Incidental Node Metastasis as an Independent Factor of Worse Disease-Free Survival in Patients with Papillary Thyroid Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Study Design
2.3. Data Collection
2.4. Central Compartment Neck Dissection Definition
2.5. Incidental Lymph Nodes and Incidental Lymph Node Metastasis Definition
2.6. Statistical Analyses
3. Results
3.1. Cohort Characterization and Groups Distribution
3.2. Clinical-Pathological Characteristics
3.3. Treatment and Follow-Up Results
3.4. Disease-Free Survival
3.5. Group 3 Assessment
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pizzato, M.; Li, M.; Vignat, J.; Laversanne, M.; Singh, D.; La Vecchia, C.; Vaccarella, S. The epidemiological landscape of thyroid cancer worldwide: GLOBOCAN estimates for incidence and mortality rates in 2020. Lancet Diabetes Endocrinol. 2022, 10, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Filetti, S.; Durante, C.; Hartl, D.; Leboulleux, S.; Locati, L.; Newbold, K.; Papotti, M.; Berruti, A. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019, 30, 1856–1883. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Lan, X.; Zhang, H.; Dong, W.; Wang, Z.; He, L.; Zhang, T.; Liu, S. Risk Factors for Central Lymph Node Metastasis in CN0 Papillary Thyroid Carcinoma: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0139021. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.; Tang, L.; Hu, D.; Wang, Y.; Yu, P.; Yang, Z.; Deng, C.; Wang, D.; Su, X. Prediction Model of Pathologic Central Lymph Node Negativity in cN0 Papillary Thyroid Carcinoma. Front. Oncol. 2021, 11, 727984. [Google Scholar] [CrossRef]
- Amin, M.B.; Edge, S.B.; Greene, F.L.; Byrd, D.R.; Brookland, R.K.; Washington, M.K.; Gershenwald, J.E.; Compton, C.C.; Hess, K.R.; Sullivan, D.C.; et al. AJCC Cancer Staging Manual, 8th ed.; Springer: Chicago, IL, USA, 2017; ISBN 9780996826297. [Google Scholar]
- Agrawal, N.; Evasovich, M.R.; Kandil, E.; Noureldine, S.I.; Felger, E.A.; Tufano, R.P.; Kraus, D.H.; Orloff, L.A.; Grogan, R.; Angelos, P.; et al. Indications and extent of central neck dissection for papillary thyroid cancer: An American Head and Neck Society Consensus Statement. Head Neck 2017, 39, 1269–1279. [Google Scholar] [CrossRef] [PubMed]
- Kluijfhout, W.P.; Drake, F.T.; Pasternak, J.D.; Beninato, T.; Vriens, M.R.; Shen, W.T.; Gosnell, J.E.; Liu, C.; Suh, I.; Duh, Q.-Y. Incidental positive lymph nodes in patients with papillary thyroid cancer is independently associated with recurrent disease. J. Surg. Oncol. 2017, 116, 275–280. [Google Scholar] [CrossRef]
- Wang, L.Y.; Palmer, F.L.; Migliacci, J.C.; Nixon, I.J.; Shaha, A.R.; Shah, J.P.; Tuttle, R.M.; Patel, S.G.; Ganly, I. Role of RAI in the management of incidental N1a disease in papillary thyroid cancer. Clin. Endocrinol. 2015, 84, 292–295. [Google Scholar] [CrossRef]
- Danilovic, D.L.S.; de Mello, E.S.; Frazzato, E.S.T.; Wakamatsu, A.; de Lima Jorge, A.A.; Hoff, A.O.; Marui, S. Oncogenic mutations in KEAP1 disturbing inhibitory Nrf2-Keap1 interaction: Activation of antioxidative pathway in papillary thyroid carcinoma. Head Neck 2018, 40, 1271–1278. [Google Scholar] [CrossRef]
- da Silva, R.M.; Pupin, B.; Bhattacharjee, T.T.; Kulcsar, M.A.V.; Uno, M.; Chammas, R.; de Azevedo Canevari, R. ATR-FTIR spectroscopy and CDKN1C gene expression in the prediction of lymph nodes metastases in papillary thyroid carcinoma. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 228, 117693. [Google Scholar] [CrossRef]
