Sex- and Female Age-Dependent Differences in Gene Expression in Diffuse Large B-Cell Lymphoma—Possible Estrogen Effects
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Analysis of RNA Sequencing Data
2.2. Immunohistochemistry (IHC) of DLBCL Tissue Microarray (TMA)
2.3. Cells, Mice, and Grafting Experiments
2.4. RNA Extraction and Reverse Transcription Quantitative Real-Time PCR (RT-qPCR)
2.5. Statistical Analysis
2.6. Ethical Considerations
3. Results
3.1. Sex Differences in Gene Expression in DLBCL
3.2. Differences in Gene Expression in DLBCL between Females in Pre- and Postmenopausal Age
3.3. Regulation of NR4A and MUC5B Expression in ABC DLBCL by Estrogens
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martelli, M.; Ferreri, A.J.; Agostinelli, C.; Di Rocco, A.; Pfreundschuh, M.; Pileri, S.A. Diffuse large B-cell lymphoma. Crit. Rev. Oncol. Hematol. 2013, 87, 146–171. [Google Scholar] [CrossRef]
- Klener, P.; Klanova, M. Drug Resistance in Non-Hodgkin Lymphomas. Int. J. Mol. Sci. 2020, 21, 2081. [Google Scholar] [CrossRef] [Green Version]
- Reddy, A.; Zhang, J.; Davis, N.S.; Moffitt, A.B.; Love, C.L.; Waldrop, A.; Leppa, S.; Pasanen, A.; Meriranta, L.; Karjalainen-Lindsberg, M.L.; et al. Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma. Cell 2017, 171, 481–494.e15. [Google Scholar] [CrossRef] [Green Version]
- Scott, D.W.; Mottok, A.; Ennishi, D.; Wright, G.W.; Farinha, P.; Ben-Neriah, S.; Kridel, R.; Barry, G.S.; Hother, C.; Abrisqueta, P.; et al. Prognostic Significance of Diffuse Large B-Cell Lymphoma Cell of Origin Determined by Digital Gene Expression in Formalin-Fixed Paraffin-Embedded Tissue Biopsies. J. Clin. Oncol. 2015, 33, 2848–2856. [Google Scholar] [CrossRef]
- Morin, R.D.; Arthur, S.E.; Hodson, D.J. Molecular profiling in diffuse large B-cell lymphoma: Why so many types of subtypes? Br. J. Haematol. 2022, 196, 814–829. [Google Scholar] [CrossRef]
- Costas, L.; de Sanjose, S.; Infante-Rivard, C. Reproductive factors and non-Hodgkin lymphoma: A systematic review. Crit. Rev. Oncol. Hematol. 2014, 92, 181–193. [Google Scholar] [CrossRef]
- Horesh, N.; Horowitz, N.A. Does gender matter in non-hodgkin lymphoma? Differences in epidemiology, clinical behavior, and therapy. Rambam Maimonides Med. J. 2014, 5, e0038. [Google Scholar] [CrossRef] [PubMed]
- Morton, L.M.; Wang, S.S.; Devesa, S.S.; Hartge, P.; Weisenburger, D.D.; Linet, M.S. Lymphoma incidence patterns by WHO subtype in the United States, 1992–2001. Blood 2006, 107, 265–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, U.; Richter, J.; Stuhlmann-Laiesz, C.; Kreuz, M.; Nagel, I.; Horn, H.; Staiger, A.M.; Aukema, S.M.; Hummel, M.; Ott, G.; et al. Advanced patient age at diagnosis of diffuse large B-cell lymphoma is associated with molecular characteristics including ABC-subtype and high expression of MYC. Leuk. Lymphoma 2018, 59, 1213–1221. [Google Scholar] [CrossRef] [PubMed]
- Hedstrom, G.; Peterson, S.; Berglund, M.; Jerkeman, M.; Enblad, G.; Swedish Lymphoma Study Group. Male gender is an adverse risk factor only in young patients with diffuse large B-cell lymphoma—A Swedish population-based study. Acta Oncol. 2015, 54, 924–932. [Google Scholar] [CrossRef]
