The Value of Tucatinib in Metastatic HER2-Positive Breast Cancer Patients: An Italian Cost-Effectiveness Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Setting and Overview of the Model
2.2. Patients’ Population
2.3. Clinical Data Inputs
2.4. Cost Input
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- The International Agency for Research on Cancer of World Health Organization. Latest Global Cancer Data: Cancer Burden Rises to 19.3 Million New Cases and 10.0 Million Cancer Deaths in 2020. Available online: https://www.iarc.fr/faq/latest-global-cancer-data-2020-qa/2020 (accessed on 3 November 2022).
- AIOM. I Numeri Del Cancro in Italia. Available online: https://www.aiom.it/wp-content/uploads/2021/10/2021_NumeriCancro_web.pdf (accessed on 3 November 2022).
- Bredin, P.; Walshe, J.M.; Denduluri, N. Systemic therapy for metastatic HER2-positive breast cancer. Semin. Oncol. 2020, 47, 259–269. [Google Scholar] [CrossRef]
- Owens, M.A.; Horten, B.C.; Da Silva, M.M. HER2 Amplification Ratios by Fluorescence In Situ Hybridization and Correlation with Immunohistochemistry in a Cohort of 6556 Breast Cancer Tissues. Clin. Breast Cancer 2004, 5, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Cronin, K.A.; Harlan, L.C.; Dodd, K.W.; Abrams, J.S.; Ballard-Barbash, R. Population-based Estimate of the Prevalence of HER-2 Positive Breast Cancer Tumors for Early Stage Patients in the US. Cancer Investig. 2010, 28, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Piccart-Gebhart, M.J.; Procter, M.; Leyland-Jones, B.; Goldhirsch, A.; Untch, M.; Smith, I.; Gianni, L.; Baselga, J.; Bell, R.H.; Jackisch, C.; et al. Trastuzumab after Adjuvant Chemotherapy in HER2-Positive Breast Cancer. N. Engl. J. Med. 2005, 353, 1659–1672. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.L.; Hung, M.-C. The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer. Cancer Metastasis Rev. 2016, 35, 575–588. [Google Scholar] [CrossRef] [PubMed]
- Gennari, A.; André, F.; Barrios, C.; Cortés, J.; de Azambuja, E.; DeMichele, A.; Dent, R.; Fenlon, D.; Gligorov, J.; Hurvitz, S.; et al. ESMO Clinical Practice Guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer. Ann. Oncol. 2021, 32, 1475–1495. [Google Scholar] [CrossRef]
- Gupta, R.; Gupta, S.; Antonios, B.; Ghimire, B.; Jindal, V.; Deol, J.; Gaikazian, S.; Huben, M.; Anderson, J.; Stender, M.; et al. Therapeutic landscape of advanced HER2-positive breast cancer in 2022. Med Oncol. 2022, 39, 1–14. [Google Scholar] [CrossRef]
- Murthy, R.K.; Loi, S.; Okines, A.; Paplomata, E.; Hamilton, E.; Hurvitz, S.A.; Lin, N.U.; Borges, V.; Abramson, V.; Anders, C.; et al. Tucatinib, Trastuzumab, and Capecitabine for HER2-Positive Metastatic Breast Cancer. N. Engl. J. Med. 2020, 382, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Curigliano, G.; Mueller, V.; Borges, V.; Hamilton, E.; Hurvitz, S.; Loi, S.; Murthy, R.; Okines, A.; Paplomata, E.; Cameron, D.; et al. Tucatinib versus placebo added to trastuzumab and capecitabine for patients with pretreated HER2+ metastatic breast cancer with and without brain metastases (HER2CLIMB): Final overall survival analysis. Ann. Oncol. 2021, 33, 321–329. [Google Scholar] [CrossRef]
- NICE. Abemaciclib with an Aromatase Inhibitor for Previously Untreated, Hormone Receptor-Positive, HER2-Negative, Locally Advanced or Metastatic Breast Cancer. National Institute for Health and Care Excellence. 2019. Available online: www.nice.org.uk/guidance/ta563 (accessed on 11 November 2022).
- NICE. Atezolizumab with Nab-Paclitaxel for Untreated PD-L1-Positive, Locally Advanced or Metastatic, Triple-Negative Breast Cancer. National Institute for Health and Care Excellence. 2020. Available online: www.nice.org.uk/guidance/ta639 (accessed on 11 November 2022).