- Qu, H.-J.; Qu, X.-Y.; Hu, Z.; Lin, Y.; Wang, J.-R.; Zheng, C.-F.; Tan, Z. The synergic effect of BRAFV600E mutation and multifocality on central lymph node metastasis in unilateral papillary thyroid carcinoma. Endocr. J. 2018, 65, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wang, D.; Luo, Y.; Chen, L.; Bai, H.; Shen, Y.; Zhang, Y.; Chen, X.; Su, X.; Zhao, J.; et al. Comprehensive evaluation of risk factors for lymph node metastasis in patients with papillary thyroid carcinoma. Oncol. Lett. 2021, 21, 188. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chang, A.; Zhou, W.; Zhao, H.; Zhuo, X. IGFBP3 as an indicator of lymph node metastasis and unfavorable prognosis for papillary thyroid carcinoma. Clin. Exp. Med. 2020, 20, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Bergdorf, K.; Ferguson, D.C.; Mehrad, M.; Ely, K.; Stricker, T.; Weiss, V.L. Papillary thyroid carcinoma behavior: Clues in the tumor microenvironment. Endocr.-Relat. Cancer 2019, 26, 601–614. [Google Scholar] [CrossRef]
- Gan, S.; Ye, R.; Ha, Y.; Xiong, Y.; Li, R.; Di, X.; Zou, Z.; Sun, Y.; Zhang, Z. Prediction Biomarkers Associated with Lymph Node Metastasis and Prognosis were Identified in Papillary Thyroid Carcinoma via Integrated Bioinformatics Analysis. Comb. Chem. High Throughput Screen. 2021, 24, 1395–1409. [Google Scholar] [CrossRef] [PubMed]
- Pontius, L.N.; Youngwirth, L.M.; Thomas, S.M.; Scheri, R.P.; Roman, S.A.; Sosa, J.A. Lymphovascular invasion is associated with survival for papillary thyroid cancer. Endocr.-Relat. Cancer 2016, 23, 555–562. [Google Scholar] [CrossRef]
- Ma, B.; Wang, Y.; Yang, S.; Ji, Q. Predictive factors for central lymph node metastasis in patients with cN0 papillary thyroid carcinoma: A systematic review and meta-analysis. Int. J. Surg. 2016, 28, 153–161. [Google Scholar] [CrossRef]
- Sezer, A.; Celik, M.; Bulbul, B.Y.; Can, N.; Tastekin, E.; Ayturk, S.; Ustun, F.; Guldiken, S.; Sut, N. Relationship between lymphovascular invasion and clinicopathological features of papillary thyroid carcinoma. Bosn. J. Basic Med. Sci. 2017, 17, 144–151. [Google Scholar] [CrossRef]
- Danilovic, D.L.; Castroneves, L.A.; Suemoto, C.K.; Elias, L.O.; Soares, I.C.; Camargo, R.Y.; Correa, F.D.A.; Hoff, A.O.; Marui, S. Is There a Difference Between Minimal and Gross Extension into the Strap Muscles for the Risk of Recurrence in Papillary Thyroid Carcinomas? Thyroid 2020, 30, 1008–1016. [Google Scholar] [CrossRef]
- Shi, X.; Huang, N.-S.; Lei, B.-W.; Song, K.-H.; Shi, R.-L.; Wei, W.-J.; Hu, W.-P.; Dong, F.; Wang, Y.-L.; Ji, Q.-H. Central Lymph Node Status has Significant Prognostic Value in the Clinically Node-Negative Tall-Cell Variant of Papillary Thyroid Cancer Regardless of T-Staging and Radioactive Iodine Administration: First Evidence from a Population-Based Study. Ann. Surg. Oncol. 2018, 25, 2316–2322. [Google Scholar] [CrossRef]
- Genpeng, L.; Pan, Z.; Tao, W.; Rixiang, G.; Jingqiang, Z.; Zhihui, L.; Jianyong, L. Prognostic implications of extranodal extension in papillary thyroid carcinomas: A propensity score matching analysis and proposal for incorporation into current tumor, lymph node, metastasis staging. Surgery 2021, 171, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Pyo, J.-S.; Sohn, J.H.; Chang, K. Prognostic Role of Metastatic Lymph Node Ratio in Papillary Thyroid Carcinoma. J. Pathol. Transl. Med. 2018, 52, 331–338. [Google Scholar] [CrossRef]