- Lee, J.S.; Bracci, P.M.; Holly, E.A. Non-Hodgkin lymphoma in women: Reproductive factors and exogenous hormone use. Am. J. Epidemiol. 2008, 168, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Prescott, J.; Lu, Y.; Chang, E.T.; Sullivan-Halley, J.; Henderson, K.D.; Clarke, C.A.; Ma, H.; Templeman, C.; Deapen, D.; Bernstein, L. Reproductive factors and non-Hodgkin lymphoma risk in the California Teachers Study. PLoS ONE 2009, 4, e8135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kane, E.V.; Bernstein, L.; Bracci, P.M.; Cerhan, J.R.; Costas, L.; Dal Maso, L.; Holly, E.A.; La Vecchia, C.; Matsuo, K.; Sanjose, S.; et al. Postmenopausal hormone therapy and non-Hodgkin lymphoma: A pooled analysis of InterLymph case-control studies. Ann. Oncol. 2013, 24, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Hasni, M.S.; Berglund, M.; Yakimchuk, K.; Guan, J.; Linderoth, J.; Amini, R.M.; Enblad, G.; Okret, S. Estrogen receptor beta1 in diffuse large B-cell lymphoma growth and as a prognostic biomarker. Leuk. Lymphoma 2017, 58, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Yakimchuk, K.; Iravani, M.; Hasni, M.S.; Rhonnstad, P.; Nilsson, S.; Jondal, M.; Okret, S. Effect of ligand-activated estrogen receptor beta on lymphoma growth in vitro and in vivo. Leukemia 2011, 25, 1103–1110. [Google Scholar] [CrossRef]
- Talaber, G.; Yakimchuk, K.; Guan, J.; Inzunza, J.; Okret, S. Inhibition of estrogen biosynthesis enhances lymphoma growth in mice. Oncotarget 2016, 7, 20718–20727. [Google Scholar] [CrossRef] [Green Version]
- Yakimchuk, K.; Jondal, M.; Okret, S. Estrogen receptor alpha and beta in the normal immune system and in lymphoid malignancies. Mol. Cell. Endocrinol. 2013, 375, 121–129. [Google Scholar] [CrossRef]
- Yakimchuk, K.; Hasni, M.S.; Guan, J.; Chao, M.P.; Sander, B.; Okret, S. Inhibition of lymphoma vascularization and dissemination by estrogen receptor beta agonists. Blood 2014, 123, 2054–2061. [Google Scholar] [CrossRef] [Green Version]
- Langendonk, M.; de Jong, M.R.W.; Smit, N.; Seiler, J.; Reitsma, B.; Ammatuna, E.; Glaudemans, A.; van den Berg, A.; Huls, G.A.; Visser, L.; et al. Identification of the estrogen receptor beta as a possible new tamoxifen-sensitive target in diffuse large B-cell lymphoma. Blood Cancer J. 2022, 12, 36. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012, 16, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Persson Skare, T.; Sjoberg, E.; Berglund, M.; Smith, R.O.; Roche, F.P.; Lindskog, C.; Sander, B.; Glimelius, I.; Gholiha, A.R.; Enblad, G.; et al. Marginal zone lymphoma expression of histidine-rich glycoprotein correlates with improved survival. EJHaem 2020, 1, 199–207. [Google Scholar] [CrossRef]
- Sabattini, E.; Bacci, F.; Sagramoso, C.; Pileri, S.A. WHO classification of tumours of haematopoietic and lymphoid tissues in 2008: An overview. Pathologica 2010, 102, 83–87. [Google Scholar] [PubMed]
- Zhu, D.; Chung, H.F.; Dobson, A.J.; Pandeya, N.; Giles, G.G.; Bruinsma, F.; Brunner, E.J.; Kuh, D.; Hardy, R.; Avis, N.E.; et al. Age at natural menopause and risk of incident cardiovascular disease: A pooled analysis of individual patient data. Lancet Public Health 2019, 4, e553–e564. [Google Scholar] [CrossRef] [Green Version]
- Safe, S.; Karki, K. The Paradoxical Roles of Orphan Nuclear Receptor 4A (NR4A) in Cancer. Mol. Cancer Res. 2021, 19, 180–191. [Google Scholar] [CrossRef]
- Kufe, D.W. Mucins in cancer: Function, prognosis and therapy. Nat. Rev. Cancer 2009, 9, 874–885. [Google Scholar] [CrossRef] [Green Version]
- Brueggemeier, R.W.; Hackett, J.C.; Diaz-Cruz, E.S. Aromatase inhibitors in the treatment of breast cancer. Endocr. Rev. 2005, 26, 331–345. [Google Scholar] [CrossRef] [Green Version]
- Vanura, K. Sex as decisive variable in lymphoid neoplasms-an update. ESMO Open 2021, 6, 100001. [Google Scholar] [CrossRef]
