Impact of Surgical Care Bundle on Surgical Site Infection after Non-Reconstructive Breast Cancer Surgery: A Single-Centre Retrospective Comparative Cohort Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Surgical Care Bundle
2.2. Study Aim, Design, and Outcome Measures
2.3. Data Collection, Variables, and Predictors
2.4. Statistical Analysis
3. Results
3.1. Cohort Characteristics
3.2. Surgical Site Infections
3.3. Adherence of Surgical Care Bundle
3.4. Impact of Surgical Care Bundle
3.5. Adverse Effects of Surgical Care Bundle
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Connor, R.; Kiely, P.A.; Dunne, C.P. The relationship between post-surgery infection and breast cancer recurrence. J. Hosp. Infect. 2020, 106, 522–535. [Google Scholar] [CrossRef] [PubMed]
- Adwall, L.; Pantiora, E.; Hultin, H.; Norlen, O. Association of postoperative infection and oncological outcome after breast cancer surgery. BJS Open 2021, 5, zrab052. [Google Scholar] [CrossRef] [PubMed]
- Swedish Kommun and Regions (www.skr.se). Healthcare Related Infection: A Data Review Based on Clinical Indicators and Patient Journals between 2013–2018. 2019. Available online: https://skr.se/download/18.5627773817e39e979ef38d91/1642167986844/7585-756-5.pdf (accessed on 9 January 2023). (In Swedish).
- Palubicka, A.; Jaworski, R.; Wekwejt, M.; Swieczko-Zurek, B.; Pikula, M.; Jaskiewicz, J.; Zielinski, J. Surgical Site Infection after Breast Surgery: A Retrospective Analysis of 5-Year Postoperative Data from a Single Center in Poland. Medicina 2019, 55, 512. [Google Scholar] [CrossRef]
- Gallagher, M.; Jones, D.J.; Bell-Syer, S.V. Prophylactic antibiotics to prevent surgical site infection after breast cancer surgery. Cochrane Database Syst. Rev. 2019, 9, Cd005360. [Google Scholar]
- Vitug, A.F.; Newman, L.A. Complications in breast surgery. Surg. Clin. N. Am. 2007, 87, 431–451. [Google Scholar] [CrossRef]
- Zhang, P.; Li, C.Z.; Wu, C.T.; Jiao, G.M.; Yan, F.; Zhu, H.C.; Zhang, X.P. Comparison of immediate breast reconstruction after mastectomy and mastectomy alone for breast cancer: A meta-analysis. Eur. J. Surg. Oncol. 2017, 43, 285–293. [Google Scholar] [CrossRef]
- Olsen, M.A.; Lefta, M.; Dietz, J.R.; Brandt, K.E.; Aft, R.; Matthews, R.; Mayfield, J.; Fraser, V.J. Risk factors for surgical site infection after major breast operation. J. Am. Coll. Surg. 2008, 207, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, S.S.; Driscoll, C.R.; Davidson, A.L.; Peoples, A.J.; Katz, A.J. The effects of prolonged intraoperative hypothermia on patient outcomes in immediate implant-based breast reconstruction. J. Plast. Reconstr. Aesthetic Surg. 2022, 77, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Potter, S.; Trickey, A.; Rattay, T.; O’Connell, R.L.; Dave, R.; Baker, E.; Whicker, L.; Skillman, J.; Gardiner, M.D.; Macmillan, R.D.; et al. Therapeutic mammaplasty is a safe and effective alternative to mastectomy with or without immediate breast reconstruction. J. Br. Surg. 2020, 107, 832–844. [Google Scholar] [CrossRef]
- Peled, A.W.; Sbitany, H.; Foster, R.D.; Esserman, L.J. Oncoplastic mammoplasty as a strategy for reducing reconstructive complications associated with postmastectomy radiation therapy. Breast J. 2014, 20, 302–307. [Google Scholar] [CrossRef]
- Kracoff-Sella, S.; Allweis, T.; Egozi, D. Does neoadjuvant chemotherapy affect the immediate postoperative complication rate after breast reconstruction? Harefuah 2020, 159, 575–579. [Google Scholar] [PubMed]
- Lorentzen, T.; Heidermann, L.N.; Möller, S.; Bille, C. Impact of neoadjuvant chemotherapy on surgical complications in breast cancer: A systematic review and meta-analysis. Eur. J. Surg. Oncol. 2022, 48, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Wolfhagen, N.; Boldingh, Q.J.; Boermeester, M.A.; de jonge, W. Perioperative care bundles for the prevention of surgical-site infections: Meta-analysis. Br. J. Surg. 2022, 109, 933–942. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation (www.who.int). Pre-, Intra and Postop Bundles: Global Guidelines for the Prevention of Surgical Site Infections 2018. Available online: https://www.who.int/publications/i/item/global-guidelines-for-the-prevention-of-surgical-site-infection-2nd-ed (accessed on 27 January 2023).
