknown primary origin with fluorescence lifetime imaging: Preliminary report. Head Neck 2022, 44, 1765–1776. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Krishnan, G.; Nishio, N.; van den Berg, N.S.; Lu, G.; Martin, B.A.; van Keulen, S.; Colevas, A.D.; Kapoor, S.; Liu, J.T.C.; et al. Intraoperative Fluorescence-Guided Surgery in Head and Neck Squamous Cell Carcinoma. Laryngoscope 2021, 131, 529–534. [Google Scholar] [CrossRef] [PubMed]
- van Schaik, J.E.; Halmos, G.B.; Witjes, M.J.H.; Plaat, B.E.C. An overview of the current clinical status of optical imaging in head and neck cancer with a focus on Narrow Band imaging and fluorescence optical imaging. Oral Oncol. 2021, 121, 105504. [Google Scholar] [CrossRef] [PubMed]
- Alfonso-Garcia, A.; Bec, J.; Weyers, B.; Marsden, M.; Zhou, X.; Li, C.; Marcu, L. Mesoscopic fluorescence lifetime imaging: Fundamental principles, clinical applications and future directions. J. Biophotonics 2021, 14, e202000472. [Google Scholar] [CrossRef]
- Weyers, B.W.; Marsden, M.; Sun, T.; Bec, J.; Bewley, A.F.; Gandour-Edwards, R.F.; Moore, M.G.; Farwell, D.G.; Marcu, L. Fluorescence lifetime imaging for intraoperative cancer delineation in transoral robotic surgery. Transl. Biophotonics 2019, 1, e201900017. [Google Scholar] [CrossRef] [Green Version]
- Namikawa, T.; Iwabu, J.; Munekage, M.; Uemura, S.; Maeda, H.; Kitagawa, H.; Nakayama, T.; Inoue, K.; Sato, T.; Kobayashi, M.; et al. Evolution of photodynamic medicine based on fluorescence image-guided diagnosis using indocyanine green and 5-aminolevulinic acid. Surg. Today 2020, 50, 821–831. [Google Scholar] [CrossRef]
- van Keulen, S.; Nishio, N.; Birkeland, A.; Fakurnejad, S.; Martin, B.; Forouzanfar, T.; Cunanan, K.; Colevas, A.D.; van den Berg, N.S.; Rosenthal, E. The Sentinel Margin: Intraoperative Ex Vivo Specimen Mapping Using Relative Fluorescence Intensity. Clin. Cancer Res. 2019, 25, 4656–4662. [Google Scholar] [CrossRef]
- Gorpas, D.; Phipps, J.; Bec, J.; Ma, D.; Dochow, S.; Yankelevich, D.; Sorger, J.; Popp, J.; Bewley, A.; Gandour-Edwards, R.; et al. Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients. Sci. Rep. 2019, 9, 1187. [Google Scholar] [CrossRef] [Green Version]
- Kossatz, S.; Pirovano, G.; Demetrio De Souza Franca, P.; Strome, A.L.; Sunny, S.P.; Zanoni, D.K.; Mauguen, A.; Carney, B.; Brand, C.; Shah, V.; et al. Validation of the use of a fluorescent PARP1 inhibitor for the detection of oral, oropharyngeal and oesophageal epithelial cancers. Nat. Biomed. Eng. 2020, 4, 272–285. [Google Scholar] [CrossRef]
- Riyo, S.; Takashi, Y.; Youichi, T.; Takahiko, S. A study on the intrapapillary capillary loop detected by narrow band imaging system in early oral squamous cell carcinoma. J. Oral Maxillofac. Surg. Med. Pathol. 2015, 27, 624–630. [Google Scholar] [CrossRef]
- Gono, K.; Obi, T.; Yamaguchi, M.; Ohyama, N.; Machida, H.; Sano, Y.; Yoshida, S.; Hamamoto, Y.; Endo, T. Appearance of enhanced tissue features in narrow-band endoscopic imaging. J. Biomed. Opt. 2004, 9, 568–577. [Google Scholar] [CrossRef]
- Katada, C.; Nakayama, M.; Tanabe, S.; Koizumi, W.; Masaki, T.; Takeda, M.; Okamoto, M.; Saigenji, K. Narrow band imaging for detecting metachronous superficial oropharyngeal and hypopharyngeal squamous cell carcinomas after chemoradiotherapy for head and neck cancers. Laryngoscope 2008, 118, 1787–1790. [Google Scholar] [CrossRef]
- Katada, C.; Tanabe, S.; Koizumi, W.; Higuchi, K.; Sasaki, T.; Azuma, M.; Katada, N.; Masaki, T.; Nakayama, M.; Okamoto, M.; et al. Narrow band imaging for detecting superficial squamous cell carcinoma of the head and neck in patients with esophageal squamous cell carcinoma. Endoscopy 2010, 42, 185–190. [Google Scholar] [CrossRef]
- Matsuba, H.; Katada, C.; Masaki, T.; Nakayama, M.; Okamoto, T.; Hanaoka, N.; Tanabe, S.; Koizumi, W.; Okamoto, M.; Muto, M. Diagnosis of the extent of advanced oropharyngeal and hypopharyngeal cancers by narrow band imaging with magnifying endoscopy. Laryngoscope 2011, 121, 753–759. [Google Scholar] [CrossRef]
- Ugumori, T.; Muto, M.; Hayashi, R.; Hayashi, T.; Kishimoto, S. Prospective study of early detection of pharyngeal superficial carcinoma with the narrowband imaging laryngoscope. Head Neck 2009, 31, 189–194. [Google Scholar] [CrossRef]
- Vicini, C.; Montevecchi, F.; D’Agostino, G.; De Vito, A.; Meccariello, G. A novel approach emphasising intra-operative superficial margin enhancement of head-neck tumours with narrow-band imaging in transoral robotic surgery. Acta Otorhinolaryngol. Ital. 2015, 35, 157–161. [Google Scholar]
