Management of Locally Advanced or Metastatic Combined Hepatocellular Cholangiocarcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Characterization of the Genomic Landscape of cHCC-CC and Possible Therapeutic Implications
1.2. Systemic and Locoregional Treatment Approaches for cHCC-CC: The Neoadjuvant Setting
1.3. Systemic and Locoregional Treatment Approaches for cHCC-CC: The Adjuvant Setting
1.4. Systemic and Locoregional Treatment Approaches for cHCC-CC: The Palliative Setting
2. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
5-FU | 5-Fluorouracil |
ADGRV1 | adhesion g protein-coupled receptor V1 |
ALB | albumin |
AFP | alpha-fetoprotein |
APOB | apolipoprotein B |
APOE | apolipoprotein E |
ARID1A | AT-rich interaction domain 1A |
ARID2 | AT-rich interaction domain 2 |
AXIN1 | axis inhibition protein 1 |
BRAF | B-Raf Proto-Oncogenen |
BAP1 | BRCA1-associated protein 1 |
BRD7 | Bromodomain-containing 7 |
CA 19-9 | carbohydrate antigen 19-9 |
CEA | carcinoembryonic antigen |
CTNNB1 | catenin beta-1 |
CC | cholangiocarcinoma |
cHCC-CC | combined hepatocellular cholangiocarcinoma |
CR | complete response |
CNVs | copy number variants |
DCR | disease control rate |
DST | dystonin |
EZH2 | enhancer of zeste 2 polycomb repressive complex 2 subunit |
EPCAM | epithelial cell adhesion molecule |
FGFR2 | fibroblast growth factor receptor 2 |
FRY | FRY microtubule binding protein |
GPC3 | glypican 3 |
HMCN1 | hemicentin 1 |
HCC | hepatocellular carcinoma |
HER2/ERBB2 | human epidermal growth factor receptor 2/erb-b2 receptor tyrosine kinase 2 |
IDH | isocitrate Dehydrogenase (NADP(+)) |
KEAP1 | kelch-like ECH-associated protein 1 |
KRT19 | keratin 19 |
KRAS | kirsten rat sarcoma virus |
KMT2D | lysin-Methyltransferase 2D |
ML | machine learning |
MTOR | mechanistic Target of Rapamycin |
MET | MET proto oncogene |
MUC2 | mucin 2 |
NEB | nebulin |
ORR | overall response rate |
OS | overall survival |
PR | partial response |
PTEN | phosphatase and tensin homologue |
PBRM1 | polybromo 1 |
PD-L1 | programmed cell death ligand 1 |
PFS | Progression-free survival |
PRDM5 | PR/SET domain 5 |
RFA | radiofrequency ablation |
RB1 | retinoblastoma protein Transcriptional compressor 1 |
RPS6KA3 | ribosomal protein S6 kinase A3 |
SIRT | selective internal radiation therapy |
SALL4 | spalt-like transcription factor 4 |
SYNE1/2 | spectrin repeat containing nuclear envelope protein ½ |
SWI/SNF | switch/sucrose non-fermentable |
SYCP2 | synaptonemal complex protein 2 |
TERT | telomerase-Reverse-Transcriptase |
TACE | transarterial chemoembolization |
TP53 | tumor protein p53 |
TKI | tyrosine kinase inhibitors |
WHO | World Health Organization |
References
- Allen, R.A.; Lisa, J.R. Combined liver cell and bile duct carcinoma. Am. J. Pathol. 1949, 25, 647–655. [Google Scholar]
- Brunt, E.; Aishima, S.; Clavien, P.A.; Fowler, K.; Goodman, Z.; Gores, G.; Gouw, A.; Kagen, A.; Klimstra, D.; Komuta, M.; et al. cHCC-CCA: Consensus terminology for primary liver carcinomas with both hepatocytic and cholangiocytic differentation. Hepatology 2018, 68, 113–126. [Google Scholar] [CrossRef]
- Ramai, D.; Ofosu, A.; Lai, J.K.; Reddy, M.; Adler, D.G. Combined Hepatocellular Cholangiocarcinoma: A Population-Based Retrospective Study. Am. J. Gastroenterol. 2019, 114, 1496–1501. [Google Scholar] [CrossRef] [PubMed]
- Garancini, M.; Goffredo, P.; Pagni, F.; Romano, F.; Roman, S.; Sosa, J.A.; Giardini, V. Combined hepatocellular-cholangiocarcinoma: A population-level analysis of an uncommon primary liver tumor. Liver Transpl. 2014, 20, 952–959. [Google Scholar] [CrossRef]
