Prognoses of Patients with Hormone Receptor-Positive and Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer Receiving Neoadjuvant Chemotherapy before Surgery: A Retrospective Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Statistical Analysis
3. Results
3.1. Patient and Treatment Characteristics
3.2. Follow-Up and Survival
3.3. Pathological Response to NAC
3.4. Disease Outcomes in PR Negativity vs. PR Positivity Subgroups
3.4.1. Comparison of Clinicopathological Characteristics by PR Status
3.4.2. Comparison of DFS and OS by PR Status
3.5. Disease Outcomes in HER2-Zero vs. HER2-Low Tumors
3.5.1. Comparison of Clinicopathological Characteristics by HER2 Status
3.5.2. Comparison of DFS and OS by HER2 Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, N.S.; Nazli, R.; Zafar, H.; Fatima, S. Effects of lipid based Multiple Micronutrients Supplement on the birth outcome of underweight pre-eclamptic women: A randomized clinical trial. Pak. J. Med. Sci. 2022, 38, 219–226. [Google Scholar] [CrossRef]
- CancerMPact® Database, Kantar. Available online: www.cancermpact.com (accessed on 3 December 2022).
- Zochowski, R.J.; Sypula, S.; Golembiewska, B.; Szelemetko, J.; Michalak, J.M. Thrombi of the left ventricle, infarction location and method of treatment. Wiad. Lek. 1990, 43, 61–64. [Google Scholar] [PubMed]
- Copur, M.S. Systemic Therapy for Estrogen Receptor-Positive, HER2-Negative Breast Cancer. N. Engl. J. Med. 2021, 384, 1176. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Wang, X.; Peng, R.; Shi, Y.; Qin, T.; Liu, D.; Teng, X.; Wang, S.; Zhang, L.; Yuan, Z. Distribution, clinicopathologic features and survival of breast cancer subtypes in Southern China. Cancer Sci. 2012, 103, 1679–1687. [Google Scholar] [CrossRef]
- Zuo, T.; Zeng, H.; Li, H.; Liu, S.; Yang, L.; Xia, C.; Zheng, R.; Ma, F.; Liu, L.; Wang, N.; et al. The influence of stage at diagnosis and molecular subtype on breast cancer patient survival: A hospital-based multicmulti-center study. Chin. J. Cancer 2017, 36, 84. [Google Scholar] [CrossRef]
- Szostakowska, M.; Trebinska-Stryjewska, A.; Grzybowska, E.A.; Fabisiewicz, A. Resistance to endocrine therapy in breast cancer: Molecular mechanisms and future goals. Breast Cancer Res. Treat. 2019, 173, 489–497. [Google Scholar] [CrossRef]
- Murali, B.; Durbin, L.; Vijaykumar, S.; Yang, L.; Li, S.; Zhao, L.; Hawthorne, S.; Kanas, G.; Davis, C.; Clark, O. Treatment of HR+/HER2− breast cancer in urban mainland China: Results from the CancerMPact Survey 2019. Breast Cancer Res. Treat. 2022, 195, 441–451. [Google Scholar] [CrossRef]
- Van de Wiel, M.; Dockx, Y.; Van den Wyngaert, T.; Stroobants, S.; Tjalma, W.A.A.; Huizing, M.T. Neoadjuvant systemic therapy in breast cancer: Challenges and uncertainties. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017, 210, 144–156. [Google Scholar] [CrossRef]
- Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet 2014, 384, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Parker, J.S.; Mullins, M.; Cheang, M.C.; Leung, S.; Voduc, D.; Vickery, T.; Davies, S.; Fauron, C.; He, X.; Hu, Z.; et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 2009, 27, 1160–1167. [Google Scholar] [CrossRef]