- Muto, M.; Minashi, K.; Yano, T.; Saito, Y.; Oda, I.; Nonaka, S.; Omori, T.; Sugiura, H.; Goda, K.; Kaise, M.; et al. Early detection of superficial squamous cell carcinoma in the head and neck region and esophagus by narrow band imaging: A multicenter randomized controlled trial. J. Clin. Oncol. 2010, 28, 1566–1572. [Google Scholar] [CrossRef] [Green Version]
- Takano, J.H.; Yakushiji, T.; Kamiyama, I.; Nomura, T.; Katakura, A.; Takano, N.; Shibahara, T. Detecting early oral cancer: Narrowband imaging system observation of the oral mucosa microvasculature. Int. J. Oral. Maxillofac. Surg. 2010, 39, 208–213. [Google Scholar] [CrossRef]
- Tirelli, G.; Piovesana, M.; Gatto, A.; Torelli, L.; Boscolo Nata, F. Is NBI-Guided Resection a Breakthrough for Achieving Adequate Resection Margins in Oral and Oropharyngeal Squamous Cell Carcinoma? Ann. Otol. Rhinol. Laryngol. 2016, 125, 596–601. [Google Scholar] [CrossRef]
- Tirelli, G.; Piovesana, M.; Marcuzzo, A.V.; Gatto, A.; Biasotto, M.; Bussani, R.; Zandonà, L.; Giudici, F.; Boscolo Nata, F. Tailored resections in oral and oropharyngeal cancer using narrow band imaging. Am. J. Otolaryngol. 2018, 39, 197–203. [Google Scholar] [CrossRef]
- Tateya, I.; Ishikawa, S.; Morita, S.; Ito, H.; Sakamoto, T.; Murayama, T.; Kishimoto, Y.; Hayashi, T.; Funakoshi, M.; Hirano, S.; et al. Magnifying endoscopy with narrow band imaging to determine the extent of resection in transoral robotic surgery of oropharyngeal cancer. Case Rep. Otolaryngol. 2014, 2014, 604737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azam, M.A.; Sampieri, C.; Ioppi, A.; Benzi, P.; Giordano, G.G.; De Vecchi, M.; Campagnari, V.; Li, S.; Guastini, L.; Paderno, A.; et al. Videomics of the Upper Aero-Digestive Tract Cancer: Deep Learning Applied to White Light and Narrow Band Imaging for Automatic Segmentation of Endoscopic Images. Front. Oncol. 2022, 12, 900451. [Google Scholar] [CrossRef] [PubMed]
- Piazza, C.; Cocco, D.; Del Bon, F.; Mangili, S.; Nicolai, P.; Majorana, A.; Bolzoni Villaret, A.; Peretti, G. Narrow band imaging and high definition television in evaluation of oral and oropharyngeal squamous cell cancer: A prospective study. Oral Oncol. 2010, 46, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Tamashiro, A.; Yoshio, T.; Ishiyama, A.; Tsuchida, T.; Hijikata, K.; Yoshimizu, S.; Horiuchi, Y.; Hirasawa, T.; Seto, A.; Sasaki, T.; et al. Artificial intelligence-based detection of pharyngeal cancer using convolutional neural networks. Dig. Endosc. 2020, 32, 1057–1065. [Google Scholar] [CrossRef]
- Żurek, M.; Jasak, K.; Niemczyk, K.; Rzepakowska, A. Artificial Intelligence in Laryngeal Endoscopy: Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 2752. [Google Scholar] [CrossRef]
- Rasouli, P.; Dooghaie Moghadam, A.; Eslami, P.; Aghajanpoor Pasha, M.; Asadzadeh Aghdaei, H.; Mehrvar, A.; Nezami-Asl, A.; Iravani, S.; Sadeghi, A.; Zali, M.R. The role of artificial intelligence in colon polyps detection. Gastroenterol. Hepatol. Bed Bench 2020, 13, 191–199. [Google Scholar]
- Paderno, A.; Piazza, C.; Del Bon, F.; Lancini, D.; Tanagli, S.; Deganello, A.; Peretti, G.; De Momi, E.; Patrini, I.; Ruperti, M.; et al. Deep Learning for Automatic Segmentation of Oral and Oropharyngeal Cancer Using Narrow Band Imaging: Preliminary Experience in a Clinical Perspective. Front. Oncol. 2021, 11, 626602. [Google Scholar] [CrossRef]
- Paderno, A.; Gennarini, F.; Sordi, A.; Montenegro, C.; Lancini, D.; Villani, F.P.; Moccia, S.; Piazza, C. Artificial intelligence in clinical endoscopy: Insights in the field of videomics. Front. Surg. 2022, 9, 933297. [Google Scholar] [CrossRef]
- Piazza, C.; Del Bon, F.; Paderno, A.; Grazioli, P.; Perotti, P.; Barbieri, D.; Majorana, A.; Bardellini, E.; Peretti, G.; Nicolai, P. The diagnostic value of narrow band imaging in different oral and oropharyngeal subsites. Eur. Arch. Otorhinolaryngol. 2016, 273, 3347–3353. [Google Scholar] [CrossRef]
- Tirelli, G.; Piovesana, M.; Gatto, A.; Tofanelli, M.; Biasotto, M.; Boscolo Nata, F. Narrow band imaging in the intra-operative definition of resection margins in oral cavity and oropharyngeal cancer. Oral Oncol. 2015, 51, 908–913. [Google Scholar] [CrossRef]
- Lin, Y.C.; Wang, W.H. Narrow-band imaging for detecting early recurrent nasopharyngeal carcinoma. Head Neck 2011, 33, 591–594. [Google Scholar] [CrossRef]
- Boscolo Nata, F.; Gardenal, N.; Giudici, F.; Tirelli, G. The role of NBI with flexible video-endoscope in the follow-up of head and neck cancer patients: A prospective study. Eur. Arch. Otorhinolaryngol. 2022, 279, 2133–2141. [Google Scholar] [CrossRef]
