Distinguishing Curable from Progressive Dementias for Defining Cancer Care Options
Abstract
:Simple Summary
Abstract
1. Introduction
2. Problems Specifically Related to Cancer Patients with Dementia
3. What Is the Patient Eating and Drinking?
4. What Medications and Supplements Are the Patient Taking?
5. PIMs and Polypharmacy
6. Is It Really Alzheimer’s Disease (AD)?
7. Testing for Autoimmune Encephalitis
8. Genetics May Hold the Key to More Curative Therapy More Suited to Those with Cognitive Impairment
9. The Growing Promise of Immunotherapies (IT) in Cancer
10. Therapy Targeted at Other Driver Mutations
11. Conclusions
Funding
Conflicts of Interest
References
- National Cancer Institute Age and Cancer Risk. Available online: https://seer.cancer.gov/statfacts/html/all.html (accessed on 3 February 2023).
- Ashley, L.; Kelley, R.; Griffiths, A.; Cowdell, F.; Henry, A.; Inman, H.; Hennell, J.; Ogden, M.; Walsh, M.; Jones, L.; et al. Understanding and identifying ways to improve hospital-based cancer care and treatment for people with dementia: An ethnographic study. Age Ageing 2021, 50, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Ballard, C.; Kales, H.C.; Lyketsos, C.; Aarsland, D.; Creese, B.; Mills, R.; Williams, H.; Sweet, R.A. Psychosis in Alzheimer’s Disease. Curr. Neurol. Neurosci. Rep. 2020, 20, 57. [Google Scholar] [CrossRef] [PubMed]
- Jicha, G.A.; Nelson, P.T. Hippocampal Sclerosis, Argyrophilic Grain Disease, and Primary Age-Related Tauopathy. Continuum 2019, 25, 208–233. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, H.; Adrien, L.; Wolin, A.; Eun, J.; Chang, E.H.; Burstein, E.S.; Gomar, J.; Davies, P.; Koppel, J. The impact of pimavanserin on psychotic phenotypes and tau phosphorylation in the P301L/COMT- and rTg(P301L)4510 mouse models of Alzheimer’s disease. Alzheimers Dement. 2022, 8, e12247. [Google Scholar] [CrossRef] [PubMed]
- Geschwind, M.D. Rapidly Progressive Dementia. Continuum 2016, 22, 510–537. [Google Scholar] [CrossRef]
- van der Willik, K.D.; Schagen, S.B.; Ikram, M.A. Cancer and dementia: Two sides of the same coin? Eur. J. Clin. Investig. 2018, 48, e13019. [Google Scholar] [CrossRef]
- Gill, T.M.; Vander Wyk, B.; Leo-Summers, L.; Murphy, T.E.; Becher, R.D. Population-Based Estimates of 1-Year Mortality After Major Surgery among Community-Living Older US Adults. JAMA Surg. 2022, 157, e225155. [Google Scholar] [CrossRef]
- Caba, Y.; Dharmarajan, K.; Gillezeau, C.; Ornstein, K.A.; Mazumdar, M.; Alpert, N.; Schwartz, R.M.; Taioli, E.; Liu, B. The Impact of Dementia on Cancer Treatment Decision-Making, Cancer Treatment, and Mortality: A Mixed Studies Review. JNCI Cancer Spectr. 2021, 5, pkab002. [Google Scholar] [CrossRef]
- Kales, H.C.; Gitlin, L.N.; Lyketsos, C.G. Assessment and management of behavioral and psychological symptoms of dementia. BMJ 2015, 350, h369. [Google Scholar] [CrossRef]
- Koch, C.A.; Fulop, T. Clinical aspects of changes in water and sodium homeostasis in the elderly. Rev. Endocr. Metab. Disord. 2017, 18, 49–66. [Google Scholar] [CrossRef]