- Kudo, M.; Izumi, N.; Kubo, S.; Kokudo, N.; Sakamoto, M.; Shiina, S.; Tateishi, R.; Nakashima, O.; Murakami, T.; Matsuyama, Y.; et al. Report of the 20th Nationwide follow-up survey of primary liver cancer in Japan. Hepatol. Res. 2020, 50, 15–46. [Google Scholar] [CrossRef]
- Taguchi, J.; Nakashima, O.; Tanaka, M.; Hisaka, T.; Takazawa, T.; Kojiro, M. A clinicopathological study on combined hepatocellular and cholangiocarcinoma. J. Gastroenterol. Hepatol. 1996, 11, 758–764. [Google Scholar] [CrossRef]
- Lee, W.S.; Lee, K.W.; Heo, J.S.; Kim, S.J.; Choi, S.H.; Kim, Y.I.; Joh, J.W. Comparison of combined hepatocellular and cholangiocarcinoma with hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Surg. Today 2006, 36, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Wakizaka, K.; Yokoo, H.; Kamiyama, T.; Ohira, M.; Kato, K.; Fujii, Y.; Sugiyama, K.; Okada, N.; Ohata, T.; Nagatsu, A.; et al. Clinical and pathological features of combined hepatocellular-cholangiocarcinoma compared with other liver cancers. J. Gastroenterol. Hepatol. 2019, 34, 1074–1080. [Google Scholar] [CrossRef]
- Kim, K.H.; Lee, S.G.; Park, E.H.; Hwang, S.; Ahn, C.S.; Moon, D.B.; Ha, T.Y.; Song, G.W.; Jung, D.H.; Kim, K.M.; et al. Surgical treatments and prognoses of patients with combined hepatocellular carcinoma and cholangiocarcinoma. Ann. Surg. Oncol. 2009, 16, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.I.; Hwang, S.; Lee, Y.J.; Kim, K.H.; Ahn, C.S.; Moon, D.B.; Ha, T.Y.; Song, G.W.; Jung, D.H.; Lee, J.W.; et al. Postresection Outcomes of Combined Hepatocellular Carcinoma-Cholangiocarcinoma, Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. J. Gastrointest. Surg. 2016, 20, 411–420. [Google Scholar] [CrossRef]
- Yin, X.; Zhang, B.H.; Qiu, S.J.; Ren, Z.G.; Zhou, J.; Chen, X.H.; Zhou, Y.; Fan, J. Combined hepatocellular carcinoma and cholangiocarcinoma: Clinical features, treatment modalities, and prognosis. Ann. Surg. Oncol. 2012, 19, 2869–2876. [Google Scholar] [CrossRef]
- Yamashita, Y.I.; Aishima, S.; Nakao, Y.; Yoshizumi, T.; Nagano, H.; Kuroki, T.; Takami, Y.; Ide, T.; Ohta, M.; Takatsuki, M.; et al. Clinicopathological characteristics of combined hepatocellular cholangiocarcinoma from the viewpoint of patient prognosis after hepatic resection: High rate of early recurrence and its predictors. Hepatol. Res. 2020, 50, 863–870. [Google Scholar] [CrossRef]
- Johnson, P.J.; Qin, S.; Park, J.W.; Poon, R.T.; Raoul, J.L.; Philip, P.A.; Hsu, C.H.; Hu, T.H.; Heo, J.; Xu, J.; et al. Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma: Results from the randomized phase III BRISK-FL study. J. Clin. Oncol. 2013, 31, 3517–3524. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef]
- Valle, J.; Wasan, H.; Palmer, D.H.; Cunningham, D.; Anthoney, A.; Maraveyas, A.; Madhusudan, S.; Iveson, T.; Hughes, S.; Pereira, S.P.; et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N. Engl. J. Med. 2010, 362, 1273–1281. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.-Y.; He, A.R.; Qin, S.; Chen, L.-T.; Okusaka, T.; Vogel, A.; Kim, J.W.; Suksombooncharoen, T.; Lee, M.A.; Kitano, M.; et al. Durvalumab plus Gemcitabine and Cisplatin in Advanced Biliary Tract Cancer. NEJM Evidence 2022, 1, EVIDoa2200015. [Google Scholar] [CrossRef]
- Digestive System Tumours WHO Classification of Tumours, 4th ed.; International Agency for Research on Cancer: Lyon, France, 2014.