- ASGE Technology Committee; Chauhan, S.S.; Abu Dayyeh, B.K.; Bhat, Y.M.; Gottlieb, K.T.; Hwang, J.H.; Komanduri, S.; Konda, V.; Lo, S.K.; Manfredi, M.A.; et al. Confocal laser endomicroscopy. Gastrointest. Endosc. 2014, 80, 928–938. [Google Scholar] [CrossRef]
- Volgger, V.; Conderman, C.; Betz, C.S. Confocal laser endomicroscopy in head and neck cancer: Steps forward? Curr. Opin. Otolaryngol. Head Neck Surg. 2013, 21, 164–170. [Google Scholar] [CrossRef]
- Goetz, M.; Watson, A.; Kiesslich, R. Confocal laser endomicroscopy in gastrointestinal diseases. J. Biophotonics 2011, 4, 498–508. [Google Scholar] [CrossRef]
- Kiesslich, R.; Neurath, M.F. Chromoendoscopy and other novel imaging techniques. Gastroenterol. Clin. N. Am. 2006, 35, 605–619. [Google Scholar] [CrossRef]
- Shahid, M.W.; Crook, J.E.; Meining, A.; Perchant, A.; Buchner, A.; Gomez, V.; Wallace, M.B. Exploring the optimal fluorescein dose in probe-based confocal laser endomicroscopy for colonic imaging. J. Interv. Gastroenterol. 2011, 1, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Sievert, M.; Stelzle, F.; Aubreville, M.; Mueller, S.K.; Eckstein, M.; Oetter, N.; Maier, A.; Mantsopoulos, K.; Iro, H.; Goncalves, M. Intraoperative free margins assessment of oropharyngeal squamous cell carcinoma with confocal laser endomicroscopy: A pilot study. Eur. Arch. Otorhinolaryngol. 2021, 278, 4433–4439. [Google Scholar] [CrossRef]
- Dittberner, A.; Ziadat, R.; Hoffmann, F.; Pertzborn, D.; Gassler, N.; Guntinas-Lichius, O. Fluorescein-Guided Panendoscopy for Head and Neck Cancer Using Handheld Probe-Based Confocal Laser Endomicroscopy: A Pilot Study. Front. Oncol. 2021, 11, 671880. [Google Scholar] [CrossRef]
- Villard, A.; Breuskin, I.; Casiraghi, O.; Asmandar, S.; Laplace-Builhe, C.; Abbaci, M.; Moya Plana, A. Confocal laser endomicroscopy and confocal microscopy for head and neck cancer imaging: Recent updates and future perspectives. Oral Oncol. 2022, 127, 105826. [Google Scholar] [CrossRef]
- Ragazzi, M.; Longo, C.; Piana, S. Ex Vivo (Fluorescence) Confocal Microscopy in Surgical Pathology: State of the Art. Adv. Anat. Pathol. 2016, 23, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Dittberner, A.; Rodner, E.; Ortmann, W.; Stadler, J.; Schmidt, C.; Petersen, I.; Stallmach, A.; Denzler, J.; Guntinas-Lichius, O. Automated analysis of confocal laser endomicroscopy images to detect head and neck cancer. Head Neck 2016, 38 (Suppl. 1), E1419–E1426. [Google Scholar] [CrossRef] [PubMed]
- Muldoon, T.J.; Pierce, M.C.; Nida, D.L.; Williams, M.D.; Gillenwater, A.; Richards-Kortum, R. Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy. Opt. Express 2007, 15, 16413–16423. [Google Scholar] [CrossRef] [Green Version]
- Patsias, A.; Giraldez-Rodriguez, L.; Polydorides, A.D.; Richards-Kortum, R.; Anandasabapathy, S.; Quang, T.; Sikora, A.G.; Miles, B. Feasibility of transoral robotic-assisted high-resolution microendoscopic imaging of oropharyngeal squamous cell carcinoma. Head Neck 2015, 37, E99–E102. [Google Scholar] [CrossRef]
- Vila, P.M.; Park, C.W.; Pierce, M.C.; Goldstein, G.H.; Levy, L.; Gurudutt, V.V.; Polydorides, A.D.; Godbold, J.H.; Teng, M.S.; Genden, E.M.; et al. Discrimination of benign and neoplastic mucosa with a high-resolution microendoscope (HRME) in head and neck cancer. Ann. Surg. Oncol. 2012, 19, 3534–3539. [Google Scholar] [CrossRef] [Green Version]
- Miles, B.A.; Patsias, A.; Quang, T.; Polydorides, A.D.; Richards-Kortum, R.; Sikora, A.G. Operative margin control with high-resolution optical microendoscopy for head and neck squamous cell carcinoma. Laryngoscope 2015, 125, 2308–2316. [Google Scholar] [CrossRef]
- Pierce, M.C.; Vila, P.M.; Polydorides, A.D.; Richards-Kortum, R.; Anandasabapathy, S. Low-cost endomicroscopy in the esophagus and colon. Am. J. Gastroenterol. 2011, 106, 1722–1724. [Google Scholar] [CrossRef] [Green Version]
- Muldoon, T.J.; Anandasabapathy, S.; Maru, D.; Richards-Kortum, R. High-resolution imaging in Barrett’s esophagus: A novel, low-cost endoscopic microscope. Gastrointest. Endosc. 2008, 68, 737–744. [Google Scholar] [CrossRef] [Green Version]
- Yang, E.C.; Brenes, D.R.; Vohra, I.S.; Schwarz, R.A.; Williams, M.D.; Vigneswaran, N.; Gillenwater, A.M.; Richards-Kortum, R.R. Algorithm to quantify nuclear features and confidence intervals for classification of oral neoplasia from high-resolution optical images. J. Med. Imaging 2020, 7, 054502. [Google Scholar] [CrossRef]
- Ultrasound. Available online: https://www.nibib.nih.gov/science-education/science-topics/ultrasound (accessed on 21 December 2022).