- Yildirim, M.; Kaya, V.; Demirpence, O.; Paydas, S. The role of gender in patients with diffuse large B cell lymphoma treated with rituximab-containing regimens: A meta-analysis. Arch Med. Sci. 2015, 11, 708–714. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.H.; Hsiao, F.Y.; Chen, L.J.; Chen, H.M.; Ko, B.S. Women with Diffuse Large B Cell Lymphoma Benefit More from Rituximab-Containing Chemotherapy. J. Womens Health (Larchmt) 2019, 28, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Hasselblom, S.; Ridell, B.; Nilsson-Ehle, H.; Andersson, P.O. The impact of gender, age and patient selection on prognosis and outcome in diffuse large B-cell lymphoma—A population-based study. Leuk. Lymphoma 2007, 48, 736–745. [Google Scholar] [CrossRef] [PubMed]
- Perez-Sieira, S.; Lopez, M.; Nogueiras, R.; Tovar, S. Regulation of NR4A by nutritional status, gender, postnatal development and hormonal deficiency. Sci. Rep. 2014, 4, 4264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagai, S.; Ikeda, K.; Horie-Inoue, K.; Takeda, S.; Inoue, S. Estrogen signaling increases nuclear receptor subfamily 4 group A member 1 expression and energy production in skeletal muscle cells. Endocr. J. 2018, 65, 1209–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deutsch, A.J.; Rinner, B.; Wenzl, K.; Pichler, M.; Troppan, K.; Steinbauer, E.; Schwarzenbacher, D.; Reitter, S.; Feichtinger, J.; Tierling, S.; et al. NR4A1-mediated apoptosis suppresses lymphomagenesis and is associated with a favorable cancer-specific survival in patients with aggressive B-cell lymphomas. Blood 2014, 123, 2367–2377. [Google Scholar] [CrossRef]
- Mullican, S.E.; Zhang, S.; Konopleva, M.; Ruvolo, V.; Andreeff, M.; Milbrandt, J.; Conneely, O.M. Abrogation of nuclear receptors Nr4a3 and Nr4a1 leads to development of acute myeloid leukemia. Nat. Med. 2007, 13, 730–735. [Google Scholar] [CrossRef]
- Deutsch, A.J.A.; Rinner, B.; Pichler, M.; Prochazka, K.; Pansy, K.; Bischof, M.; Fechter, K.; Hatzl, S.; Feichtinger, J.; Wenzl, K.; et al. NR4A3 Suppresses Lymphomagenesis through Induction of Proapoptotic Genes. Cancer Res. 2017, 77, 2375–2386. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Huang, Z.; Indukuri, R.; Bangalore Revanna, C.; Berglund, M.; Guan, J.; Yakimchuk, K.; Damdimopoulos, A.; Williams, C.; Okret, S. Estrogen Receptor beta (ESR2) Transcriptome and Chromatin Binding in a Mantle Cell Lymphoma Tumor Model Reveal the Tumor-Suppressing Mechanisms of Estrogens. Cancers 2022, 14, 3098. [Google Scholar] [CrossRef]
- Valque, H.; Gouyer, V.; Gottrand, F.; Desseyn, J.L. MUC5B leads to aggressive behavior of breast cancer MCF7 cells. PLoS ONE 2012, 7, e46699. [Google Scholar] [CrossRef]
- Walsh, M.D.; Clendenning, M.; Williamson, E.; Pearson, S.A.; Walters, R.J.; Nagler, B.; Packenas, D.; Win, A.K.; Hopper, J.L.; Jenkins, M.A.; et al. Expression of MUC2, MUC5AC, MUC5B, and MUC6 mucins in colorectal cancers and their association with the CpG island methylator phenotype. Mod. Pathol. 2013, 26, 1642–1656. [Google Scholar] [CrossRef] [Green Version]
- Nagashio, R.; Ueda, J.; Ryuge, S.; Nakashima, H.; Jiang, S.X.; Kobayashi, M.; Yanagita, K.; Katono, K.; Satoh, Y.; Masuda, N.; et al. Diagnostic and prognostic significances of MUC5B and TTF-1 expressions in resected non-small cell lung cancer. Sci. Rep. 2015, 5, 8649. [Google Scholar] [CrossRef] [Green Version]