- Baker, N.F.; Brown, O.; Hart, A.M.; Danko, D.; Stewart, C.M.; Thompson, P.W. Preventing Infection in Implant-based Breast Reconstruction: Evaluating the Evidence for Common Practices and Standardized Protocols. Plast. Reconstr. Surg. Glob. Open 2022, 10, e4208. [Google Scholar] [CrossRef]
- Papa, G.; Frasca, A.; Renzi, N.; Stocco, G.; Pizzolato, V.; Ramella, V.; Arnez, Z.U. Protocol for Prevention and Monitoring of Surgical Site Infections in Implant-Based Breast Reconstruction: Preliminary Results. Medicina 2021, 57, 151. [Google Scholar] [CrossRef]
- Weiser, M.R.; Gonen, M.; Uslak SPottinger, T.; Samedy, P.; Patel, D.; Seo, S.; Smith, J.J.; Guillem, J.G.; Temple, L.; Nash, G.M.; et al. Effectiveness of a multidisciplinary patient care bundle for reducing surgical-site infections. J. Br. Surg. 2018, 105, 1680–1687. [Google Scholar] [CrossRef]
- Tanner, J.; Kiernan, M.; Hilliam, R.; Davey, S.; Collins, E.; Wood, T.; Bail, J.; Leaper, D. Effectiveness of a care bundle to reduce surgical site infections in patients having open colorectal surgery. Ann. R. Coll. Surg. Engl. 2016, 98, 270–274. [Google Scholar] [CrossRef]
- Center for Disease Control and Prevention, National Healthcare Safety Network (www.ecdc.gov). Surgical Site Infection Event (SSI). 2022. Available online: https://www.cdc.gov/nhsn/pdfs/pscmanual/9pscssicurrent.pdf (accessed on 27 January 2023).
- Abt, N.B.; Flores, J.M.; Baltodano, P.A.; Sarhane, K.A.; Abreu, F.M.; Cooney, C.M.; Manahan, M.A.; Stearns, V.; Makary, M.A.; Rosson, G.D. Neoadjuvant chemotherapy and short-term morbidity in patients undergoing mastectomy with and without breast reconstruction. JAMA Surg. 2014, 149, 1068–1076. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Dumville, J.C.; Norman, G.; Westby, M.; Blazeby, J.; McFarlane, E.; Welton, N.; O’Connor, L.; Cawthorne, J.; George, R.; et al. Intraoperative interventions for preventing surgical site infection: An overview of Cochrane Reviews. Cochrane Database Syst. Rev. 2018, 2, Cd012653. [Google Scholar] [CrossRef]
- Onesti, M.G.; Carella, S.; Scuderi, N. Effectiveness of antimicrobial-coated sutures for the prevention of surgical site infection: A review of the literature. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 5729–5739. [Google Scholar]
- Uchino, M.; Mizuguchi, T.; Ohge, H.; Haji, S.; Shimizu, J.; Mohri, Y.; Yamashita, C.; Kitagawa, Y.; Suzuki, K.; Kobayashi, M.; et al. The Efficacy of Antimicrobial-Coated Sutures for Preventing Incisional Surgical Site Infections in Digestive Surgery: A Systematic Review and Meta-analysis. J. Gastrointest. Surg. 2018, 22, 1832–1841. [Google Scholar] [CrossRef] [PubMed]