- Coates, A.S.; Colleoni, M.; Goldhirsch, A. Is adjuvant chemotherapy useful for women with luminal a breast cancer? J. Clin. Oncol. 2012, 30, 1260–1263. [Google Scholar] [CrossRef]
- Schott, A.F.; Hayes, D.F. Defining the benefits of neoadjuvant chemotherapy for breast cancer. J. Clin. Oncol. 2012, 30, 1747–1749. [Google Scholar] [CrossRef]
- Fayanju, O.M.; Ren, Y.; Thomas, S.M.; Greenup, R.A.; Plichta, J.K.; Rosenberger, L.H.; Tamirisa, N.; Force, J.; Boughey, J.C.; Hyslop, T.; et al. The Clinical Significance of Breast-only and Node-only Pathologic Complete Response (pCR) After Neoadjuvant Chemotherapy (NACT): A Review of 20,000 Breast Cancer Patients in the National Cancer Data Base (NCDB). Ann. Surg 2018, 268, 591–601. [Google Scholar] [CrossRef]
- Von Minckwitz, G.; Untch, M.; Blohmer, J.U.; Costa, S.D.; Eidtmann, H.; Fasching, P.A.; Gerber, B.; Eiermann, W.; Hilfrich, J.; Huober, J.; et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J. Clin. Oncol. 2012, 30, 1796–1804. [Google Scholar] [CrossRef]
- Davie, A.; Cuyun Carter, G.; Rider, A.; Bailey, A.; Lewis, K.; Price, G.; Ostojic, H.; Ringeisen, F.; Pivot, X. Real-world clinical profile, treatment patterns and patient-reported outcomes in a subset of HR+/HER2− advanced breast cancer patients with poor prognostic factors: Data from an international study. ESMO Open 2021, 6, 100226. [Google Scholar] [CrossRef]
- Hattori, M.; Novick, D.; Takaura, K.; Tanizawa, Y.; Kawaguchi, T.; Haro, J.M.; Monistrol-Mula, A.; Onishi, A.; Iwata, H. A systematic literature review of prognostic factors in patients with HR+/HER2− advanced breast cancer in Japan. Jpn J. Clin. Oncol. 2021, 51, 1498–1508. [Google Scholar] [CrossRef]
- Goldhirsch, A.; Winer, E.P.; Coates, A.S.; Gelber, R.D.; Piccart-Gebhart, M.; Thurlimann, B.; Senn, H.J.; Panel, M. Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann. Oncol 2013, 24, 2206–2223. [Google Scholar] [CrossRef]
- Wolff, A.C.; Hammond, M.E.H.; Allison, K.H.; Harvey, B.E.; Mangu, P.B.; Bartlett, J.M.S.; Bilous, M.; Ellis, I.O.; Fitzgibbons, P.; Hanna, W.; et al. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J. Clin. Oncol. 2018, 36, 2105–2122. [Google Scholar] [CrossRef]
- Gianni, L.; Baselga, J.; Eiermann, W.; Guillem Porta, V.; Semiglazov, V.; Lluch, A.; Zambetti, M.; Sabadell, D.; Raab, G.; Llombart Cussac, A.; et al. Feasibility and tolerability of sequential doxorubicin/paclitaxel followed by cyclophosphamide, methotrexate, and fluorouracil and its effects on tumor response as preoperative therapy. Clin. Cancer Res. 2005, 11, 8715–8721. [Google Scholar] [CrossRef] [Green Version]
- Montagna, G.; Sevilimedu, V.; Fornier, M.; Jhaveri, K.; Morrow, M.; Pilewskie, M.L. How Effective is Neoadjuvant Endocrine Therapy (NET) in Downstaging the Axilla and Achieving Breast-Conserving Surgery? Ann. Surg. Oncol. 2020, 27, 4702–4710. [Google Scholar] [CrossRef] [PubMed]
