Targeted-Lymphoma Drug Delivery System Based on the Sgc8-c Aptamer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Chemical Components
2.2. Biological Components
2.3. In Vitro Biological Assays
2.3.1. Cytotoxicity Assay
2.3.2. Washing Method
2.3.3. Cell Death Studies
2.3.4. Mitochondrial Membrane Potential Assay
2.3.5. Arrest of Cell Proliferation Assay
2.3.6. Cell Cycle Analysis by DNA Content
2.4. Statistical Analysis
3. Results and Discussion
3.1. Sgc8-c-carb-da Displays Cytotoxic Activity against A20 Cells
3.2. Sgc8-c-carb-da Promotes A20-Cell Apoptosis and Necrosis
3.3. Sgc8-c-carb-da Triggers Cell Proliferation Arrest, Mainly in the subG1 Phase
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qu, N.; Ying, Y.; Qin, J.; Chen, A.K. Rational design of self-assembled RNA nanostructures for HIV-1 virus assembly blockade. Nucleic. Acids Res. 2021, 50, e44. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Hildebrand, S.; Davis, S.M.; Miller, R.; Conroy, F.; Sapp, E.; Caiazzi, J.; Alterman, J.F.; Roux, L.; Echeverria, D.; et al. Structurally constrained phosphonate internucleotide linkage impacts oligonucleotide-enzyme interaction, and modulates siRNA activity and allele specificity. Nucleic. Acids Res. 2021, 49, 12069–12088. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Duan, N.; Khan, I.M.; Dong, X.; Zhang, Y.; Wu, S.; Wang, Z. Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnol. Adv. 2022, 55, 107902. [Google Scholar] [CrossRef] [PubMed]
- Calzada, V. Aptamers in Diagnostic and Molecular Imaging Applications. In Aptamers in Biotechnology; Springer: Cham, Switzerland, 2019; pp. 141–160. [Google Scholar]
- Tong, R.; Coyle, V.J.; Tang, L.; Barger, A.M.; Fan, T.M.; Cheng, J. Polylactide nanoparticles containing stably incorporated cyanine dyes for in vitro and in vivo imaging applications. Microsc. Res. Tech. 2010, 73, 901–909. [Google Scholar] [CrossRef]
- Liu, M.; Wang, L.; Lo, Y.; Shiu, S.C.; Kinghorn, A.B.; Tanner, J.A. Aptamer-Enabled Nanomaterials for Therapeutics, Drug Targeting and Imaging. Cells 2022, 11, 159. [Google Scholar] [CrossRef] [PubMed]
- Shangguan, D.; Tang, Z.; Mallikaratchy, P.; Xiao, Z.; Tan, W. Optimization and Modifications of Aptamers Selected from Live Cancer Cell Lines. ChemBioChem 2007, 8, 603–606. [Google Scholar] [CrossRef] [PubMed]
- Ganier, L.; Morelli, X.; Borg, J.-P. Rôle en cancérologie et ciblage du récepteur à activité tyrosine kinase PTK7. Méd./Sci. 2020, 36, 42–46. [Google Scholar] [CrossRef]
- Gärtner, S.; Gunesch, A.; Knyazeva, T.; Wolf, P.; Högel, B.; Eiermann, W.; Ullrich, A.; Knyazev, P.; Ataseven, B. PTK 7 Is a Transforming Gene and Prognostic Marker for Breast Cancer and Nodal Metastasis Involvement. PLoS ONE 2014, 9, e84472. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, A.; Qi, S.; Cheng, S.; Yao, B.; Xu, Y. Protein Tyrosine Kinase 7 (PTK7) as a Predictor of Lymph Node Metastases and a Novel Prognostic Biomarker in Patients with Prostate Cancer. Int. J. Mol. Sci. 2014, 15, 11665–11677. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, L.H.; Wang, X.H.; Xing, X.F.; Cheng, X.J.; Dong, B.; Hu, Y.; Du, H.; Li, Y.A.; Zhu, Y.B.; et al. PTK7 as a novel marker for favorable gastric cancer patient survival. J. Surg. Oncol. 2012, 106, 880–886. [Google Scholar] [CrossRef]