- Edmiston, C.E.; Daoud, F.C.; Leaper, D. Is there an evidence-based argument for embracing an antimicrobial (triclosan)-coated suture technology to reduce the risk for surgical-site infections? A meta-analysis. Surgery 2013, 154, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Williams, N.; Sweetland, H.; Goyal, N.; Ivins, N.; Leaper, D.J. Randomized trial of antimicrobial-coated sutures to prevent surgical site infection after breast cancer surgery. Surg. Infect. 2011, 12, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Razavi, B.M.; Fazly Bazzaz, B.S. A review and new insights to antimicrobial action of local anesthetics. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 991–1002. [Google Scholar] [CrossRef] [PubMed]
- Kesici, U.; Demirci, M.; Kesici, S. Antimicrobial effects of local anaesthetics. Int. Wound J. 2019, 16, 1029–1033. [Google Scholar] [CrossRef] [PubMed]
- de Boniface, J.; Szulkin, R.; Johansson, A.L.V. Major surgical postoperative complications and survival in breast cancer: Swedish population-based register study in 57 152 women. Br. J. Surg. 2022, 109, 977–983. [Google Scholar] [CrossRef]
Before SCB n (%) | After SCB n (%) | p-Value | ||
---|---|---|---|---|
Proportions of patients | 509 (53.1%) | 449 (46.9%) | - | |
Mean age, years (range) | 61.0 (29–94) | 60.7 (21–94) | 0.72 | |
Menopausal status (cut-off age 50 years) | Pre | 129 (25.3%) | 104 (23.2%) | 0.43 |
Post | 380 (74.7%) | 345 (76.8%) | ||
Body mass index (kg/m2) | <30 | 413 (81.3%) | 353 (79.0%) | 0.37 |
≥30 | 95 (18.7%) | 94 (21.0%) | ||
Cigarette smoking | No | 443 (87.0%) | 397 (88.4%) | 0.52 |
Yes | 66 (13.0%) | 52 (11.6%) | ||
Diabetes | No | 480 (94.3%) | 419 (93.3%) | 0.53 |
Yes | 29 (5.7%) | 30 (6.7%) | ||
Breast surgery | BCS | 228 (44.8%) | 288 (64.1%) | <0.001 |
Mastectomy | 281 (55.2%) | 161 (35.9%) | ||
Axillary surgery | SLNB | 340 (66.8%) | 303 (67.5%) | 0.82 |
ALND | 169 (33.2%) | 146 (32.5%) | ||
Neoadjuvant chemotherapy | No | 445 (87.4%) | 325 (72.4%) | <0.001 |
Yes | 64 (12.6%) | 124 (27.6%) | ||
Tumour size (mm) | <20 | 184 (36.2%) | 189 (42.3%) | 0.15 |
20–50 | 226 (44.4%) | 177 (39.6%) | ||
>50 | 99 (19.4%) | 81 (18.1%) | ||
Histopathological grade | 1 | 42 (8.8%) | 44 (10.2%) | 0.79 |
2 | 280 (58.9%) | 252 (58.2%) | ||
3 | 153 (32.2%) | 137 (31.6%) | ||
Tumour subtypes | Luminal-A | 212 (41.7%) | 155 (34.5%) | 0.02 |
Luminal-B | 129 (25.3%) | 133 (29.6%) | ||
HER2-Luminal | 40 (7.9%) | 58 (12.9%) | ||
HER2 non-luminal | 37 (7.3%) | 31 (6.9%) | ||
TNBC | 62 (12.2%) | 55 (12.2%) | ||
DCIS only | 28 (5.5%) | 14 (3.2%) | ||
No cancer | 1 (0.1%) | 3 (0.7%) | ||
Axillary lymph node status | N0 | 341 (67.0%) | 297 (66.1%) | 0.78 |
N+ | 168 (33.0%) | 152 (33.9%) |
Patient Groups | Overall SSI Rate | SSI Rate before SCB Implementation | SSI Rate after SCB Implementation | Absolute Change SSI Rate | p-Value |