- Robinson, T.J.; Thomas, S.; Dinan, M.A.; Roman, S.; Sosa, J.A.; Hyslop, T. How Many Lymph Nodes Are Enough? Assessing the Adequacy of Lymph Node Yield for Papillary Thyroid Cancer. J. Clin. Oncol. 2016, 34, 3434–3439. [Google Scholar] [CrossRef] [PubMed]
- Dutenhefner, S.E.; Marui, S.; Santos, A.B.; de Lima, E.U.; Inoue, M.; Neto, J.S.B.; Shiang, C.; Fukushima, J.T.; Cernea, C.R.; Friguglietti, C.U. BRAF: A Tool in the Decision to Perform Elective Neck Dissection? Thyroid 2013, 23, 1541–1546. [Google Scholar] [CrossRef]
- Danilovic, D.L.S.; Lima, E.U.; Domingues, R.B.; Brandão, L.G.; Hoff, A.O.; Marui, S. Pre-operative role of BRAF in the guidance of the surgical approach and prognosis of differentiated thyroid carcinoma. Eur. J. Endocrinol. 2014, 170, 619–625. [Google Scholar] [CrossRef]
- Dobrinja, C.; Troian, M.; Mis, T.C.; Rebez, G.; Bernardi, S.; Fabris, B.; Piscopello, L.; Makovac, P.; Di Gregorio, F.; de Manzini, N. Rationality in prophylactic central neck dissection in clinically node-negative (cN0) papillary thyroid carcinoma: Is there anything more to say? A decade experience in a single-center. Int. J. Surg. 2017, 41, S40–S47. [Google Scholar] [CrossRef] [PubMed]
- Goepfert, R.P.; Clayman, G.L. Management of the central compartment in differentiated thyroid carcinoma. Eur. J. Surg. Oncol. (EJSO) 2017, 44, 327–331. [Google Scholar] [CrossRef]
- Dismukes, J.; Fazendin, J.; Obiarinze, R.; Márquez, G.C.H.; Ramonell, K.M.; Buczek, E.; Lindeman, B.; Chen, H. Prophylactic Central Neck Dissection in Papillary Thyroid Carcinoma: All Risks, No Reward. J. Surg. Res. 2021, 264, 230–235. [Google Scholar] [CrossRef]
- Viola, D.; Materazzi, G.; Valerio, L.; Molinaro, E.; Agate, L.; Faviana, P.; Seccia, V.; Sensi, E.; Romei, C.; Piaggi, P.; et al. Prophylactic Central Compartment Lymph Node Dissection in Papillary Thyroid Carcinoma: Clinical Implications Derived From the First Prospective Randomized Controlled Single Institution Study. J. Clin. Endocrinol. Metab. 2015, 100, 1316–1324. [Google Scholar] [CrossRef]
- Yoo, B.J.; Song, C.M.; Ji, Y.B.; Lee, J.Y.; Park, H.J.; Tae, K. Efficacy of Central Neck Dissection for Clinically Node-Negative Papillary Thyroid Carcinoma: Propensity Scoring Matching. Front. Endocrinol. 2019, 10, 172. [Google Scholar] [CrossRef]
- Giordano, D.; Frasoldati, A.; Gabrielli, E.; Pernice, C.; Zini, M.; Castellucci, A.; Piana, S.; Ciarrocchi, A.; Cavuto, S.; Barbieri, V. Long-term outcomes of central neck dissection for cN0 papillary thyroid carcinoma. Am. J. Otolaryngol. 2017, 38, 576–581. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wu, Y.-H.; Lee, C.-H.; Chen, H.-A.; Loh, E.-W.; Tam, K.-W. Prophylactic Central Neck Dissection for Papillary Thyroid Carcinoma with Clinically Uninvolved Central Neck Lymph Nodes: A Systematic Review and Meta-analysis. World J. Surg. 2018, 42, 2846–2857. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.-J.; Luo, H.; Zhou, Y.-M.; Dai, W.-Y.; Zhu, J.-Q. Evaluating the effectiveness of prophylactic central neck dissection with total thyroidectomy for cN0 papillary thyroid carcinoma: An updated meta-analysis. Eur. J. Surg. Oncol. (EJSO) 2017, 43, 1989–2000. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Wang, P.; Liu, J.; Li, R.; Zhang, L.; Chen, G. Prophylactic central lymph node dissection in cN0 patients with papillary thyroid carcinoma: A retrospective study in China. Asian J. Surg. 2015, 39, 131–136. [Google Scholar] [CrossRef]