- Thibodeau, S.; Voutsadakis, I.A. Prediction of Oncotype Dx recurrence score using clinical parameters: A comparison of available tools and a simple predictor based on grade and progesterone receptor. Hematol. Oncol. Stem. Cell Ther. 2019, 12, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.; Wang, J.; Hicks, D.G.; Wang, X.; Schiffhauer, L.; McMahon, L.; Yang, Q.; Shayne, M.; Huston, A.; Skinner, K.A.; et al. A lower Allred score for progesterone receptor is strongly associated with a higher recurrence score of 21-gene assay in breast cancer. Cancer Investig. 2010, 28, 978–982. [Google Scholar] [CrossRef] [PubMed]
- Clark, B.Z.; Dabbs, D.J.; Cooper, K.L.; Bhargava, R. Impact of progesterone receptor semiquantitative immunohistochemical result on Oncotype DX recurrence score: A quality assurance study of 1074 cases. Appl. Immunohistochem. Mol. Morphol. 2013, 21, 287–291. [Google Scholar] [CrossRef]
- Cui, X.; Schiff, R.; Arpino, G.; Osborne, C.K.; Lee, A.V. Biology of progesterone receptor loss in breast cancer and its implications for endocrine therapy. J. Clin. Oncol. 2005, 23, 7721–7735. [Google Scholar] [CrossRef]
- Horwitz, K.B.; McGuire, W.L. Estrogen control of progesterone receptor in human breast cancer. Correlation with nuclear processing of estrogen receptor. J. Biol. Chem. 1978, 253, 2223–2228. [Google Scholar] [CrossRef]
- Horwitz, K.B.; McGuire, W.L. Predicting response to endocrine therapy in human breast cancer: A hypothesis. Science 1975, 189, 726–727. [Google Scholar] [CrossRef]
- Bardou, V.J.; Arpino, G.; Elledge, R.M.; Osborne, C.K.; Clark, G.M. Progesterone receptor status significantly improves outcome prediction over estrogen receptor status alone for adjuvant endocrine therapy in two large breast cancer databases. J. Clin. Oncol. 2003, 21, 1973–1979. [Google Scholar] [CrossRef]
- Viale, G.; Regan, M.M.; Dell’Orto, P.; Mastropasqua, M.G.; Maiorano, E.; Rasmussen, B.B.; MacGrogan, G.; Forbes, J.F.; Paridaens, R.J.; Colleoni, M.; et al. Which patients benefit most from adjuvant aromatase inhibitors? Results using a composite measure of prognostic risk in the BIG 1-98 randomized trial. Ann. Oncol. 2011, 22, 2201–2207. [Google Scholar] [CrossRef]
- Viale, G.; Regan, M.M.; Maiorano, E.; Mastropasqua, M.G.; Golouh, R.; Perin, T.; Brown, R.W.; Kovacs, A.; Pillay, K.; Ohlschlegel, C.; et al. Chemoendocrine compared with endocrine adjuvant therapies for node-negative breast cancer: Predictive value of centrally reviewed expression of estrogen and progesterone receptors—International Breast Cancer Study Group. J. Clin. Oncol. 2008, 26, 1404–1410. [Google Scholar] [CrossRef]
- Cheang, M.C.; Chia, S.K.; Voduc, D.; Gao, D.; Leung, S.; Snider, J.; Watson, M.; Davies, S.; Bernard, P.S.; Parker, J.S.; et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J. Natl. Cancer Inst. 2009, 101, 736–750. [Google Scholar] [CrossRef]
- Jacquemier, J.; Ginestier, C.; Rougemont, J.; Bardou, V.J.; Charafe-Jauffret, E.; Geneix, J.; Adelaide, J.; Koki, A.; Houvenaeghel, G.; Hassoun, J.; et al. Protein expression profiling identifies subclasses of breast cancer and predicts prognosis. Cancer Res. 2005, 65, 767–779. [Google Scholar] [CrossRef]