- Preskin, S.M. A Molecule Away from Madness: Tales of the Hijacked Brain; W. W. Norton & Company: New York, NY, USA, 2022; p. 240. [Google Scholar]
- Haber, P.S.; Riordan, B.C.; Winter, D.T.; Barrett, L.; Saunders, J.; Hides, L.; Gullo, M.; Manning, V.; Day, C.A.; Bonomo, Y.; et al. New Australian guidelines for the treatment of alcohol problems: An overview of recommendations. Med. J. Aust. 2021, 215 (Suppl. S7), S3–S32. [Google Scholar] [CrossRef] [PubMed]
- Keller, H.H.; Syed, S.; Dakkak, H.; Wu, S.A.; Volkert, D. Reimagining Nutrition Care and Mealtimes in Long-Term Care. J. Am. Med. Dir. Assoc. 2022, 23, 253–260.e1. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.M.P.; Emonds, E.E.; Smith, M.A.; Rickles, N.M.; Kuchel, G.A.; Steffens, D.C.; Ohlheiser, A.; Fortinsky, R.H. Pharmacist Identification of Medication Therapy Problems Involving Cognition Among Older Adults Followed by a Home-Based Care Team. Drugs Aging 2021, 38, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Chyou, T.Y.; Nishtala, P.S. Identifying frequent drug combinations associated with delirium in older adults: Application of association rules method to a case-time-control design. Pharm. Drug Saf. 2021, 30, 1402–1410. [Google Scholar] [CrossRef]
- By the 2019 American Geriatrics Society Beers Criteria® Update Expert Panel. American Geriatrics Society 2019 Updated AGS Beers Criteria® for Potentially Inappropriate Medication Use in Older Adults. J. Am. Geriatr. Soc. 2019, 67, 674–694. [Google Scholar] [CrossRef]
- Atjo, N.M.; Soraya, G.V.; Natzir, R.; Kasyim, H.; Rasyid, H.; Chana, G.; Erlichster, M.; Skafidas, E.; Hardjo, M. Point-of-Care Saliva Osmolarity Testing for the Screening of Hydration in Older Adults With Hypertension. J. Am. Med. Dir. Assoc. 2022, 23, 1984.e9–1984.e14. [Google Scholar] [CrossRef]
- Jensen, L.L.; Romsing, J.; Dalhoff, K. A Danish Survey of Antihistamine Use and Poisoning Patterns. Basic Clin. Pharm. Toxicol. 2017, 120, 64–70. [Google Scholar] [CrossRef]
- Ali, D.G.; Bahrani, A.A.; Barber, J.M.; El Khouli, R.H.; Gold, B.T.; Harp, J.P.; Jiang, Y.; Wilcock, D.M.; Jicha, G.A. Amyloid-PET Levels in the Precuneus and Posterior Cingulate Cortices Are Associated with Executive Function Scores in Preclinical Alzheimer’s Disease Prior to Overt Global Amyloid Positivity. J. Alzheimers Dis. 2022, 88, 1127–1135. [Google Scholar] [CrossRef]
- Staffaroni, A.M.; Elahi, F.M.; McDermott, D.; Marton, K.; Karageorgiou, E.; Sacco, S.; Paoletti, M.; Caverzasi, E.; Hess, C.P.; Rosen, H.J.; et al. Neuroimaging in Dementia. Semin. Neurol. 2017, 37, 510–537. [Google Scholar] [CrossRef]
- Nelson, P.T.; Smith, C.D.; Abner, E.L.; Wilfred, B.J.; Wang, W.X.; Neltner, J.H.; Baker, M.; Fardo, D.W.; Kryscio, R.J.; Scheff, S.W.; et al. Hippocampal sclerosis of aging, a prevalent and high-morbidity brain disease. Acta Neuropathol. 2013, 126, 161–177. [Google Scholar] [CrossRef]
- Nelson, P.T.; Alafuzoff, I.; Bigio, E.H.; Bouras, C.; Braak, H.; Cairns, N.J.; Castellani, R.J.; Crain, B.J.; Davies, P.; Del Tredici, K.; et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: A review of the literature. J. Neuropathol. Exp. Neurol. 2012, 71, 362–381. [Google Scholar] [CrossRef] [PubMed]