- Hall, C.M.; Snyder, S.K.; Maldonado, Y.M.; Lairmore, T.C. Routine central lymph node dissection with total thyroidectomy for papillary thyroid cancer potentially minimizes level VI recurrence. Surgery 2016, 160, 1049–1058. [Google Scholar] [CrossRef]
- Hall, C.M.; LaSeur, D.C.; Snyder, S.K.; Lairmore, T.C. Reoperative central lymph node dissection for incidental papillary thyroid cancer can be performed safely: A retrospective review. Int. J. Surg. 2018, 56, 102–107. [Google Scholar] [CrossRef] [PubMed]
Group 1: 320 (45.8%) 1 | Group 2: 264 (37.8%) 1 | Group 3: 37 (5.3%) 1 | Group 4: 32 (4.5%) 1 | Group 5: 45 (6.4%) 1 | p-Value | |
---|---|---|---|---|---|---|
Age | ||||||
Mean (SD) | 53 (13) | 51 (14) | 42 (12) | 50 (17) | 45 (17) | <0.001 ** Group 1 vs. 3: <0.001 Group 2 vs. 3: 0.004 Group 1 vs. 5: 0.005 |
Sex | ||||||
Male | 39 (12%) | 22 (8.3%) | 7 (19%) | 4 (12%) | 5 (11%) | 0.307 *** |
Female | 281 (88%) | 242 (92%) | 30 (81%) | 28 (88%) | 40 (89%) | |
CCND Indication | ||||||
Therapeutic (preoperative) | - | - | - | - | 3 (6.7%) | |
Therapeutic (intraoperative) | - | - | - | - | 28 (62%) | |
Elective (prophylactic) | - | - | - | 32 (100%) | 14 (31%) | - |
Tumor size-largest foci (cm) | ||||||
Mean (SD) | 1.37 (1.51) | 1.35 (1.20) | 1.93 (1.35) | 1.93 (1.50) | 2.26 (1.93) | <0.001 ** Group 1 vs. 3: <0.001 Group 2 vs. 3: 0.009 Group 1 vs. 4: 0.014 Group 1 vs. 5: <0.001 |
Median (IQR) | 0.90 (0.40, 1.52) | 1.00 (0.50, 1.70) | 1.50 (1.10, 2.40) | 1.50 (0.80, 2.50) | 1.50 (1.00, 3.40) | |
Range (min, max) | 0.03, 9.00 | 0.01, 8.30 | 0.30, 6.40 | 0.50, 7.00 | 0.01, 10.50 | |
Tumor multifocality **** | 145 (45%) | 128 (48%) | 26 (70%) | 16 (50%) | 23 (51%) | 0.075 *** |
Microscopic ETE | 63 (20%) | 73 (28%) | 25 (68%) | 10 (31%) | 29 (64%) | <0.001 *** |
Angiolymphatic invasion | 21 (6.6%) | 18 (6.8%) | 15 (41%) | 1 (3.1%) | 16 (36%) | <0.001 *** |
pT status AJCC 8th ed. | ||||||
pT1a | 184 (57%) | 137 (52%) | 8 (22%) | 11 (34%) | 12 (27%) | <0.001 *** |
pT1b | 71 (22%) | 73 (28%) | 17 (46%) | 9 (28%) | 17 (38%) | |
pT2 | 43 (13%) | 35 (13%) | 7 (19%) | 7 (22%) | 5 (11%) | |
pT3a | 17 (5.3%) | 12 (4.5%) | 1 (2.7%) | 4 (12%) | 1 (2.2%) | |
pT3b | 4 (1.2%) | 7 (2.7%) | 3 (8.1%) | 1 (3.1%) | 5 (11%) | |
pT4a | 1 (0.3%) | - | 1 (2.7%) | - | 5 (11%) | |
Group staging AJCC 8th ed. | ||||||
I | 312 (98%) | 256 (97%) | 33 (89%) | 30 (94%) | 33 (73%) | <0.001 *** |
II | 7 (2.2%) | 8 (3.0%) | 3 (8.1%) | 2 (6.2%) | 9 (20%) | |
III | - | - | 1 (2.7%) | - | 3 (6.7%) | |
IVb | 1 (0.3%) | - | - | - | - | |
Resected nodes | ||||||
Mean (SD) | - | 2 (1) | 3 (2) | 8 (5) | 10 (5) | <0.001 ** Group 2 vs. 3: <0.001 Group 2 vs. 4: <0.001 Group 3 vs. 4: <0.001 Group 2 vs. 5: <0.001 Group 3 vs. 5: <0.001 |
Median (IQR) | - | 1 (1, 2) | 3 (2, 4) | 7 (5, 10) | 9 (6, 14) | |
Range (min; max) | - | 1; 9 | 1; 8 | 3; 22 | 2; 24 | |
1 node | - | 141 (53%) | 7 (19%) | - | - | <0.001 *** |
2 nodes | - | 70 (27%) | 9 (24%) | - | 1 (2.2%) | |
3 nodes | - | 30 (11%) | 10 (27%) | 3 (9.4%) | 3 (6.7%) | |
≥4 nodes | - | 23 (9%) | 11 (30%) | 29 (90.6%) | 41 (91.1%) | |