- Nishimura, R.; Osako, T.; Nishiyama, Y.; Tashima, R.; Nakano, M.; Fujisue, M.; Toyozumi, Y.; Arima, N. Prognostic significance of Ki-67 index value at the primary breast tumor in recurrent breast cancer. Mol. Clin. Oncol. 2014, 2, 1062–1068. [Google Scholar] [CrossRef]
- Chen, M.; Chen, W.; Liu, D.; Chen, W.; Shen, K.; Wu, J.; Zhu, L. Prognostic values of clinical and molecular features in HER2 low-breast cancer with hormonal receptor overexpression: Features of HER2-low breast cancer. Breast Cancer 2022, 29, 844–853. [Google Scholar] [CrossRef]
- Ma, J.C.; Zhong, X.R.; Luo, T.; Xiang, Z.Z.; Li, J.Y.; Luo, C.; Yan, X.; He, P.; Tian, T.L.; Liu, F.; et al. The Effect of Postmastectomy Radiotherapy on Breast Cancer Patients After Neoadjuvant Chemotherapy by Molecular Subtype. Ann. Surg. Oncol. 2021, 28, 5084–5095. [Google Scholar] [CrossRef]
- Eggemann, H.; Ignatov, T.; Burger, E.; Kantelhardt, E.J.; Fettke, F.; Thomssen, C.; Costa, S.D.; Ignatov, A. Moderate HER2 expression as a prognostic factor in hormone receptor positive breast cancer. Endocr. Relat. Cancer 2015, 22, 725–733. [Google Scholar] [CrossRef]
- Rossi, V.; Sarotto, I.; Maggiorotto, F.; Berchialla, P.; Kubatzki, F.; Tomasi, N.; Redana, S.; Martinello, R.; Valabrega, G.; Aglietta, M.; et al. Moderate immunohistochemical expression of HER-2 (2+) without HER-2 gene amplification is a negative prognostic factor in early breast cancer. Oncologist 2012, 17, 1418–1425. [Google Scholar] [CrossRef]
- Li, Y.; Abudureheiyimu, N.; Mo, H.; Guan, X.; Lin, S.; Wang, Z.; Chen, Y.; Chen, S.; Li, Q.; Cai, R.; et al. In Real Life, Low-Level HER2 Expression May Be Associated with Better Outcome in HER2-Negative Breast Cancer: A Study of the National Cancer Center, China. Front. Oncol. 2021, 11, 774577. [Google Scholar] [CrossRef]
- Tarantino, P.; Jin, Q.; Tayob, N.; Jeselsohn, R.M.; Schnitt, S.J.; Vincuilla, J.; Parker, T.; Tyekucheva, S.; Li, T.; Lin, N.U.; et al. Prognostic and Biologic Significance of ERBB2-Low Expression in Early-Stage Breast Cancer. JAMA Oncol. 2022, 8, 1177–1183. [Google Scholar] [CrossRef]
- Zhang, H.; Katerji, H.; Turner, B.M.; Audeh, W.; Hicks, D.G. HER2-low breast cancers: Incidence, HER2 staining patterns, clinicopathologic features, MammaPrint and BluePrint genomic profiles. Mod. Pathol. 2022, 35, 1075–1082. [Google Scholar] [CrossRef]
- De Moura Leite, L.; Cesca, M.G.; Tavares, M.C.; Santana, D.M.; Saldanha, E.F.; Guimaraes, P.T.; Sa, D.D.S.; Simoes, M.F.E.; Viana, R.L.; Rocha, F.G.; et al. HER2-low status and response to neoadjuvant chemotherapy in HER2 negative early breast cancer. Breast Cancer Res. Treat. 2021, 190, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Denkert, C.; Seither, F.; Schneeweiss, A.; Link, T.; Blohmer, J.U.; Just, M.; Wimberger, P.; Forberger, A.; Tesch, H.; Jackisch, C.; et al. Clinical and molecular characteristics of HER2-low-positive breast cancer: Pooled analysis of individual patient data from four prospective, neoadjuvant clinical trials. Lancet Oncol. 2021, 22, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Fisher, E.R.; Gregorio, R.M.; Redmond, C.; Kim, W.S.; Fisher, B. Pathologic findings from the national surgical adjuvant breast project. (Protocol No. 4). III. The significance of extranodal extension of axillary metastases. Am. J. Clin. Pathol. 1976, 65, 439–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Total (n = 3070) | DFS (n = 577) | Events | p | OS (n = 361) | Events | p |