---|---|---|---|---|---|
Whole group (n = 958) | |||||
Whole study cohort | 10.4% | 60/509 (11.8%) | 40/449 (8.9%) | −2.9% | 0.15 |
BCS + SLNB | 13.5% | 30/160 (18.8%) | 22/224 (9.8%) | −9.0% | 0.01 |
BCS + ALND | 6.1% | 6/68 (8.8%) | 2/64 (3.1%) | −5.7% | 0.17 |
Mastectomy + SLNB | 7.3% | 11/182 (6.0%) | 8/79 (10.1%) | +4.1% | 0.24 |
Mastectomy + ALND | 11.6% | 13/99 (13.1%) | 8/82 (9.8%) | −3.3% | 0.48 |
NACT (n = 188) | |||||
Subgroup | 8.0% | 7/64 (10.9%) | 8/124 (6.5%) | −4.4% | 0.28 |
BCS + SLNB | 0.0% | 0/0 (0.0%) | 0/31 (0.0%) | 0.0% | - |
BCS + ALND | 7.3% | 1/11 (9.1%) | 2/30 (6.7%) | −2.4% | 0.79 |
Mastectomy + SLNB | 0.0% | 0/3 (0.0%) | 0/9 (0.0%) | 0.0% | - |
Mastectomy + ALND | 11.6% | 6/50 (12.0%) | 6/54 (11.1%) | −0.9% | 0.89 |
Non-NACT (n = 770) | |||||
Subgroup | 11.0% | 53/445 (11.9%) | 32/325 (9.8%) | −2.1% | 0.37 |
BCS + SLNB | 14.7% | 30/160 (18.8%) | 22/193 (11.4%) | −7.4% | 0.05 |
BCS + ALND | 5.5% | 5/57 (8.8%) | 0/34 (0.0%) | −8.8% | 0.08 |
Mastectomy + SLNB | 7.6% | 11/179 (6.1%) | 8/70 (11.4%) | +5.3% | 0.16 |
Mastectomy + ALND | 11.7% | 7/49 (14.3%) | 2/28 (7.1%) | −7.2% | 0.35 |
Adherence of Individual Preventative SSI Measures | Before SCB Implementation N (%) | After SCB Implementation N (%) | Absolute Change (+/− %) | p-Value | |
1. Preoperative body wash with water and soap * | No | Missing data | Missing data | Not applicable | - |
Yes | Missing data | Missing data | |||
2. Antibiotic prophylaxis | No | 300 (58.9%) | 2 (0.4%) | +58.5% | <0.001 |
Yes | 209 (41.1%) | 447 (99.6%) | |||
3. Wound irrigation | No | 506 (99.4%) | 228 (50.8%) | +48.6% | <0.001 |
Yes | 3 (0.6%) | 221 (49.2%) | |||
4. Monofilament sutures with antibacterial coating | No | 177 (34.8%) | 4 (0.9%) | +33.9% | <0.001 |
Yes | 332 (65.2%) | 445 (99.1%) | |||
5. Wound dressing (tape) * | No | Missing data | Missing data | Not applicable | - |
Yes | Missing data | Missing data | |||
6. Local anaesthetics | No | 374 (73.5%) | 18 (4.0%) | +69.5% | <0.001 |
Yes | 135 (26.5%) | 431 (96.0%) | |||
7. Low molecular weight heparin | No | 351 (69.0%) | 425 (94.7%) | −25.7% | <0.001 |
Yes | 158 (31.0%) | 24 (5.3%) | |||
8. Drains | No | 244 (47.9%) | 420 (93.5%) | −45.5% | <0.001 |
Yes | 265 (52.1%) | 29 (6.5%) | |||
SCB Adherence Based on Study Definition ** | Before SCB Implementation N (%) | After SCB Implementation N (%) | Absolute Change (+/− %) | p-Value | |
For Whole group | No | 397 (78.0%) | 173 (38.5%) | +39.5% | <0.001 |
Yes | 112 (22.0%) | 276 (61.5%) | |||
For NACT group | No | 7 (10.9%) | 26 (21.0%) | −10.1% | 0.09 |
Yes | 57 (89.1%) | 98 (79.0%) | |||
For Non-NACT group | No | 390 (87.6%) | 147 (45.2%) | +42.4% | <0.001 |