- Tarabichi, O.; Bulbul, M.G.; Kanumuri, V.V.; Faquin, W.C.; Juliano, A.F.; Cunnane, M.E.; Varvares, M.A. Utility of intraoral ultrasound in managing oral tongue squamous cell carcinoma: Systematic review. Laryngoscope 2019, 129, 662–670. [Google Scholar] [CrossRef]
- Filauro, M.; Missale, F.; Marchi, F.; Iandelli, A.; Carobbio, A.L.C.; Mazzola, F.; Parrinello, G.; Barabino, E.; Cittadini, G.; Farina, D.; et al. Intraoral ultrasonography in the assessment of DOI in oral cavity squamous cell carcinoma: A comparison with magnetic resonance and histopathology. Eur. Arch. Otorhinolaryngol. 2021, 278, 2943–2952. [Google Scholar] [CrossRef]
- de Koning, K.J.; van Es, R.J.J.; Klijn, R.J.; Breimer, G.E.; Willem Dankbaar, J.; Braunius, W.W.; van Cann, E.M.; Dieleman, F.J.; Rijken, J.A.; Tijink, B.M.; et al. Application and accuracy of ultrasound-guided resections of tongue cancer. Oral Oncol. 2022, 133, 106023. [Google Scholar] [CrossRef]
- Clayburgh, D.R.; Byrd, J.K.; Bonfili, J.; Duvvuri, U. Intraoperative Ultrasonography during Transoral Robotic Surgery. Ann. Otol. Rhinol. Laryngol. 2016, 125, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Pazdrowski, J.; Piotr, P.; Kordylewska, M.; Wegner, A.; Golusiński, P.; Golusiński, W. Value of intraoperative ultrasonography in tonsil cancer. Rep. Pract. Oncol. Radiother. 2010, 15, 60–63. [Google Scholar] [CrossRef] [Green Version]
- Noorlag, R.; Klein Nulent, T.J.W.; Delwel, V.E.J.; Pameijer, F.A.; Willems, S.M.; de Bree, R.; van Es, R.J.J. Assessment of tumour depth in early tongue cancer: Accuracy of MRI and intraoral ultrasound. Oral Oncol. 2020, 110, 104895. [Google Scholar] [CrossRef]
- de Koning, K.J.; Koppes, S.A.; de Bree, R.; Dankbaar, J.W.; Willems, S.M.; van Es, R.J.J.; Noorlag, R. Feasibility study of ultrasound-guided resection of tongue cancer with immediate specimen examination to improve margin control—Comparison with conventional treatment. Oral Oncol. 2021, 116, 105249. [Google Scholar] [CrossRef]
- Brouwer de Koning, S.G.; Karakullukcu, M.B.; Lange, C.A.H.; Schreuder, W.H.; Karssemakers, L.H.E.; Ruers, T.J.M. Ultrasound aids in intraoperative assessment of deep resection margins of squamous cell carcinoma of the tongue. Br. J. Oral Maxillofac. Surg. 2020, 58, 285–290. [Google Scholar] [CrossRef]
- Stieve, M.; Schwab, B.; Haupt, C.; Bisdas, S.; Heermann, R.; Lenarz, T. Intraoperative computed tomography in otorhinolaryngology. Acta Otolaryngol. 2006, 126, 82–87. [Google Scholar] [CrossRef]
- Kahng, P.W.; Wu, X.; Ramesh, N.P.; Pastel, D.A.; Halter, R.J.; Paydarfar, J.A. Improving target localization during trans-oral surgery with use of intraoperative imaging. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 885–893. [Google Scholar] [CrossRef]
- Ma, A.K.; Daly, M.; Qiu, J.; Chan, H.H.L.; Goldstein, D.P.; Irish, J.C.; de Almeida, J.R. Intraoperative image guidance in transoral robotic surgery: A pilot study. Head Neck 2017, 39, 1976–1983. [Google Scholar] [CrossRef]
- Paydarfar, J.A.; Wu, X.; Halter, R.J. Initial experience with image-guided surgical navigation in transoral surgery. Head Neck 2019, 41, E1–E10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steens, S.C.A.; Bekers, E.M.; Weijs, W.L.J.; Litjens, G.J.S.; Veltien, A.; Maat, A.; van den Broek, G.B.; van der Laak, J.; Fütterer, J.J.; van der Kaa, C.A.H.; et al. Evaluation of tongue squamous cell carcinoma resection margins using ex-vivo MR. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 821–828. [Google Scholar] [CrossRef] [Green Version]
- Heidkamp, J.; Weijs, W.L.J.; van Engen-van Grunsven, A.C.H.; de Laak-de Vries, I.; Maas, M.C.; Rovers, M.M.; Fütterer, J.J.; Steens, S.C.A.; Takes, R.P. Assessment of surgical tumor-free resection margins in fresh squamous-cell carcinoma resection specimens of the tongue using a clinical MRI system. Head Neck 2020, 42, 2039–2049. [Google Scholar] [CrossRef] [Green Version]
- Loree, T.R.; Strong, E.W. Significance of positive margins in oral cavity squamous carcinoma. Am. J. Surg. 1990, 160, 410–414. [Google Scholar] [CrossRef]
- Garzino-Demo, P.; Dell’Acqua, A.; Dalmasso, P.; Fasolis, M.; La Terra Maggiore, G.M.; Ramieri, G.; Berrone, S.; Rampino, M.; Schena, M. Clinicopathological parameters and outcome of 245 patients operated for oral squamous cell carcinoma. J. Craniomaxillofac. Surg. 2006, 34, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Woolgar, J.A.; Triantafyllou, A. A histopathological appraisal of surgical margins in oral and oropharyngeal cancer resection specimens. Oral Oncol. 2005, 41, 1034–1043. [Google Scholar] [CrossRef] [PubMed]
- Hinni, M.L.; Ferlito, A.; Brandwein-Gensler, M.S.; Takes, R.P.; Silver, C.E.; Westra, W.H.; Seethala, R.R.; Rodrigo, J.P.; Corry, J.; Bradford, C.R.; et al. Surgical margins in head and neck cancer: A contemporary review. Head Neck 2013, 35, 1362–1370. [Google Scholar] [CrossRef]
- Dik, E.A.; Willems, S.M.; Ipenburg, N.A.; Adriaansens, S.O.; Rosenberg, A.J.; van Es, R.J. Resection of early oral squamous cell carcinoma with positive or close margins: Relevance of adjuvant treatment in relation to local recurrence: Margins of 3 mm as safe as 5 mm. Oral Oncol. 2014, 50, 611–615. [Google Scholar] [CrossRef]
- Kang, C.J.; Wen, Y.W.; Lee, S.R.; Lee, L.Y.; Hsueh, C.; Lin, C.Y.; Fan, K.H.; Wang, H.M.; Hsieh, C.H.; Ng, S.H.; et al. Surgical Margins Status and Prognosis after Resection of Oral Cavity Squamous Cell Carcinoma: Results from a Taiwanese Nationwide Registry-Based Study. Cancers 2021, 14, 15. [Google Scholar] [CrossRef]
- Ferris, R.L.; Flamand, Y.; Weinstein, G.S.; Li, S.; Quon, H.; Mehra, R.; Garcia, J.J.; Chung, C.H.; Gillison, M.L.; Duvvuri, U.; et al. Phase II Randomized Trial of Transoral Surgery and Low-Dose Intensity Modulated Radiation Therapy in Resectable p16+ Locally Advanced Oropharynx Cancer: An ECOG-ACRIN Cancer Research Group Trial (E3311). J. Clin. Oncol. 2022, 40, 138–149. [Google Scholar] [CrossRef]