Metastatic nodes | ||||||
Mean (SD) | - | - | 1 (1) | - | 4 (3) | <0.001 ** |
Median (IQR) | - | - | 1 (1, 2) | - | 3 (2, 4) | |
Range (min; max) | - | - | 1; 4 | - | 1; 18 | |
1 node | - | - | 24 (65%) | - | 11 (24%) | <0.001 *** |
2 nodes | - | - | 10 (27%) | - | 10 (22%) | |
3 nodes | - | - | 2 (5.4%) | - | 7 (16%) | |
≥4 nodes | - | - | 1 (2.7%) | - | 17 (38%) | |
Lymph node ratio | ||||||
Mean (SD) | - | - | 0.61 (0.31) | - | 0.41 (0.27) | 0.002 ** |
Node metastasis size (mm) | ||||||
Mean (SD) | - | - | 2.08 (2.46) | - | NA | - |
Median (IQR) | - | - | 0.80 (0.50, 3) | - | NA | |
Range (min, max) | - | - | 0.20, 11 | - | NA | |
Extranodal extension | - | - | 4 (10.8%) | - | NA | - |
PTC subtype | ||||||
Classic | 151 (47%) | 151 (57%) | 29 (78%) | 19 (59%) | 34 (76%) | <0.001 *** |
Follicular | 155 (48%) | 100 (38%) | 5 (14%) | 10 (31%) | 8 (18%) | |
Oncocytic | 8 (2.5%) | 7 (2.7%) | 1 (2.7%) | 3 (9.4%) | 1 (2.2%) | |
Solid forms | 4 (1.2%) | 1 (0.4%) | 1 (2.7%) | - | - | |
Tall cell | 1 (0.3%) | 3 (1.1%) | - | - | - | |
Columnar cells | 1 (0.3%) | - | - | - | - | |
Diffuse sclerosing | - | - | - | - | 2 (4.4%) | |
Other | - | 2 (0.8%) | 1 (2.7%) | - | - | |
Risk of recurrence ***** | ||||||
Low risk | 238 (74%) | 186 (70%) | 4 (11%) | 21 (66%) | -* | <0.001 *** |
Moderate risk | 76 (24%) | 73 (28%) | 31 (84%) | 10 (31%) | 3 (78%) | |
High risk | 6 (1.9%) | 5 (1.9%) | 2 (5.4%) | 1 (3.1%) | 10 (22%) |
Group 1: 320 (45.8%) 1 | Group 2: 264 (37.8%) 1 | Group 3: 37 (5.3%) 1 | Group 4: 32 (4.5%) 1 | Group 5: 45 (6.4%) 1 | p-Value | |
---|---|---|---|---|---|---|
WBS | 207 (64.7%) | 183 (69.3%) | 36 (97.3%) | 25 (78.1%) | 43 (95.5%) | <0.001 ** |
Indication | ||||||
Diagnostic WBS | 58 (28%) | 55 (30%) | 1 (2.9%) | 7 (28%) | - | <0.001 ** |
RDIT period | 146 (72%) | 127 (70%) | 33 (97.1%) | 18 (72%) | 42 (100%) | |
Abnormal iodine capitation | 15 (7.3%) | 6 (3.4%) | 2 (5.7%) | 1 (4.0%) | 6 (14%) | |
Cervical central compartment | 3 (20%) | 3 (50%) | - | - | 1 (16.7%) | 0.094 ** |
Cervical lateral compartment | 3 (20%) | 3 (50%) | 2 (100%) | 1 (100%) | 3 (50%) | |
Distant | 9 (60%) | - | - | - | 3 (50%) | |
RDIT | 156 (48.8%) | 137 (51.9%) | 36 (97.3%) | 19 (59.4%) | 42 (93.3%) | <0.001 ** |
Indication | ||||||
Remnant ablation | 141 (90%) | 127 (93%) | 7 (19%) | 17 (94%) | 11 (26%) | <0.001 ** |
Adjuvant therapy | 11 (7.1%) | 10 (7.3%) | 29 (81%) | 1 (5.6%) | 31 (74%) | |
Therapy of persistent disease | 4 (2.6%) | - | - | - | - | |
Dose 2 | ||||||
Mean (SD) | 142 (44) | 144 (33) | 202 (28) | 155 (33) | 206 (24) | <0.001 * Group 1 vs. 3: <0.001 Group 2 vs. 3: <0.001 Group 3 vs. 4: 0.017 Group 1 vs. 5: <0.001 Group 2 vs. 5: <0.001 Group 4 vs. 5: <0.001 |
Median (IQR) | 150 (105, 159) | 154 (107, 160) | 206 (200, 213) | 161 (132, 167) | 208 (200, 215) | |
Range (min, max) | 100, 382 | 30, 230 | 104, 266 | 100, 217 | 150, 272 |
Group 1: 320 (45.8%) 1 | Group 2: 264 (37.8%) 1 | Group 3: 37 (5.3%) 1 | Group 4: 32 (4.5%) 1 | Group 5: 45 (6.4%) 1 | Total: 698 (100%) 1 | p-Value * | |
---|---|---|---|---|---|---|---|
Thyroglobulin after 1 year | |||||||
≤0.2 ng/mL | 253 (79.1%) | 209 (79.2%) | 28 (75.7%) | 26 (81.3%) | 24 (53.3%) | 540 (77.4%) | <0.001 |
>0.2−1 ng/mL | 38 (11.9%) | 33 (12.5%) | 2 (5.4%) | 3 (9.4%) | 7 (15.5%) | 83 (11.9%) | |
>1−10 ng/mL | 16 (2.8%) | 8 (3%) | 2 (5.4%) | - | 7 (15.5%) | 33 (4.7%) | |