- NICE. Palbociclib with Fulvestrant for Treating Hormone Receptor-Positive, HER2-Negative, Advanced Breast Cancer. National Institute for Health and Care Excellence. 2020. Available online: www.nice.org.uk/guidance/ta619 (accessed on 11 November 2022).
- Briggs, A.H.; Weinstein, M.C.; Fenwick, E.A.; Karnon, J.; Sculpher, M.J.; Paltiel, A.D.; ISPOR-SMDM Modeling Good Research Practices Task Force. Model parameter estimation and uncertainty analysis: A report of the ISPOR-SMDM Modeling Good Research Practices Task Force Working Group-6. Med. Decis. Mak. 2012, 32, 722–732. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, B.; Vincziczki, Á. The Role of Half-Cycle Correction in the Models Used for Health Technology Assessment. Value Health 2013, 16, A592–A593. [Google Scholar] [CrossRef]
- Cortesi, L.; Sebastiani, F.; Iannone, A.; Marcheselli, L.; Venturelli, M.; Piombino, C.; Toss, A.; Federico, M. Lifestyle Intervention on Body Weight and Physical Activity in Patients with Breast Cancer can reduce the Risk of Death in Obese Women: The EMILI Study. Cancers 2020, 12, 1709. [Google Scholar] [CrossRef]
- DeBusk, K.; Abeysinghe, S.; Vickers, A.; Nangia, A.; Bell, J.; Ike, C.; Forero-Torres, A.; Blahna, M.T. Efficacy of tucatinib for HER2-positive metastatic breast cancer after HER2-targeted therapy: A network meta-analysis. Futur. Oncol. 2021, 17, 4635–4647. [Google Scholar] [CrossRef] [PubMed]
- Urruticoechea, A.; Rizwanullah, M.; Im, S.-A.; Ruiz, A.C.S.; Láng, I.; Tomasello, G.; Douthwaite, H.; Crnjevic, T.B.; Heeson, S.; Eng-Wong, J.; et al. Randomized Phase III Trial of Trastuzumab Plus Capecitabine With or Without Pertuzumab in Patients With Human Epidermal Growth Factor Receptor 2–Positive Metastatic Breast Cancer Who Experienced Disease Progression During or After Trastuzumab-Based Therapy. J. Clin. Oncol. 2017, 35, 3030–3038. [Google Scholar] [CrossRef]
- Saura, C.; Oliveira, M.; Feng, Y.-H.; Dai, M.-S.; Chen, S.-W.; Hurvitz, S.A.; Kim, S.-B.; Moy, B.; Delaloge, S.; Gradishar, W.; et al. Neratinib Plus Capecitabine Versus Lapatinib Plus Capecitabine in HER2-Positive Metastatic Breast Cancer Previously Treated With ≥ 2 HER2-Directed Regimens: Phase III NALA Trial. J. Clin. Oncol. 2020, 38, 3138–3149. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D.-Y.; Diéras, V.; Guardino, E.; et al. Trastuzumab Emtansine for HER2-Positive Advanced Breast Cancer. N. Engl. J. Med. 2012, 367, 1783–1791. [Google Scholar] [CrossRef] [PubMed]
- Conferenza Delle Regioni e Delle Provincie Autonome 2020. Available online: http://www.regioni.it/materie/sanita/salute/ (accessed on 15 June 2021).
- Bonotto, M.; Basile, D.; Gerratana, L.; Pelizzari, G.; Bartoletti, M.; Vitale, M.G.; Fanotto, V.; Lisanti, C.; Mansutti, M.; Minisini, A.M.; et al. Controversies in monitoring metastatic breast cancer during systemic treatment. Results of a GIM (Gruppo Italiano Mammella) survey. Breast 2018, 40, 45–52. [Google Scholar] [CrossRef]
- Lazzaro, C.; Bordonaro, R.; Cognetti, F.; Fabi, A.; De Placido, S.; Marchetti, P.; Botticelli, A.; Pronzato, P.; Martelli, E.; Arpino, G. An Italian cost-effectiveness analysis of paclitaxel albumin (nab-paclitaxel) versus conventional paclitaxel for metastatic breast cancer patients: The COSTANza study. Clin. Outcomes Res. 2013, 5, 125–135. [Google Scholar] [CrossRef]
- Agenzia Italiana del Farmaco (AIFA). Available online: https://www.aifa.gov.it/ (accessed on 21 November 2022).