- Singh, A.; Qayyumi, B.; Chaturvedi, P. An Update on Surgical Margins in the Head Neck Squamous Cell Carcinoma: Assessment, Clinical Outcome, and Future Directions. Curr. Oncol. Rep. 2020, 22, 82. [Google Scholar] [CrossRef]
- House, R.; Majumder, M.; Janakiraman, H.; Ogretmen, B.; Kato, M.; Erkul, E.; Hill, E.; Atkinson, C.; Barth, J.; Day, T.A.; et al. Smoking-induced control of miR-133a-3p alters the expression of EGFR and HuR in HPV-infected oropharyngeal cancer. PLoS ONE 2018, 13, e0205077. [Google Scholar] [CrossRef] [Green Version]
- Stelmes, J.J.; Gregoire, V.; Poorten, V.V.; Stelmes, W.; Szewczyk, M.; Jones, T.; Ansarin, M.; Broglie, M.A.; Giger, R.; Klussmann, J.P.; et al. Organ Preservation and Late Functional Outcome in Oropharyngeal Carcinoma: Rationale of EORTC 1420, the "Best of" Trial. Front. Oncol. 2019, 9, 999. [Google Scholar] [CrossRef] [Green Version]
- Swisher-McClure, S.; Lukens, J.N.; Aggarwal, C.; Ahn, P.; Basu, D.; Bauml, J.M.; Brody, R.; Chalian, A.; Cohen, R.B.; Fotouhi-Ghiam, A.; et al. A Phase 2 Trial of Alternative Volumes of Oropharyngeal Irradiation for De-intensification (AVOID): Omission of the Resected Primary Tumor Bed After Transoral Robotic Surgery for Human Papilloma Virus-Related Squamous Cell Carcinoma of the Oropharynx. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 725–732. [Google Scholar] [CrossRef]
- Palma, D.A.; Prisman, E.; Berthelet, E.; Tran, E.; Hamilton, S.; Wu, J.; Eskander, A.; Higgins, K.; Karam, I.; Poon, I.; et al. Assessment of Toxic Effects and Survival in Treatment Deescalation with Radiotherapy vs Transoral Surgery for HPV-Associated Oropharyngeal Squamous Cell Carcinoma: The ORATOR2 Phase 2 Randomized Clinical Trial. JAMA Oncol. 2022, 8, 1–7. [Google Scholar] [CrossRef]
- Hargreaves, S.; Beasley, M.; Hurt, C.; Jones, T.M.; Evans, M. Deintensification of Adjuvant Treatment After Transoral Surgery in Patients with Human Papillomavirus-Positive Oropharyngeal Cancer: The Conception of the PATHOS Study and Its Development. Front. Oncol. 2019, 9, 936. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, G.S.; Quon, H.; O’Malley, B.W., Jr.; Kim, G.G.; Cohen, M.A. Selective neck dissection and deintensified postoperative radiation and chemotherapy for oropharyngeal cancer: A subset analysis of the University of Pennsylvania transoral robotic surgery trial. Laryngoscope 2010, 120, 1749–1755. [Google Scholar] [CrossRef]
- Yang, E.C.; Vohra, I.S.; Badaoui, H.; Schwarz, R.A.; Cherry, K.D.; Quang, T.; Jacob, J.; Lang, A.; Bass, N.; Rodriguez, J.; et al. Development of an integrated multimodal optical imaging system with real-time image analysis for the evaluation of oral premalignant lesions. J. Biomed. Opt. 2019, 24, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Cals, F.L.; Bakker Schut, T.C.; Hardillo, J.A.; Baatenburg de Jong, R.J.; Koljenović, S.; Puppels, G.J. Investigation of the potential of Raman spectroscopy for oral cancer detection in surgical margins. Lab. Investig. 2015, 95, 1186–1196. [Google Scholar] [CrossRef] [Green Version]
- Malini, R.; Venkatakrishna, K.; Kurien, J.; Pai, K.M.; Rao, L.; Kartha, V.B.; Krishna, C.M. Discrimination of normal, inflammatory, premalignant, and malignant oral tissue: A Raman spectroscopy study. Biopolymers 2006, 81, 179–193. [Google Scholar] [CrossRef]
- Barroso, E.M.; Smits, R.W.; van Lanschot, C.G.; Caspers, P.J.; Ten Hove, I.; Mast, H.; Sewnaik, A.; Hardillo, J.A.; Meeuwis, C.A.; Verdijk, R.; et al. Water Concentration Analysis by Raman Spectroscopy to Determine the Location of the Tumor Border in Oral Cancer Surgery. Cancer Res. 2016, 76, 5945–5953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barroso, E.M.; Smits, R.W.; Bakker Schut, T.C.; ten Hove, I.; Hardillo, J.A.; Wolvius, E.B.; Baatenburg de Jong, R.J.; Koljenović, S.; Puppels, G.J. Discrimination between oral cancer and healthy tissue based on water content determined by Raman spectroscopy. Anal. Chem. 2015, 87, 2419–2426. [Google Scholar] [CrossRef] [PubMed]
- Rodner, E.; Bocklitz, T.; von Eggeling, F.; Ernst, G.; Chernavskaia, O.; Popp, J.; Denzler, J.; Guntinas-Lichius, O. Fully convolutional networks in multimodal nonlinear microscopy images for automated detection of head and neck carcinoma: Pilot study. Head Neck 2019, 41, 116–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasquez, D.; Knorr, F.; Hoffmann, F.; Ernst, G.; Marcu, L.; Schmitt, M.; Guntinas-Lichius, O.; Popp, J.; Schie, I.W. Multimodal Scanning Microscope Combining Optical Coherence Tomography, Raman Spectroscopy and Fluorescence Lifetime Microscopy for Mesoscale Label-Free Imaging of Tissue. Anal. Chem. 2021, 93, 11479–11487. [Google Scholar] [CrossRef] [PubMed]
- Fei, B.; Lu, G.; Wang, X.; Zhang, H.; Little, J.V.; Patel, M.R.; Griffith, C.C.; El-Diery, M.W.; Chen, A.Y. Label-free reflectance hyperspectral imaging for tumor margin assessment: A pilot study on surgical specimens of cancer patients. J. Biomed. Opt. 2017, 22, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Halicek, M.; Dormer, J.D.; Little, J.V.; Chen, A.Y.; Myers, L.; Sumer, B.D.; Fei, B. Hyperspectral Imaging of Head and Neck Squamous Cell Carcinoma for Cancer Margin Detection in Surgical Specimens from 102 Patients Using Deep Learning. Cancers 2019, 11, 1367. [Google Scholar] [CrossRef] [Green Version]
- Pratt, P.; Arora, A. Transoral Robotic Surgery: Image Guidance and Augmented Reality. ORL J. Otorhinolaryngol. Relat. Spec. 2018, 80, 204–212. [Google Scholar] [CrossRef]
- Liu, W.P.; Richmon, J.D.; Sorger, J.M.; Azizian, M.; Taylor, R.H. Augmented reality and cone beam CT guidance for transoral robotic surgery. J. Robot. Surg. 2015, 9, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.P.; Reaugamornrat, S.; Sorger, J.M.; Siewerdsen, J.H.; Taylor, R.H.; Richmon, J.D. Intraoperative image-guided transoral robotic surgery: Pre-clinical studies. Int. J. Med. Robot. 2015, 11, 256–267. [Google Scholar] [CrossRef]