>10 ng/mL | 1 (0.3%) | 1 (0.4%) | 2 (5.4%) | 1 (3.1%) | 2 (4.4%) | 7 (1%) | |
Missing | 12 (3.8%) | 13 (4.9%) | 3 (8.1%) | 2 (6.3%) | 5 (11.1%) | 35 (5%) | |
Treatment failure | 15 (4.6%) | 8 (3%) | 12 (32.4%) | 2 (6.2%) | 7 (15.5%) | 44 (6.3%) | <0.001 |
Thyroglobulin before failure | |||||||
≤0.2 ng/mL | 2 (13.3%) | 1 (12.5%) | 5 (41.6%) | - | 2 (28.5%) | 10 (22.7%) | 0.060 |
>0.2−1 ng/mL | 4 (26.6%) | 5 (62.5%) | - | - | - | 9 (20.4%) | |
>1−10 ng/mL | 3 (20%) | - | 5 (41.6%) | 1 (50%) | 1 (14.3%) | 10 (22.7%) | |
>10 ng/mL | - | 2 (25%) | 1 (8.3%) | 1 (50%) | 1 (14.3%) | 5 (11.4%) | |
Missing | 6 (40%) | - | 1 (8.3%) | - | 3 (42.9%) | 10 (22.7%) | |
Last thyroglobulin | |||||||
≤0.2 ng/mL | 260 (81.3%) | 217 (82.2%) | 28 (75.7%) | 27 (84.4%) | 25 (55.6%) | 557 (79.8%) | 0.034 |
>0.2−1 ng/mL | 41 (12.8%) | 30 (11.4%) | 4 (10.8%) | 2 (6.3%) | 10 (22.2%) | 87 (12.5%) | |
>1−10 ng/mL | 9 (2.8%) | 8 (3%) | 2 (5.4%) | 1 (3.1%) | 3 (6.6%) | 23 (3.3%) | |
>10 ng/mL | 5 (1.6%) | 1 (0.4%) | 1 (2.7%) | 1 (3.1%) | 3 (6.7%) | 11 (1.6%) | |
Missing | 5 (1.6%) | 8 (3%) | 2 (5.4%) | 1 (3.1%) | 4 (8.9%) | 20 (2.9%) | |
Initial Anti-thyroglobulin | |||||||
Negative | 273 (85.3%) | 224 (84.8%) | 29 (78.4%) | 29 (90.6%) | 38 (84.4%) | 593 (85%) | 0.728 |
Positive | 41 (12.8%) | 39 (14.8%) | 7 (18.9%) | 3 (9.4%) | 5 (11.1%) | 95 (13.6%) | |
Missing | 6 (1.9%) | 1 (0.4%) | 1 (2.7%) | - | 2 (4.4%) | 10 (1.4%) | |
Anti-thyroglobulin before failure | |||||||
Negative | 9 (2.8%) | 5 (1.9%) | 9 (24.3%) | 2 (6.3%) | 3 (6.7%) | 28 (4%) | 0.322 |
Positive | - | 3 (1.1%) | 2 (5.4%) | - | 1 (2.2%) | 6 (0.9%) | |
Missing | 6 (1.9%) | - | 1 (2.7%) | - | 3 (6.7%) | 10 (1.4%) | |
Last Anti-thyroglobulin | |||||||
Negative | 305 (95.3%) | 242 (91.7%) | 32 (86,5%) | 29 (90.6%) | 40 (88.9%) | 648 (92.8%) | 0.259 |
Positive | 10 (3.1%) | 14 (5.3%) | 3 (8.1%) | 3 (9.4%) | 1 (2.2%) | 31 (4.4%) | |
Missing | 5 (1.6%) | 8 (3%) | 2 (5.4%) | - | 4 (8.9%) | 19 (2.7%) | |
WBS | 207 (64.7%) | 183 (69.3%) | 36 (97.3%) | 25 (78.1%) | 43 (95.6%) | 494 (70.8%) | <0.001 |
Stimulated thyroglobulin | |||||||
<1 ng/mL | 82 (39.6%) | 87 (47.5%) | 13 (36.1%) | 8 (32%) | 15 (34.9%) | 205 (41.5%) | 0.036 |
1−10 ng/mL | 99 (47.8%) | 80 (43.7%) | 16 (44.4%) | 15 (60%) | 17 (39.5%) | 227 (46%) | |
>10 ng/mL | 25 (12.1%) | 11 (6%) | 6 (16.7%) | 2 (8%) | 10 (23.3%) | 54 (10.9%) | |
Missing | 1 (0.5%) | 5 (2.7%) | 1 (2.8%) | - | 1 (2.3%) | 8 (1.6%) |
Group 1: 320 (45.8%) 1 | Group 2: 264 (37.8%) 1 | Group 3: 37 (5.3%) 1 | Group 4: 32 (4.5%) 1 | Group 5: 45 (6.4%) 1 | p-Value | |
---|---|---|---|---|---|---|
WBS sessions | ||||||
1 | 180 (87%) | 169 (92%) | 25 (69%) | 24 (96%) | 30 (70%) | <0.001 * |
2 | 24 (12%) | 14 (7.7%) | 8 (22%) | 1 (4.0%) | 12 (28%) | |
3 | 2 (1.0%) | - | 2 (5.6%) | - | 1 (2.3%) | |
5 | 1 (0.5%) | - | 1 (2.8%) | - | - | |
RDIT sessions | ||||||
1 | 151 (97%) | 135 (99%) | 32 (89%) | 19 (100%) | 39 (93%) | 0.041 * |
2 | 5 (3.2%) | 2 (1.5%) | 4 (11%) | - | 3 (7.1%) | |
Treatment response *** | ||||||
Excellent response | 237 (74%) | 197 (75%) | 20 (54%) | 25 (78%) | 20 (44%) | <0.001 * |
Biochemical incomplete | 62 (19%) | 40 (15%) | 9 (24%) | 2 (6.2%) | 20 (44%) | |
Structural incomplete | 1 (0.3%) | 1 (0.4%) | 2 (5.4%) | 1 (3.1%) | 1 (2.2%) | |
Indeterminate | 20 (6.2%) | 26 (9.8%) | 6 (16%) | 4 (12%) | 4 (8.9%) | |