- Dias, S.; Ades, A.E.; Welton, N.J.; Jansen, J.P.; Sutton, A.J. Network Meta-Analysis for Decision-Making; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- NICE. National Institute for Health and Care Excellence. Guide to the Methods Oftechnology Appraisal. 2013. Available online: https://www.nice.org.uk/process/pmg9/resources/guide-to-the-methods-of-technology-appraisal-2013-pdf-2007975843781 (accessed on 11 November 2022).
- Dias, S.; Welton, N.J.; Sutton, A.J.; Sutton, A.E. NICE DSU Technical Support Document 2: A Generalised Linear Modelling Framework for Pairwise and Network Meta-Analysis of Randomised Controlled Trials. National Institute for Health and Care Excellence (NICE): London, UK, 2014. Available online: https://www.ncbi.nlm.nih.gov/books/NBK310366/ (accessed on 11 November 2022).
- Guyot, P.; Ades, A.E.; Ouwens, M.J.N.M.; Welton, N.J. Enhanced secondary analysis of survival data: Reconstructing the data from published Kaplan-Meier survival curves. BMC Med. Res. Methodol. 2012, 12, 9. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, D.A.; Ahmad, B.B.; Chen, Q.; Ayer, T.; Howard, D.H.; Lipscomb, J.; El-Rayes, B.F.; Flowers, C.R. Cost-Effectiveness Analysis of Regorafenib for Metastatic Colorectal Cancer. J. Clin. Oncol. 2015, 33, 3727–3732. [Google Scholar] [CrossRef]
- Gye, A.; Goodall, S.; Lourenco, R.D.A. Cost-effectiveness Analysis of Tisagenlecleucel Versus Blinatumomab in Children and Young Adults with Acute Lymphoblastic Leukemia: Partitioned Survival Model to Assess the Impact of an Outcome-Based Payment Arrangement. Pharmacoeconomics 2022, 41, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liang, X.; Li, H.; Yang, T.; Guo, S.; Chen, X. Nivolumab Versus Sorafenib as First-Line Therapy for Advanced Hepatocellular Carcinoma: A Cost-Effectiveness Analysis. Front. Pharmacol. 2022, 13, 906965. [Google Scholar] [CrossRef]
- Liao, M.; Jiang, Q.; Hu, H.; Han, J.; She, L.; Yao, L.; Ding, D.; Huang, J. Cost-effectiveness analysis of utidelone plus capecitabine for metastatic breast cancer in China. J. Med Econ. 2019, 22, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.M.; Peng, L.B.; Ma, J.A.; Li, Y.J. Economic evaluation of nivolumab as a second-line treatment for advanced renal cell carcinoma from US and Chinese perspectives. Cancer 2017, 123, 2634–2641. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Liao, W.; Zhang, M.; Huang, J.; Zhang, P.; Li, Q. Cost-Effectiveness of Tucatinib in Human Epidermal Growth Factor Receptor 2–Positive Metastatic Breast Cancer From the US and Chinese Perspectives. Front. Oncol. 2020, 10, 1336. [Google Scholar] [CrossRef]
- Dong, L.; Lin, S.; Zhong, L.; Nian, D.; Li, Y.; Wang, R.; Zhou, W.; Weng, X.; Xu, X. Evaluation of Tucatinib in HER2-Positive Breast Cancer Patients With Brain Metastases: A United States-Based Cost-Effectiveness Analysis. Clin. Breast Cancer 2021, 22, e21–e29. [Google Scholar] [CrossRef] [PubMed]
- Russo, P.; Zanuzzi, M.; Carletto, A.; Sammarco, A.; Romano, F.; Manca, A. Role of Economic Evaluations on Pricing of Medicines Reimbursed by the Italian National Health Service. Pharmacoeconomics 2022, 1–11. [Google Scholar] [CrossRef]