- Golubkov, V.; Prigozhina, N.; Zhang, Y.; Stoletov, K.; Lewis, J.; Schwartz, P.; Hoffman, R.; Strongin, A. Protein-tyrosine pseudokinase 7 (PTK7) directs cancer cell motility and metastasis. J. Biol. Chem. 2014, 289, 24238–24249. [Google Scholar] [CrossRef] [PubMed]
- Berger, H.; Breuer, M.; Peradziryi, H.; Podleschny, M.; Jacob, R.; Borchers, A. PTK7 localization and protein stability is affected by canonical Wnt ligands. J. Cell Sci. 2017, 130, 1890–1903. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.; Maeng, Y.; Jung, J.; Min, J.; Kwon, Y.; Lee, S. Soluble PTK7 inhibits tube formation, migration, and invasion of endothelial cells and angiogenesis. Biochem. Biophys. Res. Commun. 2008, 371, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Castelli, R.; Ibarra, M.; Faccio, R.; Miraballes, I.; Fernández, M.; Moglioni, A.; Cabral, P.; Cerecetto, H.; Glisoni, R.J.; Calzada, V. T908 polymeric micelles improved the uptake of Sgc8-c aptamer probe in tumor-bearing mice: A co-association study between the probe and preformed nanostructures. Pharmaceuticals 2022, 15, 15. [Google Scholar] [CrossRef]
- Sicco, E.; Mónaco, A.; Fernandez, M.; Moreno, M.; Cerecetto, H. Metastatic and non-metastatic melanoma imaging using Sgc8-c aptamer PTK7-recognizer. Sci. Rep. 2021, 11, 19942. [Google Scholar] [CrossRef] [PubMed]
- Sicco, E.; Baez, J.; Ibarra, M.; Fernández, M.; Cabral, P.; Moreno, M.; Cerecetto, H.; Calzada, V. Sgc8-c Aptamer as a Potential Theranostic Agent for Hemato-Oncological Malignancies. Cancer Biother. Radiopharm. 2020, 35, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Sicco, E.; Báez, J.; Margenat, J.; García, F.; Ibarra, M.; Cabral, P.; Moreno, M.; Cerecetto, H.; Calzada, V. Derivatizations of Sgc8-c aptamer to prepare metallic radiopharmaceuticals as imaging diagnostic agents: Syntheses, isolations, and physicochemical characterizations. Chem. Biol. Drug Des. 2018, 91, 747–755. [Google Scholar] [CrossRef]
- Calzada, V.; Moreno, M.; Newton, J.; González, J.; Fernández, M.; Gambini, J.P.; Ibarra, M.; Chabalgoity, A.; Deutscher, S.; Quinn, T.; et al. Development of new PTK7-targeting aptamer-fluorescent and -radiolabelled probes for evaluation as molecular imaging agents: Lymphoma and melanoma in vivo proof of concept. Bioorganic. Med. Chem. 2017, 25, 1163–1171. [Google Scholar] [CrossRef]
- Arevalo, A.P.; Castelli, R.; Ibarra, M.; Crispo, M.; Calzada, V. In vivo evaluation of Sgc8-c aptamer as a molecular imaging probe for colon cancer in a mouse xenograft model. Int. J. Mol. Sci. Press 2022, 23, 2466. [Google Scholar] [CrossRef]
- Calzada, V.; Báez, J.; Sicco, E.; Margenat, J.; Fernández, M.; Moreno, M.; Ibarra, M.; Gambini, J.; Cabral González, P.; Cerecetto, H. Preliminary in vivo characterization of a theranostic aptamer: Sgc8-c-DOTA-67Ga. Aptamers 2017, 1, 19–27. [Google Scholar]