- Digestive System Tumours WHO Classification of Tumours, 5th ed.; International Agency for Research on Cancer: Lyon, France, 2019; Volume 1, pp. 260–262.
- Kordes, C.; Haussinger, D. Hepatic stem cell niches. J. Clin. Investig. 2013, 123, 1874–1880. [Google Scholar] [CrossRef]
- Theise, N.D.; Saxena, R.; Portmann, B.C.; Thung, S.N.; Yee, H.; Chiriboga, L.; Kumar, A.; Crawford, J.M. The canals of Hering and hepatic stem cells in humans. Hepatology 1999, 30, 1425–1433. [Google Scholar] [CrossRef]
- Tarlow, B.D.; Pelz, C.; Naugler, W.E.; Wakefield, L.; Wilson, E.M.; Finegold, M.J.; Grompe, M. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell 2014, 15, 605–618. [Google Scholar] [CrossRef]
- Miyajima, A.; Tanaka, M.; Itoh, T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell 2014, 14, 561–574. [Google Scholar] [CrossRef]
- Wakizaka, K.; Yokoo, H.; Kamiyama, T.; Kakisaka, T.; Ohira, M.; Tani, M.; Kato, K.; Fujii, Y.; Sugiyama, K.; Nagatsu, A.; et al. CD133 and epithelial cell adhesion molecule expressions in the cholangiocarcinoma component are prognostic factors for combined hepatocellular cholangiocarcinoma. Hepatol. Res. 2020, 50, 258–267. [Google Scholar] [CrossRef]
- Beaufrere, A.; Calderaro, J.; Paradis, V. Combined hepatocellular-cholangiocarcinoma: An update. J. Hepatol. 2021, 74, 1212–1224. [Google Scholar] [CrossRef]
- Chiba, T.; Zheng, Y.W.; Kita, K.; Yokosuka, O.; Saisho, H.; Onodera, M.; Miyoshi, H.; Nakano, M.; Zen, Y.; Nakanuma, Y.; et al. Enhanced self-renewal capability in hepatic stem/progenitor cells drives cancer initiation. Gastroenterology 2007, 133, 937–950. [Google Scholar] [CrossRef]
- Lee, K.P.; Lee, J.H.; Kim, T.S.; Kim, T.H.; Park, H.D.; Byun, J.S.; Kim, M.C.; Jeong, W.I.; Calvisi, D.F.; Kim, J.M.; et al. The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc. Natl. Acad. Sci. USA 2010, 107, 8248–8253. [Google Scholar] [CrossRef]
- Benhamouche, S.; Curto, M.; Saotome, I.; Gladden, A.B.; Liu, C.H.; Giovannini, M.; McClatchey, A.I. Nf2/Merlin controls progenitor homeostasis and tumorigenesis in the liver. Genes Dev. 2010, 24, 1718–1730. [Google Scholar] [CrossRef]
- Chen, Y.; Wong, P.P.; Sjeklocha, L.; Steer, C.J.; Sahin, M.B. Mature hepatocytes exhibit unexpected plasticity by direct dedifferentiation into liver progenitor cells in culture. Hepatology 2012, 55, 563–574. [Google Scholar] [CrossRef]
- Holczbauer, A.; Factor, V.M.; Andersen, J.B.; Marquardt, J.U.; Kleiner, D.E.; Raggi, C.; Kitade, M.; Seo, D.; Akita, H.; Durkin, M.E.; et al. Modeling pathogenesis of primary liver cancer in lineage-specific mouse cell types. Gastroenterology 2013, 145, 221–231. [Google Scholar] [CrossRef]