Yes | 55 (12.4%) | 178 (54.8%) |
Univariate Analysis | Multivariate Analysis | ||||||
---|---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | ||
SCB implementation | Before | ref | ref | ||||
After | 0.73 | 0.48–1.12 | 0.15 | 0.63 | 0.40–0.99 | 0.047 | |
Age (years) | 1.00 | 0.99–1.02 | 0.50 | 1.00 | 0.99–1.02 | 0.86 | |
Body mass index | 1.07 | 1.03–1.12 | <0.001 | 1.07 | 1.03–1.11 | 0.001 | |
Smoking: | No | ref | ref | ||||
Yes | 1.41 | 0.79–2.50 | 0.24 | 1.57 | 0.86–2.84 | 0.14 | |
Diabetes: | No | ref | ref | ||||
Yes | 2.94 | 1.55–5.58 | <0.001 | 2.17 | 1.10–4.30 | 0.03 | |
Breast surgery: | BCS | ref | ref | ||||
Mastectomy | 0.76 | 0.50–1.15 | 0.19 | 1.74 | 1.07–2.84 | 0.03 | |
Axillary surgery: | SLNB | ref | ref | ||||
ALND | 0.86 | 0.55–1.35 | 0.52 | 0.80 | 0.47–1.37 | 0.42 | |
NACT | No | ref | ref | ||||
Yes | 0.70 | 0.39–1.24 | 0.22 | 0.90 | 0.44–1.83 | 0.77 | |
Seroma aspirations: | No | ref | ref | ||||
Yes | 1.52 | 0.97–2.38 | 0.07 | 2.06 | 1.22–3.47 | 0.007 |
Overall Rate N = 958 | Before SCB N = 509 n (%) | After SCB N = 449 n (%) | Absolute Change +/− % | p-Value | |
---|---|---|---|---|---|
Thromboembolic events | 0.8% | 3 (0.6%) | 5 (1.1%) | +0.5% | 0.20 |
Seroma aspiration | 24.5% | 120 (23.6%) | 115 (25.6%) | +2% | 0.46 |
Day surgery rate | 34.7% | 83 (16.3%) | 249 (55.5%) | +39.2% | <0.001 |
Re-operation due to bleeding | 2.1% | 15 (2.9%) | 5 (1.1%) | −1.8% | 0.05 |
Adjuvant CRT started within 30 days | 3.4% | 23 (4.5%) | 10 (2.2%) | −2.3% | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chin, K.; Wärnberg, F.; Kovacs, A.; Olofsson Bagge, R. Impact of Surgical Care Bundle on Surgical Site Infection after Non-Reconstructive Breast Cancer Surgery: A Single-Centre Retrospective Comparative Cohort Study. Cancers 2023, 15, 919. https://doi.org/10.3390/cancers15030919
Chin K, Wärnberg F, Kovacs A, Olofsson Bagge R. Impact of Surgical Care Bundle on Surgical Site Infection after Non-Reconstructive Breast Cancer Surgery: A Single-Centre Retrospective Comparative Cohort Study. Cancers. 2023; 15(3):919. https://doi.org/10.3390/cancers15030919
Chicago/Turabian StyleChin, Kian, Fredrik Wärnberg, Anikó Kovacs, and Roger Olofsson Bagge. 2023. "Impact of Surgical Care Bundle on Surgical Site Infection after Non-Reconstructive Breast Cancer Surgery: A Single-Centre Retrospective Comparative Cohort Study" Cancers 15, no. 3: 919. https://doi.org/10.3390/cancers15030919
APA StyleChin, K., Wärnberg, F., Kovacs, A., & Olofsson Bagge, R. (2023). Impact of Surgical Care Bundle on Surgical Site Infection after Non-Reconstructive Breast Cancer Surgery: A Single-Centre Retrospective Comparative Cohort Study. Cancers, 15(3), 919. https://doi.org/10.3390/cancers15030919