- Clancy, U.; Gilmartin, D.; Jochems, A.C.C.; Knox, L.; Doubal, F.N.; Wardlaw, J.M. Neuropsychiatric symptoms associated with cerebral small vessel disease: A systematic review and meta-analysis. Lancet Psychiatry 2021, 8, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.T.; Ozturk, T.; Kollhoff, A.; Wharton, W.; Christina Howell, J.; Alzheimer’s Disease Neuroimaging, I. Higher CSF sTNFR1-related proteins associate with better prognosis in very early Alzheimer’s disease. Nat. Commun. 2021, 12, 4001. [Google Scholar] [CrossRef]
- Al-Janabi, O.M.; Bauer, C.E.; Goldstein, L.B.; Murphy, R.R.; Bahrani, A.A.; Smith, C.D.; Wilcock, D.M.; Gold, B.T.; Jicha, G.A. White Matter Hyperintensity Regression: Comparison of Brain Atrophy and Cognitive Profiles with Progression and Stable Groups. Brain Sci. 2019, 9, 170. [Google Scholar] [CrossRef] [PubMed]
- Saieva, S.; Taglialatela, G. Near-infrared light reduces glia activation and modulates neuroinflammation in the brains of diet-induced obese mice. Sci. Rep. 2022, 12, 10848. [Google Scholar] [CrossRef]
- Cacabelos, R.; Naidoo, V.; Martinez-Iglesias, O.; Corzo, L.; Cacabelos, N.; Pego, R.; Carril, J.C. Pharmacogenomics of Alzheimer’s Disease: Novel Strategies for Drug Utilization and Development. Methods Mol. Biol. 2022, 2547, 275–387. [Google Scholar] [CrossRef]
- Mukherjee, A.; Cuanalo-Contreras, K.; Sood, A.; Soto, C. Development of a novel pharmacophore model to screen specific inhibitors for the serine-threonine protein phosphatase calcineurin. Biochem. Biophys. Rep. 2022, 31, 101311. [Google Scholar] [CrossRef]
- Marcatti, M.; Fracassi, A.; Montalbano, M.; Natarajan, C.; Krishnan, B.; Kayed, R.; Taglialatela, G. Abeta/tau oligomer interplay at human synapses supports shifting therapeutic targets for Alzheimer’s disease. Cell Mol. Life. Sci. 2022, 79, 222. [Google Scholar] [CrossRef]
- Ostrowitzki, S.; Bittner, T.; Sink, K.M.; Mackey, H.; Rabe, C.; Honig, L.S.; Cassetta, E.; Woodward, M.; Boada, M.; van Dyck, C.H.; et al. Evaluating the Safety and Efficacy of Crenezumab vs Placebo in Adults With Early Alzheimer Disease: Two Phase 3 Randomized Placebo-Controlled Trials. JAMA Neurol. 2022, 79, 1113. [Google Scholar] [CrossRef]
- Hayato, S.; Takenaka, O.; Sreerama Reddy, S.H.; Landry, I.; Reyderman, L.; Koyama, A.; Swanson, C.; Yasuda, S.; Hussein, Z. Population pharmacokinetic-pharmacodynamic analyses of amyloid positron emission tomography and plasma biomarkers for lecanemab in subjects with early Alzheimer’s disease. CPT Pharmacomet. Syst. Pharm. 2022, 11, 1578–1591. [Google Scholar] [CrossRef]
- Schein, C.H. Repurposing approved drugs on the pathway to novel therapies. Med. Res. Rev. 2020, 40, 586–605. [Google Scholar] [CrossRef]