- Coulouarn, C.; Cavard, C.; Rubbia-Brandt, L.; Audebourg, A.; Dumont, F.; Jacques, S.; Just, P.A.; Clement, B.; Gilgenkrantz, H.; Perret, C.; et al. Combined hepatocellular-cholangiocarcinomas exhibit progenitor features and activation of Wnt and TGFbeta signaling pathways. Carcinogenesis 2012, 33, 1791–1796. [Google Scholar] [CrossRef] [Green Version]
- Moeini, A.; Sia, D.; Zhang, Z.; Camprecios, G.; Stueck, A.; Dong, H.; Montal, R.; Torrens, L.; Martinez-Quetglas, I.; Fiel, M.I.; et al. Mixed hepatocellular cholangiocarcinoma tumors: Cholangiolocellular carcinoma is a distinct molecular entity. J. Hepatol. 2017, 66, 952–961. [Google Scholar] [CrossRef]
- Sasaki, M.; Sato, Y.; Nakanuma, Y. Mutational landscape of combined hepatocellular carcinoma and cholangiocarcinoma, and its clinicopathological significance. Histopathology 2017, 70, 423–434. [Google Scholar] [CrossRef]
- Wang, A.; Wu, L.; Lin, J.; Han, L.; Bian, J.; Wu, Y.; Robson, S.C.; Xue, L.; Ge, Y.; Sang, X.; et al. Whole-exome sequencing reveals the origin and evolution of hepato-cholangiocarcinoma. Nat. Commun. 2018, 9, 894. [Google Scholar] [CrossRef]
- Xue, R.; Chen, L.; Zhang, C.; Fujita, M.; Li, R.; Yan, S.M.; Ong, C.K.; Liao, X.; Gao, Q.; Sasagawa, S.; et al. Genomic and Transcriptomic Profiling of Combined Hepatocellular and Intrahepatic Cholangiocarcinoma Reveals Distinct Molecular Subtypes. Cancer Cell 2019, 35, 932–947. [Google Scholar] [CrossRef]
- Murugesan, K.; Sharaf, R.; Montesion, M.; Moore, J.A.; Pao, J.; Pavlick, D.C.; Frampton, G.M.; Upadhyay, V.A.; Alexander, B.M.; Miller, V.A.; et al. Genomic Profiling of Combined Hepatocellular Cholangiocarcinoma Reveals Genomics Similar to Either Hepatocellular Carcinoma or Cholangiocarcinoma. JCO Precis. Oncol. 2021, 5, 1285–1296. [Google Scholar] [CrossRef]
- Su, Y.L.; Ng, C.T.; Jan, Y.H.; Hsieh, Y.L.; Wu, C.L.; Tan, K.T. Remarkable Response to Olaparib in a Patient with Combined Hepatocellular-Cholangiocarcinoma Harboring a Biallelic BRCA2 Mutation. Onco. Targets Ther. 2021, 14, 3895–3901. [Google Scholar] [CrossRef] [PubMed]
- Javle, M.; Churi, C.; Kang, H.C.; Shroff, R.; Janku, F.; Surapaneni, R.; Zuo, M.; Barrera, C.; Alshamsi, H.; Krishnan, S.; et al. HER2/neu-directed therapy for biliary tract cancer. J. Hematol. Oncol. 2015, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Abou-Alfa, G.K.; Macarulla, T.; Javle, M.M.; Kelley, R.K.; Lubner, S.J.; Adeva, J.; Cleary, J.M.; Catenacci, D.V.; Borad, M.J.; Bridgewater, J.; et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): A multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2020, 21, 796–807. [Google Scholar] [CrossRef]