- Liu, W.P.; Reaugamornrat, S.; Deguet, A.; Sorger, J.M.; Siewerdsen, J.H.; Richmon, J.; Taylor, R.H. Toward Intraoperative Image-Guided Transoral Robotic Surgery. J. Robot. Surg. 2013, 7, 217–225. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.Y.K.; Holsinger, F.C.; Liu, S.; Sorger, J.M.; Azizian, M.; Tsang, R.K.Y. Augmented reality for image guidance in transoral robotic surgery. J. Robot. Surg. 2020, 14, 579–583. [Google Scholar] [CrossRef]
- Voskuil, F.J.; de Jongh, S.J.; Hooghiemstra, W.T.R.; Linssen, M.D.; Steinkamp, P.J.; de Visscher, S.; Schepman, K.P.; Elias, S.G.; Meersma, G.J.; Jonker, P.K.C.; et al. Fluorescence-guided imaging for resection margin evaluation in head and neck cancer patients using cetuximab-800CW: A quantitative dose-escalation study. Theranostics 2020, 10, 3994–4005. [Google Scholar] [CrossRef]
- van Keulen, S.; Nishio, N.; Fakurnejad, S.; van den Berg, N.S.; Lu, G.; Birkeland, A.; Martin, B.A.; Forouzanfar, T.; Colevas, A.D.; Rosenthal, E.L. Intraoperative Tumor Assessment Using Real-Time Molecular Imaging in Head and Neck Cancer Patients. J. Am. Coll. Surg. 2019, 229, 560–567.e561. [Google Scholar] [CrossRef] [Green Version]
- Gao, R.W.; Teraphongphom, N.T.; van den Berg, N.S.; Martin, B.A.; Oberhelman, N.J.; Divi, V.; Kaplan, M.J.; Hong, S.S.; Lu, G.; Ertsey, R.; et al. Determination of Tumor Margins with Surgical Specimen Mapping Using Near-Infrared Fluorescence. Cancer Res. 2018, 78, 5144–5154. [Google Scholar] [CrossRef] [Green Version]
- Demétrio de Souza França, P.; Kossatz, S.; Brand, C.; Karassawa Zanoni, D.; Roberts, S.; Guru, N.; Adilbay, D.; Mauguen, A.; Valero Mayor, C.; Weber, W.A.; et al. A phase I study of a PARP1-targeted topical fluorophore for the detection of oral cancer. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3618–3630. [Google Scholar] [CrossRef]
First Author | Year | Technique Used | Control Group | Study Design | T-Stage | N = (Intervention) OPSCC | N = (Control) OPSCC | Surgical Procedure | Application of Intervention | Negative Margin Definition | Close Margin Definition | Superficial or Deep Margin |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Gorphe P | 2019 | FS | No FS | SR MA | Nd | 2547 | 1367 | Nd | AR | No tumor in margin | NA | Nd |
Hinni M | 2013 | FS | NA | Nd | 1–4 | 128 | NA | TO | AR | No tumor in margin | NA | Superficial and deep |
Herruer J | 2020 | FS | NA | Nd | 1–3 | 50 | NA | TO | AR | >1 mm | Nd | Nd |
Tirelli G | 2019 | FS | NA | Nd | 1–4 | 80 | NA | TO | AR | >3 mm | Nd | Deep |
Horwich P | 2021 | FS | NA | Nd | 1–4 | 108 | NA | TO | AR | <5 mm | 1–5 mm | Nd |
Mackay C | 2022 | FS | Na | Nd | 1–2 | 90 | NA | TO | AR | Nd | Nd | Nd |
Yu A | 2022 | FS | Na | Nd | Nd | 170 | NA | TORS | AR | Nd | Nd | Nd |
Gorpas D | 2019 | Fl AR | NA | DR | Nd | 4 | NA | TORS | BR DR | Nd | Nd | Superficial and deep |
Weyers B | 2019 | Fl | NA | Nd | Nd | 10 | NA | TORS | BR AR | Nd | Nd | Superficial and deep |
Marsden M | 2021 | Fl AR | NA | Nd | Nd | 50 | NA | TORS | BR AR | Nd | Nd | Superficial and deep |
Tirelli G | 2016 | NBI | WL | CT | 1–4a | 14 | 14 | TO | BR | >3 mm | 0.1–3 mm | Superficial |
Tirelli G | 2018 | NBI | WL | Nd | 1–4 | 22 | NA | TO | BR | >3 mm | 0.1–3 mm | Superficial |
Tateya I | 2014 | NBI | WL | CR | T1 | 1 | NA | TORS | BR | Nd | Nd | Superficial |
Azam M | 2022 | NBI | NA | Nd | NA | NA | NA | NA | NA | NA | NA | NA |
Sievert M | 2021 | CLE | NA | Pi | 2–3 | 5 | NA | TO | BR | Nd | Nd | Superficial |
Dittberner A | 2021 | CLE | NA | Nd | Nd | 13 | NA | ND | BR | Nd | Nd | Superficial |
Patsias A | 2015 | HRME | NA | CR | Nd | 3 | NA | TORS | DR | Nd | Nd | Superficial |
Clayburgh D | 2016 | US | NA | Nd | Nd | 10 | NA | TORS | BR | Nd | Nd | Deep |
Pazdrowski J | 2010 | US | NA | Nd | 1–4 | 20 | NA | Nd | BR | Nd | Nd | Deep |
Kahng P | 2019 | CT | NA | Pi | NA | 4 | NA | NA | NA | NA | NA | NA |
Ma A | 2017 | CT | NA | Pi | NA | 4 | NA | NA | NA | NA | NA | NA |
Parydarfar J | 2019 | CT | NA | Nd | 2 | 1 | NA | TO | BR | Nd | Nd | Nd |
Technique | Author | Summary | Remarks |
---|---|---|---|
FSA | |||
Gorphe et al. 2019 | Eight series reported systematic frozen section analysis. The cumulative number of patients was 501, of whom 25 (5%) had positive final margins. Sixteen series reported on-demand frozen section analysis, depending on the intraoperative assessment of the quality of the resection. The cumulative number of patients was 2046, of whom 69 (4.6%) had positive final margins. Thirteen series did not report frozen section analysis, with a cumulative number of patients of 1367, of whom 169 (12.3%) had positive final margins. The chi-squared comparison test was significant (p < 0.0001). | ||
Hinni et al. 2013 | There was one positive margin encountered in the previously untreated group (1%) and one local recurrence ultimately developed. | With mean follow-up of 4.3 years (range, 2–14 years), the 5-year estimate for local control was 99%, disease-free survival was 94.5%, and overall survival was 76%. | |
Herruer et al. 2020 | Intraoperative frozen section margin assessment has shown potential, with a specificity of 92% compared to final histopathology. | Of the 50 intraoperatively found tumors, 98% (n = 49) had negative margins on frozen sections, and 90% (n = 45) were truly negative on final histopathology. Eighteen patients (29.5%) avoided adjuvant treatment. | |
Tirelli et al. 2019 | Piecemeal resection of the tumor using TLM was performed. After resection, margin mapping was performed by taking superficial margins of the mucosa around the tumor and deep margins by taking bowls of tissue underlying the site of the resection. Comparison between frozen section and definitive histological examination found a sensitivity, specificity, PPV, and NPV of 93.6%, 96.8%, 90.7%, and 96.8%, respectively. | In both groups, tissue to be analyzed on frozen section was collected from the tumor bed because a defect-driven approach was preferred. The whole deep margin was examined in 2–3 slices. | |