---|---|---|---|---|---|---|---|
Events-Free | Events-Free | ||||||
Age | 0.193 | 0.492 | |||||
<50 years | 1688 (55.0) | 1386 (55.6) | 302 (52.3) | 1497 (55.3) | 191 (52.9) | ||
≥50 years | 1382 (45.0) | 1107 (44.4) | 275 (47.7) | 1212 (44.7) | 170 (47.1) | ||
Menopausal status | 0.058 | 0.201 | |||||
Pre/Peri- | 1833 (59.7) | 1509 (60.5) | 324 (56.2) | 1629 (60.1) | 204 (56.5) | ||
Post- | 1237 (40.3) | 984 (39.5) | 253 (43.8) | 1080 (39.9) | 157 (43.5) | ||
Family history | 0.120 | 0.140 | |||||
No | 2443 (79.6) | 1987 (79.7) | 456 (79.0) | 2158 (79.7) | 285 (78.9) | ||
Breast | 221 (7.2) | 167 (6.7) | 54 (9.4) | 182 (6.7) | 39 (10.8) | ||
Others | 406 (13.2) | 339 (13.6) | 67 (11.6) | 369 (13.6) | 37 (10.2) | ||
ypT | 0.000 * | 0.001 * | |||||
ypT0 | 487 (15.9) | 410 (16.4) | 77 (13.4) | 454 (16.8) | 33 (9.1) | ||
ypT1 | 765 (24.9) | 652 (26.2) | 113 (19.6) | 691 (25.5) | 74 (20.5) | ||
ypT2 | 1353 (44.1) | 1085 (43.5) | 268 (46.4) | 1176 (43.4) | 177 (49.0) | ||
ypT3-4 | 465 (15.1) | 346 (13.9) | 119 (20.6) | 388 (14.3) | 77 (21.3) | ||
ypN | 0.000 * | 0.000 * | |||||
ypN0 | 923 (30.1) | 786 (31.5) | 137 (23.7) | 850 (31.4) | 73 (20.2) | ||
ypN1 | 782 (25.4) | 665 (26.7) | 117 (20.3) | 713 (26.3) | 69 (19.1) | ||
ypN2-3 | 1365 (44.5) | 1042 (41.8) | 323 (56.0) | 1146 (42.3) | 219 (60.7) | ||
ER | 0.230 | 0.070 * | |||||
0–9% | 225 (7.3) | 175 (7.0) | 50 (8.7) | 187 (6.9) | 38 (10.5) | ||
10–49% | 165 (5.4) | 123 (4.9) | 42 (7.2) | 134 (5.0) | 31 (8.6) | ||
50–89% | 1110 (36.2) | 880 (35.3) | 230 (39.9) | 954 (35.2) | 156 (43.2) | ||
90–100% | 1570 (51.1) | 1315 (52.8) | 255 (44.2) | 1434 (52.9) | 136 (37.7) | ||
PR | 0.007 * | 0.000 * | |||||
Negativity | 791 (25.8) | 637 (25.6) | 154 (26.7) | 685 (25.3) | 106 (29.4) | ||
Positivity | 2279 (74.2) | 1856(74.4) | 423 (73.3) | 2024 (74.7) | 255 (70.6) | ||
HER2 | 0.611 | 0.037 * | |||||
Zero | 730 (23.8) | 605 (24.3) | 125 (21.7) | 667 (24.6) | 63 (17.5) | ||
Low | 2340 (76.2) | 1888 (75.7) | 452 (78.3) | 2042 (75.4) | 298 (82.5) | ||
Ki67 | 0.000 * | 0.000 * | |||||
≤14% | 1427 (46.5) | 1204 (48.3) | 223 (38.6) | 1302 (48.1) | 125 (34.6) | ||
>14% | 1643 (53.5) | 1289 (51.7) | 354 (61.4) | 1407 (51.9) | 236 (65.4) | ||
P53 | 0.572 | 0.322 | |||||
Negative | 1273 (41.5) | 1042 (41.8) | 231 (40.0) | 1138 (42.0) | 135 (37.4) | ||
Positive | 1797 (58.5) | 1451 (58.2) | 346 (60.0) | 1571 (58.0) | 226 (62.6) | ||
pCR (ypT0/is, ypN0) | 0.344 | 0.006 * | |||||
No | 2624 (85.5) | 2119 (85.0) | 505 (87.5) | 2293 (84.6) | 331 (91.7) | ||
Yes | 446 (14.5) | 374 (15.0) | 72 (12.5) | 416 (15.4) | 30 (8.3) | ||
Surgery | 0.440 | 0.389 | |||||
Mastectomy | 2694 (87.7) | 2303 (85.5) | 391 (86.0) | 2378 (87.8) | 316 (87.5) | ||
Breast-conserving surgery | 376 (12.3) | 190 (14.5) | 186 (14.0) | 331 (12.2) | 45 (12.5) | ||