- Zhu, A.X.; Macarulla, T.; Javle, M.M.; Kelley, R.K.; Lubner, S.J.; Adeva, J.; Cleary, J.M.; Catenacci, D.V.T.; Borad, M.J.; Bridgewater, J.A.; et al. Final Overall Survival Efficacy Results of Ivosidenib for Patients with Advanced Cholangiocarcinoma With IDH1 Mutation: The Phase 3 Randomized Clinical ClarIDHy Trial. JAMA Oncol. 2021, 7, 1669–1677. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Sahai, V.; Hollebecque, A.; Vaccaro, G.; Melisi, D.; Al-Rajabi, R.; Paulson, A.S.; Borad, M.J.; Gallinson, D.; Murphy, A.G.; et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: A multicentre, open-label, phase 2 study. Lancet Oncol. 2020, 21, 671–684. [Google Scholar] [CrossRef] [PubMed]
- Javle, M.; Roychowdhury, S.; Kelley, R.K.; Sadeghi, S.; Macarulla, T.; Weiss, K.H.; Waldschmidt, D.T.; Goyal, L.; Borbath, I.; El-Khoueiry, A.; et al. Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: Mature results from a multicentre, open-label, single-arm, phase 2 study. Lancet Gastroenterol. Hepatol. 2021, 6, 803–815. [Google Scholar] [CrossRef]
- Choi, J.K.; Kim, K.H.; Kim, S.A.; Lee, J.H.; Woo, S.M.; Park, S.J.; Hong, W.J.; Lee, W.J. A Case of Curative Resection of Advanced Combined Hepatocellular-cholangiocarcinoma after Neoadjuvant Chemotherapy. Korean J. Pancreas Biliary Tract. 2016, 21, 101–106. [Google Scholar]
- Antwi, S.O.; Habboush, Y.Y.; Chase, L.A.; Lee, D.D.; Patel, T. Response to Loco-Regional Therapy Predicts Outcomes After Liver Transplantation for Combined Hepatocellular-Cholangiocarcinoma. Ann. Hepatol. 2018, 17, 969–979. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Chen, B.W.; Yang, X.B.; Wang, H.Y.; Yang, X.; Xie, F.C.; Chen, X.Q.; Yu, L.X.; Shi, J.; Lu, Y.Y.; et al. Prognostic analysis of patients with combined hepatocellular-cholangiocarcinoma after radical resection: A retrospective multicenter cohort study. World J. Gastroenterol. 2022, 28, 5968–5981. [Google Scholar] [CrossRef]
- Gentile, D.; Donadon, M.; Lleo, A.; Aghemo, A.; Roncalli, M.; di Tommaso, L.; Torzilli, G. Surgical Treatment of Hepatocholangiocarcinoma: A Systematic Review. Liver Cancer 2020, 9, 15–27. [Google Scholar] [CrossRef]
- Primrose, J.N.; Fox, R.P.; Palmer, D.H.; Malik, H.Z.; Prasad, R.; Mirza, D.; Anthony, A.; Corrie, P.; Falk, S.; Finch-Jones, M.; et al. Capecitabine compared with observation in resected biliary tract cancer (BILCAP): A randomised, controlled, multicentre, phase 3 study. Lancet Oncol. 2019, 20, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Uemura, K.; Takahashi, H.; Mino, K.; Ota, T.; Shichi, S. A Case of Surgical Resection of a Combined Hepatocellular and Cholangiocarcinoma with Hemobilia from Intraductal Tumor Thrombus. Gan Kagaku Ryoho. Cancer Chemother. 2017, 44, 1143–1145. [Google Scholar]
- Jou, J.; Li, J.; Kaldas, F.M. Combined hepatocellular carcinoma-cholangiocarcinoma in a patient with Fontan-associated liver disease. BMJ Case Rep. 2022, 15, e250590. [Google Scholar] [CrossRef]
- Hayashi, H.; Beppu, T.; Ishiko, T.; Mizumoto, T.; Masuda, T.; Okabe, K.; Baba, Y.; Okabe, H.; Takamori, H.; Kanemitsu, K.; et al. A 42-month disease free survival case of combined hepatocellular-cholangiocarcinoma with lymph node metastases treated with multimodal therapy. Gan to Kagaku ryoho. Cancer Chemother. 2006, 33, 1941–1943. [Google Scholar]