- Yazdian-robati, R.; Arab, A.; Ramezani, M.; Abnous, K.; Mohammad, S. Application of aptamers in treatment and diagnosis of leukemia. Int. J. Pharm. 2017, 529, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.D.; Rhodes, D.G.; Burgess, D.J. DNA-based therapeutics and DNA delivery systems: A comprehensive review. AAPS J. 2005, 7, E61–E77. [Google Scholar] [CrossRef]
- Bagalkot, V.; Farokhzad, O.C.; Langer, R.; Jon, S. An Aptamer–Doxorubicin Physical Conjugate as a Novel Targeted Drug-Delivery Platform. Angew. Chemie. Int. Ed. 2006, 45, 8149–8152. [Google Scholar] [CrossRef]
- Taghdisi, S.M.; Abnous, K.; Mosaffa, F.; Behravan, J. Targeted delivery of daunorubicin to T-cell acute lymphoblastic leukemia by aptamer. J. Drug Target. 2010, 18, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Pei, S.N.; Qi, J.; Zeng, Z.; Iyer, S.P.; Lin, P.; Tung, C.H.; Zu, Y. Oligonucleotide aptamer-drug conjugates for targeted therapy of acute myeloid leukemia. Biomaterials 2015, 67, 42–51. [Google Scholar] [CrossRef]
- Sicco, E.; Almeida, L.; Moreno, M.; Calzada, V.; Cerecetto, H. Chemical conjugations of Sgc8-c with the lymphoma drug dasatinib to generate selective biotherapeutics. Aptamers 2021, 5, 15–21. [Google Scholar]
- De Novellis, D.; Cacace, F.; Caprioli, V.; Wierda, W.G.; Mahadeo, K.M.; Tambaro, F.P. The tki era in chronic leukemias. Pharmaceutics 2021, 13, 2201. [Google Scholar] [CrossRef]
- Carpino, L.; Collins, D.; Göwecke, S.; Mayo, J.; Thatte, S.; Tibbetts, F. t-Butyl carbazate. In Organic Syntheses; Academic Press: New York, NY, USA, 1973; p. 166. [Google Scholar]
- Yin, J.; He, X.; Wang, K.; Xu, F.; Shangguan, J.; He, D.; Shi, H. Label-Free and Turn-on Aptamer Strategy for Cancer Cells Detection Based on a DNA–Silver Nanocluster Fluorescence upon Recognition-Induced Hybridization. Anal. Chem. 2013, 85, 12011–12019. [Google Scholar] [CrossRef]
- Jacobson, O.; Weiss, I.D.; Wang, L.; Wang, Z.; Yang, X.; Dewhurst, A.; Ma, Y.; Zhu, G.; Niu, G.; Kiesewetter, D.O.; et al. 18F-Labeled Single-Stranded DNA Aptamer for PET Imaging of Protein Tyrosine Kinase-7 Expression. J. Nucl. Med. 2015, 56, 1780–1785. [Google Scholar] [CrossRef] [PubMed]
- Alawak, M.; Abu Dayyih, A.; Mahmoud, G.; Tariq, I.; Duse, L.; Goergen, N.; Engelhardt, K.; Reddy Pinnapireddy, S.; Jedelská, J.; Awak, M.; et al. ADAM 8 as a novel target for doxorubicin delivery to TNBC cells using magnetic thermosensitive liposomes. Eur. J. Pharm. Biopharm. 2021, 158, 390–400. [Google Scholar] [CrossRef]
- Cossarizza, A.; Salvioli, S. Flow Cytometric Analysis of Mitochondrial Membrane Potential Using JC-1. Curr. Protoc. Cytom. 2000, 13, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Perelman, A.; Wachtel, C.; Cohen, M.; Haupt, S.; Shapiro, H.; Tzur, A. JC-1: Alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry. Cell Death Dis. 2012, 3, e430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hof, J.V. Cell Cycle Analysis. In Tissue Culture; Elsevier: Amsterdam, The Netherlands, 1973; pp. 423–428. [Google Scholar]
- Korashy, H.M.; Rahman, A.F.M.M.; Kassem, M.G.; Dasatinib. Profiles of Drug Substances, Excipients and Related Methodology; Academic Press: New York, NY, USA, 2014; Volume 39, pp. 205–237. [Google Scholar]