- Radhakrishnan, H.; Ubele, M.F.; Krumholz, S.M.; Boaz, K.; Mefford, J.L.; Jones, E.D.; Meacham, B.; Smiley, J.; Puskas, L.G.; Powell, D.K.; et al. Tacrolimus Protects against Age-Associated Microstructural Changes in the Beagle Brain. J. Neurosci. 2021, 41, 5124–5133. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Martin, Z.S.; Soto, C.; Schein, C.H. Computational selection of inhibitors of Abeta aggregation and neuronal toxicity. Bioorg. Med. Chem. 2009, 17, 5189–5197. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Pahan, K. Gemfibrozil, a Lipid-Lowering Drug, Lowers Amyloid Plaque Pathology and Enhances Memory in a Mouse Model of Alzheimer’s Disease via Peroxisome Proliferator-Activated Receptor alpha. J. Alzheimers. Dis. Rep. 2019, 3, 149–168. [Google Scholar] [CrossRef] [PubMed]
- Raha, S.; Ghosh, A.; Dutta, D.; Patel, D.R.; Pahan, K. Activation of PPARalpha enhances astroglial uptake and degradation of beta-amyloid. Sci. Signal 2021, 14, eabg4747. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xu, J.; Hou, Y.; Bekris, L.; Leverenz, J.B.; Pieper, A.A.; Cummings, J.; Cheng, F. The Alzheimer’s Cell Atlas (TACA): A single-cell molecular map for translational therapeutics accelerator in Alzheimer’s disease. Alzheimers Dement. 2022, 8, e12350. [Google Scholar] [CrossRef] [PubMed]
- Tucker Edmister, S.; Del Rosario Hernandez, T.; Ibrahim, R.; Brown, C.A.; Gore, S.V.; Kakodkar, R.; Kreiling, J.A.; Creton, R. Novel use of FDA-approved drugs identified by cluster analysis of behavioral profiles. Sci. Rep. 2022, 12, 6120. [Google Scholar] [CrossRef]
- Vallabh, S.M.; Minikel, E.V. Implications of new genetic risk factors in prion disease. Nat. Rev. Neurol. 2021, 17, 5–6. [Google Scholar] [CrossRef]
- Dalmau, J.; Tuzun, E.; Wu, H.Y.; Masjuan, J.; Rossi, J.E.; Voloschin, A.; Baehring, J.M.; Shimazaki, H.; Koide, R.; King, D.; et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann. Neurol. 2007, 61, 25–36. [Google Scholar] [CrossRef]
- Irani, S.R.; Vincent, A.; Schott, J.M. Autoimmune encephalitis. BMJ 2011, 342, d1918. [Google Scholar] [CrossRef]
- Behrman, S.; Lennox, B. Autoimmune encephalitis in the elderly: Who to test and what to test for. Evid. Based Ment. Health 2019, 22, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Montalvo, M.; Iorio, R.; O’Toole, O.; Pittock, S.J. Chapter 31—Autoimmune and paraneoplastic neurological disorders∗∗Thoughts on teaching about the neurobiology of diseases section available at the beginning of the book and Index terms are available at the end of the book. In Neurobiology of Brain Disorders, 2nd ed.; Zigmond, M.J., Wiley, C.A., Chesselet, M.-F., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 525–558. [Google Scholar] [CrossRef]
- Christensen, P.B.; Gregersen, H.; Almasi, C. Anti-Tr/DNER antibody paraneoplastic cerebellar degeneration preceding a very late relapse of Hodgkin Lymphoma after 12 years. Cerebellum Ataxias 2021, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Jayne, D.; Walsh, M.; Merkel, P.A.; Peh, C.A.; Szpirt, W.; Puechal, X.; Fujimoto, S.; Hawley, C.; Khalidi, N.; Jones, R.; et al. Plasma exchange and glucocorticoids to delay death or end-stage renal disease in anti-neutrophil cytoplasm antibody-associated vasculitis: PEXIVAS non-inferiority factorial RCT. Health Technol. Assess. 2022, 26, 1–60. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.; Merkel, P.A.; Peh, C.A.; Szpirt, W.M.; Puechal, X.; Fujimoto, S.; Hawley, C.M.; Khalidi, N.; Flossmann, O.; Wald, R.; et al. Plasma Exchange and Glucocorticoids in Severe ANCA-Associated Vasculitis. N. Engl. J. Med. 2020, 382, 622–631. [Google Scholar] [CrossRef]