- Miyata, T.; Beppu, T.; Imamura, Y.U.; Hayashi, H.; Imai, K.; Chikamoto, A.; Yamashita, Y.I.; Fukubayashi, K.; Ishiko, T.; Baba, H. A 12-year Recurrence-free Survival after Multidisciplinary Treatment for a Patient with Combined Hepatocellular-Cholangiocarcinoma. Anticancer Res. 2019, 39, 2139–2144. [Google Scholar] [CrossRef]
- Kim, J.H.; Yoon, H.K.; Ko, G.Y.; Gwon, D.I.; Jang, C.S.; Song, H.Y.; Shin, J.H.; Sung, K.B. Nonresectable combined hepatocellular carcinoma and cholangiocarcinoma: Analysis of the response and prognostic factors after transcatheter arterial chemoembolization. Radiology 2010, 255, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Na, S.K.; Choi, G.H.; Lee, H.C.; Shin, Y.M.; An, J.; Lee, D.; Shim, J.H.; Kim, K.M.; Lim, Y.S.; Chung, Y.H.; et al. The effectiveness of transarterial chemoembolization in recurrent hepatocellular-cholangiocarcinoma after resection. PLoS ONE 2018, 13, e0198138. [Google Scholar] [CrossRef]
- Malone, C.D.; Gibby, W.; Tsai, R.; Kim, S.K.; Lancia, S.; Akinwande, O.; Ramaswamy, R.S. Outcomes of Yttrium-90 Radioembolization for Unresectable Combined Biphenotypic Hepatocellular-Cholangiocarcinoma. J. Vasc. Interv. Radiol. 2020, 31, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Salimon, M.; Prieux-Klotz, C.; Tougeron, D.; Hautefeuille, V.; Caulet, M.; Gournay, J.; Matysiak-Budnik, T.; Bennouna, J.; Tiako Meyo, M.; Lecomte, T.; et al. Gemcitabine plus platinum-based chemotherapy for first-line treatment of hepatocholangiocarcinoma: An AGEO French multicentre retrospective study. Br. J. Cancer 2018, 118, 325–330. [Google Scholar] [CrossRef]
- Kobayashi, S.; Terashima, T.; Shiba, S.; Yoshida, Y.; Yamada, I.; Iwadou, S.; Horiguchi, S.; Takahashi, H.; Suzuki, E.; Moriguchi, M.; et al. Multicenter retrospective analysis of systemic chemotherapy for unresectable combined hepatocellular and cholangiocarcinoma. Cancer Sci. 2018, 109, 2549–2557. [Google Scholar] [CrossRef]
- Trikalinos, N.A.; Zhou, A.; Doyle, M.B.M.; Fowler, K.J.; Morton, A.; Vachharajani, N.; Amin, M.; Keller, J.W.; Chapman, W.C.; Brunt, E.M.; et al. Systemic Therapy for Combined Hepatocellular-Cholangiocarcinoma: A Single-Institution Experience. J. Natl. Compr. Canc. Netw. 2018, 16, 1193–1199. [Google Scholar] [CrossRef]
- Kim, E.J.; Yoo, C.; Kang, H.J.; Kim, K.P.; Ryu, M.H.; Park, S.R.; Lee, D.; Choi, J.; Shim, J.H.; Kim, K.M.; et al. Clinical outcomes of systemic therapy in patients with unresectable or metastatic combined hepatocellular-cholangiocarcinoma. Liver Int. 2021, 41, 1398–1408. [Google Scholar] [CrossRef]