RDIT total dose 2 | ||||||
Mean (SD) | 149 (66) | 147 (41) | 225 (74) | 155 (33) | 222 (67) | <0.001 ** Group 1 vs. 3: <0.001 Group 2 vs. 3: <0.001 Group 3 vs. 4: 0.011 Group 1 vs. 5: <0.001 Group 2 vs. 5: <0.001 Group 4 vs. 5: 0.005 |
Median (IQR) | 150 (105, 159) | 154 (107, 161) | 206 (202, 218) | 161 (132, 167) | 208 (200, 215) | |
Range (min, max) | 100, 590 | 30, 358 | 104, 472 | 100, 217 | 150, 502 | |
Treatment failure | 15 (4.7%) | 8 (3.0%) | 12 (32%) | 2 (6.2%) | 7 (16%) | <0.001 * |
Site | ||||||
Central compartment | 6 (40%) | 4 (50%) | 9 (75%) | 1 (50%) | 1 (14.3%) | 0.155 * |
Lateral compartment | 4 (26.6%) | 4 (50%) | 5 (41.6%) | 1 (50%) | 5 (71.4%) | |
Distant metastasis | 7 (2.2%) | - | 2 (5.4%) | - | 4 (8.9%) | |
Reoperations | 8 (2.5%) | 9 (3.4%) | 10 (27%) | 1 (3.1%) | 3 (6.6%) | <0.001 * |
Radiotherapy | - | - | - | - | 2 (4.4%) | - |
Chemo/target therapy | - | - | - | - | 2 (4.4%) | - |
Death | 16 (5.0%) | 15 (5.7%) | 2 (5.4%) | 3 (9.4%) | 3 (6.7%) | 0.880 * |
Cause of death | ||||||
Thyroid cancer | - | - | 1 (50%) | - | 3 (100%) | <0.001 * |
Other | 16 (100%) | 14 (100%) | 1 (50%) | 3 (100%) | - | |
Follow-up (months) | ||||||
Mean (SD) | 81 (29) | 80 (31) | 82 (31) | 96 (32) | 83 (39) | <0.001 ** Group 1 vs. 4: 0.013 Group 2 vs. 4: 0.014 |
Median (IQR) | 81 (66, 98) | 80 (66, 103) | 88 (69, 105) | 102 (88, 115) | 88 (67, 117) | |
Range (min, max) | 1, 142 | 0, 142 | 2, 133 | 10, 140 | 1, 141 |
VARIABLES | UNIVARIATE | MULTIVARIATE | ||||
---|---|---|---|---|---|---|
HR 1 | CI 2 95% | p-Value 3 | HR 1 | CI 2 95% | p-Value 3 | |
Sex: Male | 0.607 | 0.270–1.364 | 0.227 | - | - | - |
Age (≥55 years) | 0.918 | 0.501–1.683 | 0.782 | - | - | - |
Group 1 | Ref. | - | - | Ref. | - | - |
Group 2 | 0.692 | 0.290–1.649 | 0.406 | 0.579 | 0.245–1.317 | 0.214 |
Group 3 | 8.476 | 3.918–18.336 | <0.001 | 3.691 | 1.556–8.755 | 0.003 |
Group 4 | 1.378 | 0.313–6.068 | 0.672 | 1.141 | 0.259–5.026 | 0.862 |
Group 5 | 3.923 | 1.583–9.725 | 0.003 | 1.749 | 0.649–4.709 | 0.269 |
pT1a 4 | Ref. | - | - | Ref. | - | - |
pT1b 4 | 1.891 | 0.877–4.079 | 0.104 | 0.934 | 0.395–2.207 | 0.876 |
pT2 4 | 1.727 | 0.656–4.544 | 0.268 | 0.997 | 0.352–2.825 | 0.995 |
pT3a 4 | 2.980 | 0.971–9.140 | 0.056 | 1.981 | 0.588–6.082 | 0.285 |
pT3b 4 | 4.282 | 1.220–15.032 | 0.023 | 1.947 | 0.570–6.653 | 0.288 |
pT4a 4 | 21.865 | 7.119–67.154 | <0.001 | 5.524 | 1.380–22.113 | 0.016 |
Multifocality | 1.335 | 0.732–2.438 | 0.346 | - | - | - |
Microscopic ETE | 3.990 | 2.165–7.353 | <0.001 | 2.560 | 1.303–5.030 | 0.006 |
Angiolymphatic invasion | 4.708 | 2.487–8.914 | <0.001 | 2.240 | 1.077–4.510 | 0.030 |
No Failure: 25 (67.6%) 1 | Treatment Failure: 12 (32.4%) 1 | p–Value | |
---|---|---|---|
Age | |||
Mean (SD) | 42 (12) | 44 (13) | 0.909 * |
Sex | |||
Male | 5 (20%) | 2 (17%) | 0.594 ** |
Female | 20 (80%) | 10 (83%) | |
WBS | 24 (96%) | 12 (100%) | 0.676 ** |
RDIT | 24 (96%) | 11 (92%) | |
Tumor size-largest foci (cm) | |||
Mean (SD) | 1.79 (0.90) | 2.21 (2.03) | 0.871 * |
Median (IQR) | 1.50 (1.20, 2.00) | 1.60 (0.88, 2.55) | |
Range (min, max) | 0.40, 4.00 | 0.30, 6.40 | |
Tumor multifocality **** | 16 (64%) | 10 (83%) | 0.209 ** |
Microscopic ETE | 16 (64%) | 9 (75%) | 0.391 ** |
Angiolymphatic invasion | 11 (44%) | 4 (33%) | 0.835 ** |
pT status AJCC 8th ed. | |||
pT1a | 3 (12%) | 5 (42%) | 0.0279 *** |