- Lahdaoui, F.; Messager, M.; Vincent, A.; Hec, F.; Gandon, A.; Warlaumont, M.; Renaud, F.; Leteurtre, E.; Piessen, G.; Jonckheere, N.; et al. Depletion of MUC5B mucin in gastrointestinal cancer cells alters their tumorigenic properties: Implication of the Wnt/beta-catenin pathway. Biochem. J. 2017, 474, 3733–3746. [Google Scholar] [CrossRef]
- Aggarwal, V.; Srinivasan, R.; Bal, A.; Malhotra, P.; Prakash, P.; Varma, S.; Das, A. Mutational Spectrum of Stromal Genes By Whole Exome Sequencing and Stromal-Cellular Interaction in Diffuse Large B-Cell Lymphoma. Blood 2015, 126, 2649. [Google Scholar] [CrossRef]
- Choi, H.J.; Chung, Y.S.; Kim, H.J.; Moon, U.Y.; Choi, Y.H.; Van Seuningen, I.; Baek, S.J.; Yoon, H.G.; Yoon, J.H. Signal pathway of 17beta-estradiol-induced MUC5B expression in human airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 2009, 40, 168–178. [Google Scholar] [CrossRef]
- Acconcia, F.; Totta, P.; Ogawa, S.; Cardillo, I.; Inoue, S.; Leone, S.; Trentalance, A.; Muramatsu, M.; Marino, M. Survival versus apoptotic 17beta-estradiol effect: Role of ER alpha and ER beta activated non-genomic signaling. J. Cell. Physiol. 2005, 203, 193–201. [Google Scholar] [CrossRef]
- Strom, A.; Hartman, J.; Foster, J.S.; Kietz, S.; Wimalasena, J.; Gustafsson, J.A. Estrogen receptor beta inhibits 17beta-estradiol-stimulated proliferation of the breast cancer cell line T47D. Proc. Natl. Acad. Sci. USA 2004, 101, 1566–1571. [Google Scholar] [CrossRef] [Green Version]
- Boulet, S.; Le Corre, L.; Odagiu, L.; Labrecque, N. Role of NR4A family members in myeloid cells and leukemia. Curr. Res. Immunol. 2022, 3, 23–36. [Google Scholar] [CrossRef]
- Crean, D.; Murphy, E.P. Targeting NR4A Nuclear Receptors to Control Stromal Cell Inflammation, Metabolism, Angiogenesis, and Tumorigenesis. Front. Cell Dev. Biol. 2021, 9, 589770. [Google Scholar] [CrossRef]
- Garcia, E.P.; Tiscornia, I.; Libisch, G.; Trajtenberg, F.; Bollati-Fogolin, M.; Rodriguez, E.; Noya, V.; Chiale, C.; Brossard, N.; Robello, C.; et al. MUC5B silencing reduces chemo-resistance of MCF-7 breast tumor cells and impairs maturation of dendritic cells. Int. J. Oncol. 2016, 48, 2113–2123. [Google Scholar] [CrossRef] [Green Version]
- Hiwa, R.; Nielsen, H.V.; Mueller, J.L.; Mandla, R.; Zikherman, J. NR4A family members regulate T cell tolerance to preserve immune homeostasis and suppress autoimmunity. JCI Insight 2021, 6, e151005. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, D.; Berglund, M.; Damdimopoulos, A.; Antonson, P.; Lindskog, C.; Enblad, G.; Amini, R.-M.; Okret, S. Sex- and Female Age-Dependent Differences in Gene Expression in Diffuse Large B-Cell Lymphoma—Possible Estrogen Effects. Cancers 2023, 15, 1298. https://doi.org/10.3390/cancers15041298
Huang D, Berglund M, Damdimopoulos A, Antonson P, Lindskog C, Enblad G, Amini R-M, Okret S. Sex- and Female Age-Dependent Differences in Gene Expression in Diffuse Large B-Cell Lymphoma—Possible Estrogen Effects. Cancers. 2023; 15(4):1298. https://doi.org/10.3390/cancers15041298
Chicago/Turabian StyleHuang, Dan, Mattias Berglund, Anastasios Damdimopoulos, Per Antonson, Cecilia Lindskog, Gunilla Enblad, Rose-Marie Amini, and Sam Okret. 2023. "Sex- and Female Age-Dependent Differences in Gene Expression in Diffuse Large B-Cell Lymphoma—Possible Estrogen Effects" Cancers 15, no. 4: 1298. https://doi.org/10.3390/cancers15041298
APA StyleHuang, D., Berglund, M., Damdimopoulos, A., Antonson, P., Lindskog, C., Enblad, G., Amini, R. -M., & Okret, S. (2023). Sex- and Female Age-Dependent Differences in Gene Expression in Diffuse Large B-Cell Lymphoma—Possible Estrogen Effects. Cancers, 15(4), 1298. https://doi.org/10.3390/cancers15041298