- Gigante, E.; Hobeika, C.; Le Bail, B.; Paradis, V.; Tougeron, D.; Lequoy, M.; Bouattour, M.; Blanc, J.F.; Ganne-Carrie, N.; Tran, H.; et al. Systemic Treatments with Tyrosine Kinase Inhibitor and Platinum-Based Chemotherapy in Patients with Unresectable or Metastatic Hepatocholangiocarcinoma. Liver Cancer 2022, 11, 460–473. [Google Scholar] [CrossRef]
- Futsukaichi, Y.; Tajiri, K.; Kobayashi, S.; Nagata, K.; Yasumura, S.; Takahara, T.; Minemura, M.; Yasuda, I. Combined hepatocellular-cholangiocarcinoma successfully treated with sorafenib: Case report and review of the literature. Clin. J. Gastroenterol. 2019, 12, 128–134. [Google Scholar] [CrossRef]
- Osuga, T.; Miyanishi, K.; Ito, R.; Tanaka, S.; Hamaguchi, K.; Ohnuma, H.; Murase, K.; Takada, K.; Nagayama, M.; Kimura, Y.; et al. A Case of Unresectable Combined Hepatocellular-Cholangiocarcinoma Successfully Treated with Lenvatinib. Case Rep. Oncol. 2022, 15, 318–325. [Google Scholar] [CrossRef]
- Loosen, S.H.; Gaisa, N.T.; Schmeding, M.; Heining, C.; Uhrig, S.; Wirtz, T.H.; Kalverkamp, S.; Spillner, J.; Tacke, F.; Stenzinger, A.; et al. Prolonged Survival of a Patient with Advanced-Stage Combined Hepatocellular-Cholangiocarcinoma. Case Rep. Gastroenterol. 2020, 14, 658–667. [Google Scholar] [CrossRef]
- Saint, A.; Benchetrit, M.; Novellas, S.; Ouzan, D.; Falk, A.T.; Leysalle, A.; Barriere, J. Prolonged efficacy of pembrolizumab in a patient presenting a multi-treated metastatic hepatocholangiocarcinoma. Therap. Adv. Gastroenterol. 2020, 13, 1756284820935189. [Google Scholar] [CrossRef]
- Saito, N.; Hatanaka, T.; Nakano, S.; Hazama, Y.; Yoshida, S.; Hachisu, Y.; Tanaka, Y.; Yoshinaga, T.; Kashiwabara, K.; Kubo, N.; et al. A case of unresectable combined hepatocellular and cholangiocarcinoma treated with atezolizumab plus bevacizumab. Clin. Case Rep. 2022, 10, e6129. [Google Scholar] [CrossRef]
- Rizell, M.; Aberg, F.; Perman, M.; Ny, L.; Sten, L.; Hashimi, F.; Svanvik, J.; Lindner, P. Checkpoint Inhibition Causing Complete Remission of Metastatic Combined Hepatocellular-Cholangiocarcinoma after Hepatic Resection. Case Rep. Oncol. 2020, 13, 478–484. [Google Scholar] [CrossRef]
- Hatano, H.; Kobayashi, S.; Nagano, H.; Tomokuni, A.; Tomimaru, Y.; Murakami, M.; Marubashi, S.; Eguchi, H.; Takeda, Y.; Tanemura, M.; et al. [A case of successful multimodal treatment for combined hepatocellular and cholangiocarcinoma with portal venous tumor thrombus]. Gan Kagaku Ryoho. 2009, 36, 2374–2376. [Google Scholar]
- Chi, M.; Mikhitarian, K.; Shi, C.; Goff, L.W. Management of combined hepatocellular-cholangiocarcinoma: A case report and literature review. Gastrointest Cancer Res. 2012, 5, 199–202. [Google Scholar]
- Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodriguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; et al. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. N. Engl. J. Med. 2018, 378, 2288–2301. [Google Scholar] [CrossRef]