Radiotherapy | 0.000 * | 0.000 * | |||||
No | 948 (30.9) | 840 (33.7) | 108 (18.7) | 877 (32.4) | 71 (19.7) | ||
Yes | 2122 (69.1) | 1653 (66.3) | 469 (81.3) | 1832 (67.6) | 290 (80.3) | ||
Endocrine therapy | 0.000 * | 0.138 | |||||
AI ± OFS | 2372 (77.3) | 1901 (76.2) | 471 (81.6) | 2090 (77.2) | 282 (78.1) | ||
SERM ± OFS | 698 (22.7) | 592 (23.8) | 106 (18.4) | 619 (22.8) | 79 (21.9) | ||
Extranodal extension | 0.000 * | 0.000 * | |||||
Yes | 1048 (34.1) | 783 (31.4) | 265 (45.9) | 876 (32.3) | 172 (47.6) | ||
No | 2022 (65.9) | 1710 (68.6) | 312 (54.1) | 1833 (67.7) | 189 (52.4) | ||
Lymphovascular Invasion | 0.146 | 0.999 | |||||
Yes | 807 (26.3) | 639 (25.6) | 168 (29.1) | 712 (26.3) | 95 (26.3) | ||
No | 2263 (73.7) | 1854 (74.4) | 409 (70.9) | 1997 (73.7) | 266 (73.7) |
Multivariate Analysis | |||
---|---|---|---|
Variables | HR | 95%CI | p |
DFS | |||
ypT | - | - | 0.195 |
ypT1 | 0.873 | 0.626–1.218 | 0.421 |
ypT2 | 1.004 | 0.732–1.377 | 0.980 |
ypT3-4 | 1.172 | 0.824–1.666 | 0.379 |
ypN | - | - | 0.189 |
ypN1 | 0.885 | 0.660–1.186 | 0.420 |
ypN2-3 | 1.098 | 0.828–1.456 | 0.518 |
Radiotherapy | 0.537 | 0.433–0.665 | 0.000 * |
Endocrine therapy | 0.851 | 0.682–1.062 | 0.151 |
PR | 0.730 | 0.606–0.881 | 0.001 * |
Ki67 | 1.399 | 1.181–1.656 | 0.000 * |
Extranodal extension | 1.298 | 1.072–1.570 | 0.007 * |
OS | |||
ypT | - | - | 0.644 |
ypT1 | 1.197 | 0.424–3.375 | 0.734 |
ypT2 | 1.312 | 0.471–3.655 | 0.604 |
ypT3-4 | 1.461 | 0.518–4.118 | 0.474 |
ypN | - | - | 0.007 |
ypN1 | 0.908 | 0.615–1.342 | 0.629 |
ypN2-3 | 1.42 | 0.979–2.059 | 0.065 |
Radiotherapy | 0.592 | 0.452–0.774 | 0.000 * |
ER | - | - | 0.021 |
10–49% | 1.349 | 0.858–2.119 | 0.194 |
50–89% | 1.414 | 0.975–2.051 | 0.068 |
90–100% | 1.407 | 1.120–1.768 | 0.003 |
PR | 0.486 | 0.380–0.0621 | 0.000 * |
Ki67 | 1.635 | 1.310–2.042 | 0.000 * |
Extranodal extension | 0.256 | 0.904–1.459 | 1.149 |
HER2 | 1.385 | 1.051–1.826 | 0.040 * |
pCR status | 0.978 | 0.326–2.939 | 0.969 |
Variable | NonpCR (n = 2624) | pCR (n = 446) | Univariate Analysis | Binary Logistic Regression Analysis | ||
---|---|---|---|---|---|---|
χ2 | p Value * | Odds Ratio (95%CI) | p Value * | |||
Age | 17.619 | 0.000 * | 0.758 (0.563–1.013) | 0.061 | ||
<50 years | 1402 (53.4) | 286 (64.1) | ||||
≥50 years | 1222 (46.6) | 160 (35.9) | ||||
Menopausal status | 29.237 | 0.000 * | 1.023 (0.762–1.375) | 0.877 | ||
Pre/Peri- | 1535 (58.5) | 298 (66.8) | ||||
Post- | 1089 (41.5) | 148 (33.2) | ||||
cT | 29.315 | 0.000 * | 0.723 (0.607–0.862) | 0.000 * | ||
cT1 | 199 (7.6) | 48 (10.8) | ||||
cT2 | 1549 (59.0) | 280 (62.7) | ||||
cT3-4 | 876 (33.4) | 118 (26.5) | ||||
cN | 18.782 | 0.005 * | 1.123 (0.975–1.293) | 0.107 | ||
cN0 | 979 (37.3) | 162 (36.3) | ||||
cN1 | 1109 (42.3) | 185 (41.5) | ||||
cN2-3 | 536 (20.4) | 99 (22.2) | ||||
ER | 39.833 | 0.000 * | 0.713 (0.636–0.798) | 0.000 * | ||
0–9% | 167 (6.4) | 58 (13.0) | ||||
10–49% | 129 (4.9) | 36 (8.1) | ||||
50–89% | 937 (35.7) | 173 (38.8) | ||||
90–100% | 1391 (53.0) | 179 (40.1) | ||||
PR | 37.208 | 0.000 * | 0.644 (0.515–0.806) | 0.000 * | ||
Negativity | 624 (23.8) | 167 (37.4) | ||||