- Chopra, M.; Modi, M.E.; Dies, K.A.; Chamberlin, N.L.; Buttermore, E.D.; Brewster, S.J.; Prock, L.; Sahin, M. GENE TARGET: A framework for evaluating Mendelian neurodevelopmental disorders for gene therapy. Mol. Methods Clin. Dev. 2022, 27, 32–46. [Google Scholar] [CrossRef]
- Bergstrom, E.N.; Kundu, M.; Tbeileh, N.; Alexandrov, L.B. Examining clustered somatic mutations with SigProfilerClusters. Bioinformatics 2022, 38, 3470–3473. [Google Scholar] [CrossRef]
- Bergstrom, E.N.; Luebeck, J.; Petljak, M.; Khandekar, A.; Barnes, M.; Zhang, T.; Steele, C.D.; Pillay, N.; Landi, M.T.; Bafna, V.; et al. Mapping clustered mutations in cancer reveals APOBEC3 mutagenesis of ecDNA. Nature 2022, 602, 510–517. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Hoff, P.M.; Harper, P.; Bukowski, R.M.; Cunningham, D.; Dufour, P.; Graeven, U.; Lokich, J.; Madajewicz, S.; Maroun, J.A.; et al. Oral capecitabine vs intravenous 5-fluorouracil and leucovorin: Integrated efficacy data and novel analyses from two large, randomised, phase III trials. Br. J. Cancer 2004, 90, 1190–1197. [Google Scholar] [CrossRef]
- Martin, C.; Shrestha, A.; Morgan, J.; Bradburn, M.; Herbert, E.; Burton, M.; Todd, A.; Walters, S.; Ward, S.; Holmes, G.; et al. Treatment choices for older women with primary operable breast cancer and cognitive impairment: Results from a prospective, multicentre cohort study. J. Geriatr. Oncol. 2021, 12, 705–713. [Google Scholar] [CrossRef]
- Chapman, P.B.; Einhorn, L.H.; Meyers, M.L.; Saxman, S.; Destro, A.N.; Panageas, K.S.; Begg, C.B.; Agarwala, S.S.; Schuchter, L.M.; Ernstoff, M.S.; et al. Phase III multicenter randomized trial of the Dartmouth regimen versus dacarbazine in patients with metastatic melanoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1999, 17, 2745–2751. [Google Scholar] [CrossRef]
- Smylie, M.G. Use of immuno-oncology in melanoma. Curr. Oncol. 2020, 27, S51–S58. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.P.; Gubin, M.M.; Schreiber, R.D. The Role of Neoantigens in Naturally Occurring and Therapeutically Induced Immune Responses to Cancer. Adv. Immunol. 2016, 130, 25–74. [Google Scholar] [CrossRef] [PubMed]
- Sena, L.A.; Fountain, J.; Isaacsson Velho, P.; Lim, S.J.; Wang, H.; Nizialek, E.; Rathi, N.; Nussenzveig, R.; Maughan, B.L.; Velez, M.G.; et al. Tumor Frameshift Mutation Proportion Predicts Response to Immunotherapy in Mismatch Repair-Deficient Prostate Cancer. Oncologist 2021, 26, e270–e278. [Google Scholar] [CrossRef] [PubMed]
- Chalabi, M.; Fanchi, L.F.; Dijkstra, K.K.; Van den Berg, J.G.; Aalbers, A.G.; Sikorska, K.; Lopez-Yurda, M.; Grootscholten, C.; Beets, G.L.; Snaebjornsson, P.; et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat. Med. 2020, 26, 566–576. [Google Scholar] [CrossRef]