- Luo, Y.; Liao, F.; Lu, W.; Chang, G.; Sun, X. Coordination polymer nanobelts for nucleic acid detection. Nanotechnology 2011, 22, 195502. [Google Scholar] [CrossRef]
- Sivandzade, F.; Bhalerao, A.; Cucullo, L. Analysis of the Mitochondrial Membrane Potential Using the Cationic JC-1 Dye as a Sensitive Fluorescent Probe. Bio-Protocol 2019, 9, e3128. [Google Scholar] [CrossRef] [PubMed]
- Bouitbir, J.; Panajatovic, M.V.; Frechard, T.; Roos, N.J.; Krähenbühl, S. Imatinib and Dasatinib Provoke Mitochondrial Dysfunction Leading to Oxidative Stress in C2C12 Myotubes and Human RD Cells. Front. Pharmacol. 2020, 11, 1106. [Google Scholar] [CrossRef]
- Yu, R.; Zhang, Y.; Xu, Z.; Wang, J.; Chen, B.; Jin, H. Potential antitumor effects of panaxatriol against DU-15 human prostate cancer cells is mediated via mitochondrial mediated apoptosis, inhibition of cell migration and sub-G1 cell cycle arrest. J. BUON 2018, 23, 200–204. [Google Scholar] [PubMed]
- Porciani, D.; Cardwell, L.N.; Tawiah, K.D.; Alam, K.K.; Lange, M.J.; Daniels, M.A.; Burke, D.H. Modular cell-internalizing aptamer nanostructure enables targeted delivery of large functional RNAs in cancer cell lines. Nat. Commun. 2018, 9, 2283. [Google Scholar] [CrossRef]
- Xiao, Z.; Shangguan, D.; Cao, Z.; Fang, X.; Tan, W. Cell-specific internalization study of an aptamer from whole cell selection. Chem.-A Eur. J. 2008, 14, 1769–1775. [Google Scholar] [CrossRef]
IC50 (nM) | IC50,dasatinib/IC50,Sg8-c-carb-da | |||
---|---|---|---|---|
Cell Line | Sgc8-c-carb-da | Sgc8-c | Dasatinib | |
A20 | 820 ± 30 | >80,000 | 740 ± 20 | 0.91 |
CCRF-CEM | 7477 ± 80 | >80,000 | 12,260 ± 30 | 1.64 |
U87 MG | 16,350 ± 30 | >80,000 | 20,160 ± 70 | 1.23 |
Exposure Time (min) | IC50 (nM) | IC50,dasatinib/IC50,Sgc8-c-carb-da | |
---|---|---|---|
A20 | Dasatinib | Sgc8-c-carb-da | |
30 | 1070 ± 20 | 380 ± 20 | 2.82 |
60 | 1650 ± 80 | 680 ± 130 | 2.43 |
120 | 1750 ± 20 | 440 ± 20 | 3.98 |
CCRF-CEM | |||
30 | 18,460 ± 40 | 15,110 ± 20 | 1.22 |
60 | 11,800 ± 20 | 9520 ± 20 | 1.24 |
120 | 12,650 ± 20 | 6060 ± 20 | 2.08 |
U87 MG | |||
30 | 30,120 ± 20 | 31,310 ± 40 | 0.96 |
60 | 33,950 ± 30 | 32,230 ± 10 | 1.05 |
120 | 32,010 ± 20 | 32,580 ± 20 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sicco, E.; Cerecetto, H.; Calzada, V.; Moreno, M. Targeted-Lymphoma Drug Delivery System Based on the Sgc8-c Aptamer. Cancers 2023, 15, 922. https://doi.org/10.3390/cancers15030922
Sicco E, Cerecetto H, Calzada V, Moreno M. Targeted-Lymphoma Drug Delivery System Based on the Sgc8-c Aptamer. Cancers. 2023; 15(3):922. https://doi.org/10.3390/cancers15030922
Chicago/Turabian StyleSicco, Estefanía, Hugo Cerecetto, Victoria Calzada, and María Moreno. 2023. "Targeted-Lymphoma Drug Delivery System Based on the Sgc8-c Aptamer" Cancers 15, no. 3: 922. https://doi.org/10.3390/cancers15030922
APA StyleSicco, E., Cerecetto, H., Calzada, V., & Moreno, M. (2023). Targeted-Lymphoma Drug Delivery System Based on the Sgc8-c Aptamer. Cancers, 15(3), 922. https://doi.org/10.3390/cancers15030922