Positivity | 2000 (76.2) | 279 (62.6) | ||||
HER2 | 5.759 | 0.016 * | 0.800 (0.635–1.009) | 0.059 | ||
Zero | 604 (23.0) | 126 (28.3) | ||||
Low | 2020 (77.0) | 320 (71.7) | ||||
Ki67 | 46.900 | 0.000 * | 0.490 (0.394–0.608) | 0.000 * | ||
≤14% | 1153 (43.9) | 274 (61.4) | ||||
>14% | 1471 (56.1) | 172 (38.6) | ||||
P53 | 3.526 | 0.060 | - | - | ||
Negative | 1070 (40.8) | 203 (45.5) | ||||
Positive | 1554 (59.2) | 243 (54.5) |
Variable | PR− (n = 791) | PR+ (n = 2279) | χ2 | p Value * |
---|---|---|---|---|
Age | 0.345 | 0.557 | ||
<50 years | 442 (55.9) | 1246 (54.7) | ||
≥50 years | 349 (44.1) | 1033 (45.3) | ||
Menopausal status | 0.422 | 0.516 | ||
Pre/Peri- | 480 (60.7) | 1353 (59.4) | ||
Post- | 311 (39.3) | 926 (40.6) | ||
Family history | 1.689 | 0.430 | ||
No | 617 (78.0) | 1826 (80.1) | ||
Breast | 60 (7.6) | 161 (7.1) | ||
Others | 114 (14.4) | 292 (12.8) | ||
ypT | 34.178 | 0.000 * | ||
ypT0 | 177 (22.4) | 310 (13.6) | ||
ypT1 | 185 (23.4) | 580 (25.4) | ||
ypT2 | 323 (40.8) | 1030 (45.2) | ||
ypT3-4 | 106 (13.4) | 359 (15.8) | ||
ypN | 19.073 | 0.000 * | ||
ypN0 | 282 (35.7) | 641 (28.1) | ||
ypN1 | 203 (25.7) | 579 (25.4) | ||
ypN2-3 | 306 (38.6) | 1059 (46.5) | ||
ER | 235.469 | 0.000 * | ||
0–9% | 146 (18.5) | 79 (3.5) | ||
10–49% | 72 (9.1) | 93 (4.1) | ||
50–89% | 248 (31.3) | 862 (37.8) | ||
90–100% | 325 (41.1) | 1245 (54.6) | ||
HER-2 | 8.407 | 0.004 * | ||
Zero | 218 (27.6) | 512 (22.5) | ||
Low | 573 (72.4) | 1767 (77.5) | ||
Ki67 | 18.035 | 0.000 * | ||
≤14% | 419 (53.0) | 1008 (44.2) | ||
>14% | 372 (47.0) | 1271 (55.8) | ||
P53 | 34.386 | 0.000 * | ||
Negative | 398 (50.3) | 875 (38.4) | ||
Positive | 393 (49.7) | 1404 (61.6) | ||
pCR (ypYT0/N0) | 37.208 | 0.000 * | ||
No | 624 (78.9) | 2000 (87.8) | ||
Yes | 167 (21.1) | 279 (12.2) | ||
Radiotherapy | 0.420 | 0.517 | ||
No | 237 (30.0) | 711 (31.2) | ||
Yes | 554 (70.0) | 1568 (68.8) | ||
Endocrine therapy | 0.013 | 0.909 | ||
AI ± OFS | 610 (77.1) | 1762 (77.3) | ||
SERM ± OFS | 181 (22.9) | 517 (22.7) | ||
Extranodal extension | 8.260 | 0.004 * | ||
No | 554 (70.0) | 1468 (64.4) | ||
Yes | 237 (30.0) | 811 (35.6) | ||
Lymphovascular Invasion | 0.324 | 0.569 | ||
No | 577 (72.9) | 1686 (74.0) | ||
Yes | 214 (27.1) | 593 (26.0) |
Variable | Total (n = 3070) | HER2-0 (n = 730) | HER2-Low (n = 2340) | χ2 | p Value * |
---|---|---|---|---|---|
Age | 0.001 | 0.504 | |||
<50 years | 1688 (55.0) | 401 (54.9) | 1287 (55.0) | ||
≥50 years | 1382 (45.0) | 329 (45.1) | 1053 (45.0) | ||
Menopausal status | 0.352 | 0.291 | |||
Pre/Peri- | 1833 (59.7) | 429 (58.8) | 1404 (60.0) | ||
Post- | 1237 (40.3) | 301 (41.2) | 936 (40.0) | ||
Family history | 3.787 | 0.151 | |||
No | 2443 (79.6) | 568 (77.8) | 1875 (80.1) | ||
Breast | 221 (7.2) | 50 (6.9) | 171 (7.3) | ||
Others | 406 (13.2) | 112 (15.3) | 294 (12.6) | ||
ypT | 9.759 | 0.021 * | |||
ypT0 | 487 (15.9) | 141 (19.3) | 346 (14.8) | ||
ypT1 | 765 (24.9) | 174 (23.8) | 591 (25.2) | ||
ypT2 | 1353 (44.1) | 300 (41.1) | 1053 (45.0) | ||
ypT3-4 | 465 (15.1) | 115 (15.8) | 350 (15.0) | ||
ypN | 1.417 | 0.492 | |||