Parameters | Value | Range of Variation (Confidence Interval or Standard Error) | Distribution | Source |
---|---|---|---|---|
Clinical input | ||||
Age (mean) | 54 years | 0.44 | Normal | [11] |
Body surface (mean) | 1.8 m2 | 0.18 | Normal | [11] |
Weight (Kg) | 69.5 kg | 6.95 | Normal | [11] |
Treatment efficacy vs. lapatinib + capecitabine (PFS) | ||||
Tucatinib + trastuzumab + capecitabine | 0.56 | 0.50–0.61 | Log-normal | [19] |
TDM-1 | 0.65 | 0.59–0.72 | Log-normal | [19] |
Efficacy of treatments vs. lapatinib + capecitabine (Survival) | ||||
Tucatinib + trastuzumab + capecitabine | 0.60 | 0.54–0.66 | Log-normal | [19] |
TDM-1 | 0.70 | 0.63–0.77 | Log-normal | [19] |
Treatment duration | ||||
Tucatinib + trastuzumab + capecitabine | Flexible Weibull—2 knots (mean duration in months: 12.3) | - | Normal multivariate | [11] |
TDM-1 | Exponential (mean duration in months: 11.11) | - | Exponential | [18] |
Treatment duration in the post-progression phase (months) | ||||
Trastuzumab | 5.70 | 0.31 | Normal | [11] |
Pertuzumab | 10.35 | 1.03 | Normal | [20] |
Lapatinib | 4.4 | 0.44 | Normal | [21] |
T-DM1 | 9.60 | 0.96 | Normal | [22] |
Duration of antidiarrheal treatment (loperamide) in days | ||||
Tucatinib + trastuzumab + capecitabine | 21.63 | 2.16 | Normal | [11] |
T-DM1 | 5.80 | 0.58 | Normal | [11] |
Dose intensity | ||||
tucatinib + trastuzumab + capecitabine | ||||
Tucatinib | 88.5% | 0.01 | Beta | [11] |
Capecitabine | 73.9% | 0.01 | Beta | [11] |
Trastuzumab (cycle 1) | 100% | - | Fixed | [11] |
Trastuzumab (cycle 2+) | 73.9% | 0.01 | Beta | [11] |
T-DM1 | ||||
T-DM1 | 97.2% | 0.01 | Beta | [22] |
Adverse events, grade ≥ 3 | ||||
tucatinib + trastuzumab + capecitabine | ||||
Hand–foot syndrome | 13.1% | α = 53, β = 351 | Beta | [11] |
Diarrhea | 12.9% | α = 52, β = 352 | Beta | [11] |
Alanine aminotransferase increased | 5.4% | α = 22, β = 382 | Beta | [11] |
Fatigue | 4.7% | α = 19, β = 385 | Beta | [11] |
Aspartate aminotransferase increased | 4.5% | α = 18, β = 386 | Beta | [11] |
Anemia | 3.7% | α = 15, β = 389 | Beta | [11] |
Nausea | 3.7% | α = 15, β = 389 | Beta | [11] |
Neutropenia | 0.0% | α = 0, β = 404 | Beta | [11] |
Vomiting | 3.0% | α = 12, β = 392 | Beta | [11] |
Hypokalemia | 0.0% | α = 0, β = 404 | Beta | [11] |
Inflammation of mucous membrane | 0.0% | α = 0, β = 404 | Beta | [11] |
Thrombocytopenia | 0.0% | α = 0, β = 404 | Beta | [11] |
Stomatitis | 2.5% | α = 10, β = 394 | Beta | [11] |
TDM-1 | ||||
Hand–foot syndrome | 0.00 | α = 0, β = 490 | Beta | [22] |
Diarrhea | 0.02 | α = 8, β = 482 | Beta | [22] |
Alanine aminotransferase increased | 0.03 | α = 14, β = 476 | Beta | [22] |
Fatigue | 0.02 | α = 12, β = 478 | Beta | [22] |
Aspartate aminotransferase increased | 0.04 | α = 21, β = 469 | Beta | [22] |
Anemia | 0.03 | α = 13, β = 477 | Beta | [22] |
Nausea | 0.01 | α = 4, β = 486 | Beta | [22] |
Neutropenia | 0.02 | α = 10, β = 480 | Beta | [22] |
Vomiting | 0.01 | α = 4, β = 486 | Beta | [22] |
Hypokalemia | 0.02 | α = 11, β = 479 | Beta | [22] |
Inflammation of mucous membrane | 0.00 | α = 1, β = 489 | Beta | [22] |
Thrombocytopenia | 0.13 | α = 63, β = 427 | Beta | [22] |
Stomatitis | 0.00 | α = 0, β = 490 | Beta | [22] |
Monthly costs per health status (EUR) | ||||