Horwich et al. 2021 | Implementation of a specimen-oriented frozen section protocol resulted in 1 of 111 patients (0.9%) having positive final pathology margins, a statistically significant decrease (p < 0.001). | Recurrence-free survival at 3 years was 88.4 and 50.7% for negative and positive final margins, respectively (p = 0.048). | |
Mackay et al. 2022 | Two-year OS for patients in the defect study arm was 100% (SE, 0%; 95% CI, 100–100%; n = 17), while for patients in the specimen study arm, it was 97% (SE, 2.2%; 95% CI, 93.8–100%; n = 49; p = 0.6). Two-year DSS for both study arms was 100%, with a standard error of 0% (p > 0.99); two-year local control rates for defect and specimen sampling were 100% (SE, 0%; 95% CI, 100–100%; n = 17) and 98% (SE, 2.1%; 95% CI, 94.1–100%; n = 49), respectively. Lastly, 2-year recurrence-free survival in the defect and specimen arms was 94.1% (SE, 6.1%; 95% CI, 83.6–100%; n = 17) and 95.8% (SE, 3%; 95% CI, 90.2–100%; n = 49; p = 0.29), respectively. | Data on p16+ OPSCC were presented separately; 90 patients with OPSCC were included. T1-2 and N0-2a. | |
Yu et al. 2022 | The diagnostic value of intraoperative frozen margin analysis was evaluated. Overall accuracy was noted to be 94.1%, with sensitivity of 85.1%, specificity of 97.4%, positive likelihood ratio of 32.7, and negative likelihood ratio of 0.15. Positive margin controls improved sensitivity from 82.8% to 88.9%. It also improved diagnostic utility of a positive intraoperative margin, as the positive likelihood ratio increased from 29.6 to 37.0 (difference, 7.4 [95% CI, 5.0–9.8]) | A total of 170 patients were included in this retrospective study. | |
Fl | |||
Gorpas et al. 2019 | Time-resolved fluorescence spectroscopy (TRFS) was used to complement the visual inspection of oral cancers during transoral robotic surgery (TORS) in real-time and without the need for exogenous contrast agents. Label-free and real-time assessment and visualization of biochemical tissue features during the robotic surgery procedure has the potential to improve intraoperative decision making during TORS. | A prototype TRFS instrument was integrated synergistically with the da Vinci surgical robot and the combined system was validated in swine and human patients. | |
Wyers et al. 2019 | In vivo region-level discrimination reached a sensitivity of 86% and specificity of 87% using the Random Forests (ensemble learning) method. FLIm parameters of dysplasia were analyzed separately and were found to be between the parameters of tumor and healthy tissue. | ||
Marsden et al. 2021 | FLIm point measurements acquired from 53 patients (n = 67,893 pre-resection in vivo, n = 89,695 post-resection ex vivo) undergoing oral or oropharyngeal cancer removal surgery were used for analysis. Statistically significant change (p < 0.01) between healthy and cancerous tissue was observed in vivo for the acquired samples. | The developed approach demonstrates the potential of FLIm for fast, reliable intraoperative margin assessment without the need for contrast agents. No differentiation was made between oral and oropharyngeal measurements. | |
NBI | |||
Tirelli et al. 2016 | The use of NBI on OPSCC led to a statistically significant reduction in the rate of positive superficial margins observed from 36.4% to 11.5% (p = 0.028) in definitive histology. The use of NBI increased the resection margin, with a mean of 11 ± 3 mm, consequently leading to a resection margin of 25 ± 4 mm from the macroscopic tumor edge in certain areas. | In this study, the NBI group was compared to a historic cohort comparable for tumor and size, although there were more early-stage tumors in the historic cohort. | |
Tirelli et al. 2018 | The use of NBI allowed for a more precise definition of tumor superficial extension in 70.5% of the patients. The sensitivity, specificity, PPV, and NPV of NBI in OPSCC were 85.7% [ 57.2–98.2], 75% [34.9–96.8], 85.7% [57.2–98.2], and 75% [34.9–96.8], respectively. | The use of NBI was not influenced by tumor site in oral and oropharyngeal SCC. | |
Tateya et al. 2014 | Single case report using magnifying endoscopy with NBI intraoperatively on OPSCC of the tongue base using TORS. | ||
Azam et al. 2022 | With a model of SegMENT + ensemble TL and a backbone of Xception, intersection over union of 0.784, a dice similarity coefficient of 0.879, a recall of 0.907, a precision of 0.919, and accuracy of 0.933 were achieved. | Data on oropharyngeal carcinoma presented separately. | |
CLE | |||
Sievert et al. 2021 | Tumor margin was examined with CLE and biopsy during tumor resection. We calculated an accuracy, sensitivity, specificity, PPV, and NPV of 86%, 90%, 79%, 88%, and 82%, respectively. | Five patients were included. A total of 12.809 CLE frames were correlated with pathology. Inter-rater κ-value of 0.60. IV contrast was used. The examination added 10 min of operation time. | |
Dittberner et al. 2021 | The concordance between histopathology and CLE images varied between the patients from 83.1 to 98.6% for oropharynx. Further analyses were on a mixed group. The sensitivity, specificity, and accuracy in detecting cancer using the classified CLE images was 87.5, 80.0, and 84.6%, respectively. The positive and negative predictive values were 87.0 and 80.0%, respectively. The procedure would add 9 min of operation time. | Pilot study in 13 patients. Mixed group with oropharynx (52.9%), followed by oral cavity (35.3), and hypopharynx (11.8%) cancers. Data for oropharynx partially shown separately. | |