- Cercek, A.; Lumish, M.; Sinopoli, J.; Weiss, J.; Shia, J.; Lamendola-Essel, M.; El Dika, I.H.; Segal, N.; Shcherba, M.; Sugarman, R.; et al. PD-1 Blockade in Mismatch Repair-Deficient, Locally Advanced Rectal Cancer. N. Engl. J. Med. 2022, 386, 2363–2376. [Google Scholar] [CrossRef]
- Dostarlimab: An Answer for Rectal Cancer? Cancer Discov. 2022, 12, 1828–1829. [CrossRef]
- Chalabi, M.e.a. LBA7—Neoadjuvant immune checkpoint inhibition in locally advanced MMR-deficient colon cancer: The NICHE-2 study. Ann. Oncol. 2022, 33, S808–S869. [Google Scholar] [CrossRef]
- Quandt, Z.; Young, A.; Anderson, M. Immune checkpoint inhibitor diabetes mellitus: A novel form of autoimmune diabetes. Clin. Exp. Immunol. 2020, 200, 131–140. [Google Scholar] [CrossRef]
- Sato, T.; Kodama, S.; Kaneko, K.; Imai, J.; Katagiri, H. Type 1 Diabetes Mellitus Associated with Nivolumab after Second SARS-CoV-2 Vaccination, Japan. Emerg. Infect. Dis. 2022, 28, 1518–1520. [Google Scholar] [CrossRef]
- Zacharakis, N.; Chinnasamy, H.; Black, M.; Xu, H.; Lu, Y.C.; Zheng, Z.; Pasetto, A.; Langhan, M.; Shelton, T.; Prickett, T.; et al. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat. Med. 2018, 24, 724–730. [Google Scholar] [CrossRef]
- Rommer, P.S.; Berger, K.; Ellenberger, D.; Fneish, F.; Simbrich, A.; Stahmann, A.; Zettl, U.K. Management of MS Patients Treated With Daclizumab—A Case Series of 267 Patients. Front Neurol. 2020, 11, 996. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.W.; Torres, N.; Superdock, M.; Mendler, J.H.; Loh, K.P. How Genetics Can Drive Initial Therapy Choices for Older Patients with Acute Myeloid Leukemia. Curr. Treat. Options. Oncol. 2022, 23, 1086–1103. [Google Scholar] [CrossRef] [PubMed]
- Sallman, D.A.; DeZern, A.E.; Garcia-Manero, G.; Steensma, D.P.; Roboz, G.J.; Sekeres, M.A.; Cluzeau, T.; Sweet, K.L.; McLemore, A.; McGraw, K.L.; et al. Eprenetapopt (APR-246) and Azacitidine in TP53-Mutant Myelodysplastic Syndromes. J. Clin. Oncol. 2021, 39, 1584–1594. [Google Scholar] [CrossRef] [PubMed]
- Fujihara, K.M.; Corrales Benitez, M.; Cabalag, C.S.; Zhang, B.Z.; Ko, H.S.; Liu, D.S.; Simpson, K.J.; Haupt, Y.; Lipton, L.; Haupt, S.; et al. SLC7A11 Is a Superior Determinant of APR-246 (Eprenetapopt) Response than TP53 Mutation Status. Mol. Cancer 2021, 20, 1858–1867. [Google Scholar] [CrossRef]
- Nagasaka, M.; Li, Y.; Sukari, A.; Ou, S.I.; Al-Hallak, M.N.; Azmi, A.S. KRAS G12C Game of Thrones, which direct KRAS inhibitor will claim the iron throne? Cancer Treat. Rev. 2020, 84, 101974. [Google Scholar] [CrossRef]
- Schein, C.H. The shape of the messenger: Using protein structure information to design novel cytokine-based therapeutics. Curr. Pharm. Des. 2002, 8, 2113–2129. [Google Scholar] [CrossRef]
- Weissmann, C.; Nagata, S.; Boll, W.; Fountoulakis, M.; Fujisawa, A.; Fujisawa, J.-I.; Haynes, J.; Henco, K.; Mantei, N.; Ragg, H.; et al. Structure and expression of human alpha-interferon genes. In Interferons; Elsevier: Amsterdam, The Netherlands, 1982; pp. 295–326. [Google Scholar]