pT1b | 15 (60%) | 2 (17%) | |
pT2 | 4 (16%) | 3 (25%) | |
pT3a | - | 1 (8.3%) | |
pT3b | 3 (12%) | - | |
pT4a | - | 1 (8.3%) | |
Group staging AJCC 8th ed. | |||
I | 24 (96%) | 9 (75%) | 0.129 *** |
II | 1 (4.0%) | 2 (17%) | |
III | - | 1 (8.3%) | |
Resected nodes | |||
Mean (SD) | 3 (1) | 3 (2) | 0.538 * |
Median (IQR) | 2 (2. 4) | 3 (3. 3) | |
Range (min; max) | 1; 6 | 1; 8 | |
1 node | 5 (20%) | 2 (17%) | 0.137 *** |
2 nodes | 8 (32%) | 1 (8.3%) | |
3 nodes | 4 (16%) | 6 (50%) | |
≥4 nodes | 8 (32%) | 3 (25.3%) | |
Metastatic nodes | |||
Mean (SD) | 1 (1) | 2 (1) | 0.629 * |
Median (IQR) | 1 (1. 2) | 1 (1, 2) | |
Range (min; max) | 1; 4 | 1; 3 | |
1 node | 17 (68%) | 7 (58%) | 0.767 *** |
2 nodes | 6 (24%) | 4 (33%) | |
3 nodes | 1 (4%) | 1 (8.3%) | |
≥4 nodes | 1 (4%) | - | |
Lymph node ratio | |||
Mean (SD) | 0.63 (0.32) | 0.57 (0.27) | 0.751 * |
Median (IQR) | 0.50 (0.33, 1.00) | 0.58 (0.33, 0.69) | |
Range (min, max) | 0.17, 1.00 | 0.12, 1.00 | |
Node metastasis size (mm) | |||
Mean (SD) | 1.54 (1.57) | 3.2 (3.52) | 0.151 * |
Median (IQR) | 0.8 (0.5, 6) | 1.4 (0.57, 5.5) | |
Range (min, max) | 0.2, 6 | 0.3, 11 | |
LN macro metastasis (>2 mm) | 8 (32%) | 5 (41.7%) | 0.413 ** |
Extranodal extension | 2 (8%) | 2 (16.7%) | 0.391 ** |
PTC subtype | |||
Classic | 21 (84%) | 8 (67%) | 0.278 *** |
Follicular | 2 (8.0%) | 3 (25%) | |
Oncocytic | 1 (4.0%) | - | |
Solid forms | - | 1 (8.3%) | |
Other | 1 (4.0%) | - | |
Risk of recurrence ***** | |||
Low risk | 2 (8%) | - | 0.534 *** |
Moderate risk | 22 (88%) | 11 (91.7%) | |
High risk (min, max) | 1 (4.0%) | 1 (8.3%) | |
Stimulated thyroglobulin (ng/mL) | |||
Mean (SD) | 2.65 (3.66) | 19 (24) | 0.009 * |
Median (IQR) | 1.10 (0.25, 3.00) | 7 (2, 31) | |
Range (min, max) | 0.20, 15.50 | 0, 80 | |
RDIT Dose (mCi) | |||
Mean (SD) | 204 (17) | 198 (43) | 0.959 * |
Median (IQR) | 206 (202. 213) | 206 (190. 209) | |
Range (min, max) | 150, 223 | 104, 266 | |
Follow-up (months) | |||
Mean (SD) | 81 (21.29) | 85 (35.18) | 0.871 * |
Median (IQR) | 78 (66, 107) | 80 (78, 99) | |
Range (min, max) | 2, 133 | 32, 112 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinheiro, R.A.; Leite, A.K.; Cavalheiro, B.G.; de Mello, E.S.; Kowalski, L.P.; Matos, L.L. Incidental Node Metastasis as an Independent Factor of Worse Disease-Free Survival in Patients with Papillary Thyroid Carcinoma. Cancers 2023, 15, 943. https://doi.org/10.3390/cancers15030943
Pinheiro RA, Leite AK, Cavalheiro BG, de Mello ES, Kowalski LP, Matos LL. Incidental Node Metastasis as an Independent Factor of Worse Disease-Free Survival in Patients with Papillary Thyroid Carcinoma. Cancers. 2023; 15(3):943. https://doi.org/10.3390/cancers15030943
Chicago/Turabian StylePinheiro, Renan Aguera, Ana Kober Leite, Beatriz Godoi Cavalheiro, Evandro Sobroza de Mello, Luiz Paulo Kowalski, and Leandro Luongo Matos. 2023. "Incidental Node Metastasis as an Independent Factor of Worse Disease-Free Survival in Patients with Papillary Thyroid Carcinoma" Cancers 15, no. 3: 943. https://doi.org/10.3390/cancers15030943
APA StylePinheiro, R. A., Leite, A. K., Cavalheiro, B. G., de Mello, E. S., Kowalski, L. P., & Matos, L. L. (2023). Incidental Node Metastasis as an Independent Factor of Worse Disease-Free Survival in Patients with Papillary Thyroid Carcinoma. Cancers, 15(3), 943. https://doi.org/10.3390/cancers15030943