Study, Reference: | Xue et al. [37] | Sasaki et al. [35] | Murugesan et al. [38] |
---|---|---|---|
Cohort size: | n = 133 | n = 50 | n = 73 |
TP53 | 49% | 45.3% | 65.8% |
TERT promotor | 23% | 31.3% | 49.3% |
ARID1A | 8% | 13.2% | 6.8% |
RB1 | 8% | N/A | 8.2% |
IDH1 | 5% | 11.8% | 4.1% |
CTNNB1 | 6% | N/A | 6.8% |
KRAS | N/A | 7.5% | 4.1% |
AXIN1 | 10% | n/A | N/A |
KMT2D | 9% | N/A | N/A |
KEAP1 | 8% | N/A | N/A |
PTEN | 7% | N/A | 9.6% |
HER2 | N/A | N/A | 4.1% |
FGFR2 | N/A | N/A | 4.1% |
BRAF | N/A | N/A | 4.1% |
MET | N/A | N/A | 2.7% |
Study | Reference | Treatment | Result |
---|---|---|---|
Uemura et al., 2017 | [50] | Gemcitabine | 20 months disease-free survival |
Jou et al., 2022 | [51] | Gemcitabine and Oxaliplatin | 12 months disease-free survival |
Hayashi et al., 2006 | [52] | Cisplatin and 5-Fluorouracil, neoadjuvant TACE | 42 months disease-free survival |
Miyata et al., 2019 | [53] | Tegafur-Uracil, multidisciplinary HAI, and lymph node radiation | 144 months disease-free survival |
Study | Reference | Treatment | Regimen/Agents | Cohort Size | Median OS | Median PFS |
---|---|---|---|---|---|---|
Gigante et al., 2022 | [61] | TKI | Sorafenib | n = 23 | 8.3 mo | 2.8 mo |
Chemotherapy | Platinum-based regimen | n = 54 | 11.9 mo | 4.1 mo | ||
Kobayashi et al., 2018 | [58] | TKI | Sorafenib | n = 5 | 3.5 mo | N/A |
Chemotherapy | Cisplatin and Gemcitabine | n = 12 | 10.2 mo | 3.0 mo | ||
Kim et al., 2021 | [60] | TKI | Sorafenib | n = 66 | 10.6 mo | 2.9 mo |
Chemotherapy | n/A | n = 37 | 10.7 mo | 4.2 mo | ||
Salimon et al., 2018 | [57] | Chemotherapy | GemOX, GemOX and Beva, Cisplatin and Gemcitabine | n = 30 | 16.2 mo | 9.0 mo |
Trikalinos et al., 2018 | [59] | TKI | Sorafenib | n = 5 | 9.6 mo | 4.8 mo |
Chemotherapy | Gemcitabine and Oxaliplatin/Cisplatin | n = 37 | 11.5 mo | 8.0 mo | ||
Chemotherapy | Gemcitabine and 5-FU | n = 13 | 11.7 mo | 6.2 mo |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Stephan-Falkenau, S.; Schuler, M.; Arndt, B. Management of Locally Advanced or Metastatic Combined Hepatocellular Cholangiocarcinoma. Cancers 2023, 15, 988. https://doi.org/10.3390/cancers15030988
Zhao J, Stephan-Falkenau S, Schuler M, Arndt B. Management of Locally Advanced or Metastatic Combined Hepatocellular Cholangiocarcinoma. Cancers. 2023; 15(3):988. https://doi.org/10.3390/cancers15030988
Chicago/Turabian StyleZhao, Jemmy, Susann Stephan-Falkenau, Markus Schuler, and Börge Arndt. 2023. "Management of Locally Advanced or Metastatic Combined Hepatocellular Cholangiocarcinoma" Cancers 15, no. 3: 988. https://doi.org/10.3390/cancers15030988
APA StyleZhao, J., Stephan-Falkenau, S., Schuler, M., & Arndt, B. (2023). Management of Locally Advanced or Metastatic Combined Hepatocellular Cholangiocarcinoma. Cancers, 15(3), 988. https://doi.org/10.3390/cancers15030988