Progression-free | 98.17 | 9.82 | Gamma | [23,24] |
Progression | 98.17 | 9.82 | Gamma | |
Death | 14,316.00 | 1431.60 | Gamma | [25] |
Costs for each adverse event of grade ≥ 3 (EUR) | ||||
Hand–foot syndrome | 728.00 | 72.8 | Gamma | [23] |
Diarrhea | 238.00 | 23.8 | Gamma | |
Alanine aminotransferase increased | 236.00 | 23.6 | Gamma | |
Fatigue | 209.00 | 20.9 | Gamma | |
Aspartate aminotransferase increased | 236.00 | 23.6 | Gamma | |
Anemia | 1676.00 | 167.6 | Gamma | |
Nausea | 238.00 | 23.8 | Gamma | |
Neutropenia | 1993.00 | 199.3 | Gamma | |
Vomiting | 238.00 | 23.8 | Gamma | |
Hypokalemia | 216.00 | 21.6 | Gamma | |
Inflammation of mucous membrane | 222.00 | 22.2 | Gamma | |
Thrombocytopenia | 2748.00 | 274.8 | Gamma | |
Stomatitis | 269.00 | 26.9 | Gamma | |
Costs of therapies (EUR) | ||||
Capecitabine (500 mg × 120) | 113.67 | Fixed | [26] | |
Trastuzumab (150 mg) | 1294.63 | Fixed | [26] | |
TDM-1 (100 mg) | 1837.32 | Fixed | [26] | |
Costs of drugs used during post-progression phase (EUR) | ||||
Lapatinib (250 mg × 84) | 1326.67 | Fixed | [26] | |
Pertuzumab (420 mg) | 2885.91 | Fixed | [26] | |
Cost of supportive therapy (EUR) | ||||
Loperamide (2 mg × 30) | 2.59 | Fix | [26] | |
Treatment during post-progression phase: treatment subsequent to tucatinib + trastuzumab + capecitabine | ||||
Trastuzumab | 51.0% | α = 149, β = 143 | Beta | [11] |
Lapatinib | 13.4% | α = 39, β = 253 | Beta | [11] |
Pertuzumab | 4.0% | α = 12, β = 280 | Beta | [11] |
TDM-1 | 1.8% | α = 5, β = 287 | Beta | [11] |
Administration costs (EUR) | ||||
Tucatinib | 0 | - | Assumption | |
Capecitabine | 0 | - | Assumption | |
Trastuzumab | 371.00 | 37.10 | Gamma | [23] |
Pertuzumab | 371.00 | 37.10 | Gamma | |
T-DM1 | 371.00 | 37.10 | Gamma | |
Lapatinib | 0 | - | Assumption |
Costs (EUR) | Delta Costs | LYs | Delta LYs | ICER (EUR Per LY Gained) | |
---|---|---|---|---|---|
TDM-1 | 109,082 | 2.83 | |||
Tucatinib + trastuzumab + capecitabine | 125,710 | 16,628 | 3.11 | 0.28 | 60,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonazzo, I.C.; Cortesi, P.A.; Miceli Sopo, G.; Mazzaglia, G.; Conte, P.; Mantovani, L.G. The Value of Tucatinib in Metastatic HER2-Positive Breast Cancer Patients: An Italian Cost-Effectiveness Analysis. Cancers 2023, 15, 1175. https://doi.org/10.3390/cancers15041175
Antonazzo IC, Cortesi PA, Miceli Sopo G, Mazzaglia G, Conte P, Mantovani LG. The Value of Tucatinib in Metastatic HER2-Positive Breast Cancer Patients: An Italian Cost-Effectiveness Analysis. Cancers. 2023; 15(4):1175. https://doi.org/10.3390/cancers15041175
Chicago/Turabian StyleAntonazzo, Ippazio Cosimo, Paolo Angelo Cortesi, Gerardo Miceli Sopo, Giampiero Mazzaglia, Pierfranco Conte, and Lorenzo Giovanni Mantovani. 2023. "The Value of Tucatinib in Metastatic HER2-Positive Breast Cancer Patients: An Italian Cost-Effectiveness Analysis" Cancers 15, no. 4: 1175. https://doi.org/10.3390/cancers15041175
APA StyleAntonazzo, I. C., Cortesi, P. A., Miceli Sopo, G., Mazzaglia, G., Conte, P., & Mantovani, L. G. (2023). The Value of Tucatinib in Metastatic HER2-Positive Breast Cancer Patients: An Italian Cost-Effectiveness Analysis. Cancers, 15(4), 1175. https://doi.org/10.3390/cancers15041175