- Winer, E.S.; DeAngelo, D.J. A Review of Omacetaxine: A Chronic Myeloid Leukemia Treatment Resurrected. Oncol. Ther. 2018, 6, 9–20. [Google Scholar] [CrossRef]
- Heibl, S.; Buxhofer-Ausch, V.; Schmidt, S.; Webersinke, G.; Lion, T.; Piringer, G.; Kuehr, T.; Wolf, D.; Melchardt, T.; Greil, R.; et al. A Phase 1 study to evaluate the feasibility and efficacy of the addition of ropeginterferon alpha 2b to imatinib treatment in patients with chronic phase chronic myeloid leukemia not achieving a deep molecular response (MR 4.5)—AGMT_CML 1. Hematol. Oncol. 2020, 38, 792–798. [Google Scholar] [CrossRef]
- Schein, C.H. Repurposing approved drugs for cancer therapy. Br. Med. Bull. 2021, 137, 13–27. [Google Scholar] [CrossRef]
- Mima, A.; Nagahara, D.; Tansho, K. Successful treatment of nephrotic syndrome induced by lambda light chain deposition disease using lenalidomide: A case report and review of the literature. Clin. Nephrol. 2018, 89, 461–468. [Google Scholar] [CrossRef]
- Brune, M.M.; Stussi, G.; Lundberg, P.; Vela, V.; Heim, D.; Manz, M.G.; Haralambieva, E.; Pabst, T.; Banz, Y.; Bargetzi, M.; et al. Effects of lenalidomide on the bone marrow microenvironment in acute myeloid leukemia: Translational analysis of the HOVON103 AML/SAKK30/10 Swiss trial cohort. Ann. Hematol. 2021, 100, 1169–1179. [Google Scholar] [CrossRef] [PubMed]
Cancer | Average Age of Diagnosis |
---|---|
Acute myeloid leukemia (AML) | 68 |
Chronic Lymphocytic Leukemia (CLL) | 70 |
Bladder | 73 |
Breast (BC) | 62 |
Colo-Rectal (CRC) | 66 |
Lung | 71 |
Melanoma | 65 |
Ovarian | 63 |
Pancreatic | 70 |
Prostate | 67 |
Ovarian | 63 |
Abbreviation | Syndrome | Neurological Diagnosis Based on: |
---|---|---|
PART | primary age related tauopathy | Tau tangles without clear Aβ plaques |
AGD | argyrophilic granular disease | Silver staining needles containing 4-repeat tau isoforms (exon 10 immunostaining) |
FTLD | frontotemporal lobar degeneration | 4-repeat tauopathy |
PSP | progressive supranuclear palsy | 4-repeat tauopathy; Midbrain atrophy (“hummingbird sign” on MRI) |
HSA | Hippocampal Sclerosis of Aging | Shrinkage of the hippocampus (seen in 30% of those above 85 even without symptoms) |
SVID | small vessel ischemic disease | Vascular inclusions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schein, C.H. Distinguishing Curable from Progressive Dementias for Defining Cancer Care Options. Cancers 2023, 15, 1055. https://doi.org/10.3390/cancers15041055
Schein CH. Distinguishing Curable from Progressive Dementias for Defining Cancer Care Options. Cancers. 2023; 15(4):1055. https://doi.org/10.3390/cancers15041055
Chicago/Turabian StyleSchein, Catherine H. 2023. "Distinguishing Curable from Progressive Dementias for Defining Cancer Care Options" Cancers 15, no. 4: 1055. https://doi.org/10.3390/cancers15041055
APA StyleSchein, C. H. (2023). Distinguishing Curable from Progressive Dementias for Defining Cancer Care Options. Cancers, 15(4), 1055. https://doi.org/10.3390/cancers15041055