ypN0 | 923 (30.1) | 229 (31.4) | 694 (29.6) | ||
ypN1 | 782 (25.4) | 190 (26.0) | 592 (25.3) | ||
ypN2-3 | 1365 (44.5) | 311 (42.6) | 1054 (45.1) | ||
ER | 17.301 | 0.001 * | |||
0–9% | 225 (7.3) | 65 (8.9) | 160 (6.8) | ||
10–49% | 165 (5.4) | 51 (7.0) | 114 (4.9) | ||
50–89% | 1110 (36.2) | 223 (30.5) | 887 (37.9) | ||
90–100% | 1570 (51.1) | 391 (53.6) | 1179 (50.4) | ||
PR | 8.407 | 0.004 * | |||
Negativity | 791 (25.8) | 218 (29.9) | 573 (24.5) | ||
Positivity | 2279 (74.2) | 512 (70.1) | 1767 (75.5) | ||
Ki67 | 0.824 | 0.364 | |||
≤14% | 1427 (46.5) | 350 (47.9) | 1077 (46.0) | ||
>14% | 1643 (53.5) | 380 (52.1) | 1263 (54.0) | ||
P53 | 15.873 | 0.000 * | |||
Negative | 1273 (41.5) | 349 (47.8) | 924 (39.5) | ||
Positive | 1797 (58.5) | 381 (52.2) | 1416 (60.5) | ||
pCR (ypYT0/is, ypN0) | 5.759 | 0.016 * | |||
No | 2624 (85.5) | 604 (82.7) | 2020 (86.3) | ||
Yes | 446 (14.5) | 126 (17.3) | 320 (13.7) | ||
Radiotherapy | 0.464 | 0.496 | |||
No | 948 (30.9) | 218 (29.9) | 730 (31.2) | ||
Yes | 2122 (69.1) | 512 (70.1) | 1610 (68.8) | ||
Endocrine therapy | 2.013 | 0.156 | |||
AI ± OFS | 2372 (77.3) | 550 (75.3) | 1822 (77.9) | ||
SERM ± OFS | 698 (22.7) | 180 (24.7) | 518 (22.1) | ||
Extranodal extension | 6.356 | 0.012 * | |||
No | 2022 (65.9) | 509 (69.7) | 1513 (64.7) | ||
Yes | 1048 (34.1) | 221 (30.3) | 827 (35.3) | ||
Lymphovascular Invasion | 13.318 | 0.000 * | |||
No | 2263 (73.7) | 576 (78.9) | 1687 (72.1) | ||
Yes | 807 (26.3) | 154 (21.1) | 653 (27.9) |
Variable | OR | 95%CI | p |
---|---|---|---|
ypT | 0.975 | 0.856–1.111 | 0.706 |
ER | 1.327 | 1.197–1.472 | 0.000 * |
PR | 1.131 | 0.933–1.371 | 0.210 |
P53 | 1.381 | 1.164–1.637 | 0.000 * |
Extranodal extension | 1.233 | 1.020–1.489 | 0.030 * |
pCR status | 1.389 | 0.766–2.517 | 0.279 |
Lymphovascular Invasion | 1.431 | 1.168–1.752 | 0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Liu, Y.; Liu, X.; Liu, Y.; Zhang, J. Prognoses of Patients with Hormone Receptor-Positive and Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer Receiving Neoadjuvant Chemotherapy before Surgery: A Retrospective Analysis. Cancers 2023, 15, 1157. https://doi.org/10.3390/cancers15041157
Zhang S, Liu Y, Liu X, Liu Y, Zhang J. Prognoses of Patients with Hormone Receptor-Positive and Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer Receiving Neoadjuvant Chemotherapy before Surgery: A Retrospective Analysis. Cancers. 2023; 15(4):1157. https://doi.org/10.3390/cancers15041157
Chicago/Turabian StyleZhang, Shichao, Yan Liu, Xu Liu, Yingxue Liu, and Jin Zhang. 2023. "Prognoses of Patients with Hormone Receptor-Positive and Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer Receiving Neoadjuvant Chemotherapy before Surgery: A Retrospective Analysis" Cancers 15, no. 4: 1157. https://doi.org/10.3390/cancers15041157
APA StyleZhang, S., Liu, Y., Liu, X., Liu, Y., & Zhang, J. (2023). Prognoses of Patients with Hormone Receptor-Positive and Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer Receiving Neoadjuvant Chemotherapy before Surgery: A Retrospective Analysis. Cancers, 15(4), 1157. https://doi.org/10.3390/cancers15041157