HRME | |||
Patsias et al. 2015 | Three patients were included. The length of the procedure was 4–7 min. HRME images obtained during surgery showed features that were consistent with histologic assessment | ||
US | |||
Claybourgh et al. 2016 | Ultrasound used for tumor margin detection in four cases. All margins were free of tumor. Large vessels could also be detected. The use of ultrasound added 5–10 min to operating time. | As there is no dedicated system for use in TORS, a neuro spine or liver transducer was used. One or more robotic arms had to be removed during surgery to allow access for the transducer in the oropharynx. | |
Pazdrowski et al. 2010 | It was found in this study that intraoperative ultrasonographic examination allows accurate visualization of the tumor mass. | No data were gathered on improvement of resection margins. | |
CT | |||
Kahng et al. 2019 | Intraoperative imaging significantly improved localization accuracy and task efficiency when targeting submucosal beads in cadaver heads during operative laryngoscopy. | The imaging was performed on cadavers with beads in the oropharynx to register displacement pre- and post- “operatively”. | |
Ma et al. 2017 | The purpose of this study was to develop and validate an accurate image-guidance system for TORS. A significant reduction in target registration error was observed when registering the tracker to the intraoperative compared to the preoperative scan. | The imaging was performed on cadavers with beads in the oropharynx to register displacement pre- and post- “operatively”. | |
Parydarfar et al. 2019 | Suspension laryngoscopy was performed with a CT-compatible laryngoscope on four patients. An intraoperative contrast-enhanced CT scan was obtained and registered to fiducials placed on the neck, face, and laryngoscope. For surgical navigation during TOS, a high level of registration accuracy can be achieved by utilizing intra-operative imaging. | Setup time for the four included patients was long (average 76 min). Tissue displacement during surgery is a limitation when using static imaging such as CT. |
Study | Clear Margin | p16 Status |
---|---|---|
EORTC 1420 [114] | >3 mm mucosal margin (Deep R0 is no constrictor invasion) | p16 + and − |
ECOG E3311 [111] | >3 mm | p16 + |
AVOID [115] | >2 mm | p16 + |
ORATOR [18] | >2 mm | p16 + and − |
ORATOR2 [116] | >3 mm | p16 + |
PATHOS [117] | >5 mm | p16 + |
University of Pennsylvania [118] | >2 mm | Not defined |
Imaging Technique | Pros (+) and Cons (−) for Intraoperative Margin Assessment |
---|---|
Frozen section analysis | + histological confirmation of resection margin − small parts of specimen are screened for involvement − location bias for additional resection − time-consuming − no real-time in vivo assessment |
Autofluorescence imaging | + real-time in vivo assessment + suitable for large areas + does not require fluorescent agents − not suitable for deep margin assessment |
Fluorescence imaging | + real-time in vivo assessment + suitable for deep margin assessment + suitable for large areas + assessment during resection + deep tissue penetration possible with near-infrared − requires fluorescent agents |
Narrow band imaging | + real-time in vivo assessment + no contrast agents needed + suitable for large areas + readily available − assessment needs to be performed pre-excision − not suitable for deep margin assessment |
Confocal laser endoscopy | + real-time in vivo assessment of margin − limited field of view − limited depth of penetration − inability to assess the deep margin − expensive |
High-resolution microendoscopic imaging | + real-time in vivo assessment of margin + relatively inexpensive − deep margin assessment is to be proven −only superficial tissue penetration − not readily available − topical contrast required |
Ultrasound | + real-time in vivo assessment + deep margin assessment + readily available + assessment during resection − difficult to use in hard-to-reach areas |
CT/MRI | + deep margin assessment − no real-time assessment − static imaging − costly to implement in the operating room |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Kleijn, B.J.; Heldens, G.T.N.; Herruer, J.M.; Sier, C.F.M.; Piazza, C.; de Bree, R.; Guntinas-Lichius, O.; Kowalski, L.P.; Vander Poorten, V.; Rodrigo, J.P.; et al. Intraoperative Imaging Techniques to Improve Surgical Resection Margins of Oropharyngeal Squamous Cell Cancer: A Comprehensive Review of Current Literature. Cancers 2023, 15, 896. https://doi.org/10.3390/cancers15030896
de Kleijn BJ, Heldens GTN, Herruer JM, Sier CFM, Piazza C, de Bree R, Guntinas-Lichius O, Kowalski LP, Vander Poorten V, Rodrigo JP, et al. Intraoperative Imaging Techniques to Improve Surgical Resection Margins of Oropharyngeal Squamous Cell Cancer: A Comprehensive Review of Current Literature. Cancers. 2023; 15(3):896. https://doi.org/10.3390/cancers15030896
Chicago/Turabian Stylede Kleijn, Bertram J., Gijs T. N. Heldens, Jasmijn M. Herruer, Cornelis F. M. Sier, Cesare Piazza, Remco de Bree, Orlando Guntinas-Lichius, Luiz P. Kowalski, Vincent Vander Poorten, Juan P. Rodrigo, and et al. 2023. "Intraoperative Imaging Techniques to Improve Surgical Resection Margins of Oropharyngeal Squamous Cell Cancer: A Comprehensive Review of Current Literature" Cancers 15, no. 3: 896. https://doi.org/10.3390/cancers15030896
APA Stylede Kleijn, B. J., Heldens, G. T. N., Herruer, J. M., Sier, C. F. M., Piazza, C., de Bree, R., Guntinas-Lichius, O., Kowalski, L. P., Vander Poorten, V., Rodrigo, J. P., Zidar, N., Nathan, C. -A., Tsang, R. K., Golusinski, P., Shaha, A. R., Ferlito, A., & Takes, R. P. (2023). Intraoperative Imaging Techniques to Improve Surgical Resection Margins of Oropharyngeal Squamous Cell Cancer: A Comprehensive Review of Current Literature. Cancers, 15(3), 896. https://doi.org/10.3390/cancers15030896