Clinical Prediction Models for Recurrence in Patients with Resectable Grade 1 and 2 Sporadic Non-Functional Pancreatic Neuroendocrine Tumors: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility
2.3. Data Extraction and Analysis
2.4. Definitions and Terminology
3. Results
3.1. Baseline Characteristics
3.2. Preoperative Prediction Models
3.3. Postoperative Prediction Models
3.4. Predictor Selection
3.5. Grading
3.6. Discrimination
3.7. Calibration
3.8. Critical Appraisal
4. Discussion
5. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Search Term (1883 Hits)
References
- Yao, J.C.; Hassan, M.; Phan, A.; Dagohoy, C.; Leary, C.; Mares, J.E.; Abdalla, E.K.; Fleming, J.B.; Vauthey, J.; Rashid, A.; et al. One hundred years after “carcinoid”: Epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J. Clin. Oncol. 2008, 26, 3063–3072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fathi, A.H.R.J.; Barati, M.; Choudhury, U.; Chen, A.; Sosa, J.A. Predicting aggressive behavior in nonfunctional pancreatic neuroendocrine tumors with emphasis on tumor size significance and survival trends: A population-based analysis of 1187 patients. Am. Surg. 2020, 86, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Genç, C.G.; Klumpen, H.J.; van Oijen, M.G.H.; van Eijck, C.H.J.; Nieveen van Dijkum, E.J.M. A Nationwide Population-Based Study on the Survival of Patients with Pancreatic Neuroendocrine Tumors in The Netherlands. World J. Surg. 2018, 42, 490–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zerbi, A.; Falconi, M.; Rindi, G.; Delle Fave, G.; Tomassetti, P.; Pasquali, C.; Capitanio, C.; Boninsegna, L.; Di Carlo, V.; AISP-Network Study Group. Clinicopathological features of pancreatic endocrine tumors: A prospective multicenter study in Italy of 297 sporadic cases. Am. J. Gastroenterol. 2010, 105, 1421–1429. [Google Scholar] [CrossRef] [PubMed]
- Strosberg, J.R.; Cheema, A.; Weber, J.M.; Ghayouri, M.; Han, G.; Hodul, P.J.; Kvols, L.K. Relapse-free survival in patients with nonmetastatic, surgically resected pancreatic neuroendocrine tumors: An analysis of the AJCC and ENETS staging classifications. Ann. Surg. 2012, 256, 321–325. [Google Scholar] [CrossRef]
- Akirov, A.; Larouche, V.; Alshehri, S.; Asa, S.L.; Ezzat, S. Treatment Options for Pancreatic Neuroendocrine Tumors. Cancers 2019, 11, 828. [Google Scholar] [CrossRef] [Green Version]
- Falconi, M.; Eriksson, B.; Kaltsas, G.; Bartsch, D.K.; Capdevila, J.; Caplin, M.; Koskudla, B.; Kwekkeboom, D.; Rindi, G.; Klöppel, G.; et al. ENETS consensus guidelines update for the management of patients with functional pancreatic neuroendocrine tumors and non-functional pancreatic neuroendocrine tumors. Neuroendocrinology 2016, 103, 153–171. [Google Scholar] [CrossRef] [Green Version]
- Pavel, M.; O’Toole, D.; Costa, F.; Capdevila, J.; Gross, D.; Kianmanesh, R.; Krenning, E.; Knigge, U.; Salazar, R.; Pape, U.-F.; et al. ENETS Consensus Guidelines Update for the Management of Distant Metastatic Disease of Intestinal, Pancreatic, Bronchial Neuroendocrine Neoplasms (NEN) and NEN of Unknown Primary Site. Neuroendocrinology 2016, 103, 172–185. [Google Scholar] [CrossRef]
- Ambrosini, V.; Kunikowska, J.; Baudin, E.; Bodei, L.; Bouvier, C.; Capdevila, J.; Cremonesi, M.; de Herder, W.; Dromain, C.; Falconi, M.; et al. Consensus on molecular imaging and theranostics in neuroendocrine neoplasms. Eur. J. Cancer 2021, 146, 56–73. [Google Scholar] [CrossRef]
- Knigge, U.; Capdevila, J.; Bartsch, D.K.; Baudin, E.; Falkerby, J.; Kianmanesh, R.; Kos-Kudla, B.; Niederle, B.; Nieveen van Dijkum, E.J.M.; O’Toole, D.; et al. ENETS Consensus Recommendations for the Standards of Care in Neuroendocrine Neoplasms: Follow-Up and Documentation. Neuroendocrinology 2017, 105, 310–319. [Google Scholar] [CrossRef] [Green Version]
- Pulvirenti, A.; Javed, A.A.; Landoni, L.; Jamieson, N.B.; Chou, J.F.; Miotto, M.; He, J.; Pea, A.; Tang, L.H.; Nessi, C.; et al. Multi-institutional Development and External Validation of a Nomogram to Predict Recurrence after Curative Resection of Pancreatic Neuroendocrine Tumors. Ann. Surg. 2021, 274, 1051–1057. [Google Scholar] [CrossRef]
- Genç, C.G.; Falconi, M.; Partelli, S.; Muffatti, F.; van Eeden, S.; Doglioni, C.; Klümpen, H.J.; van Eijck, C.H.J.; Nieveen van Dijkum, E.J.M. Recurrence of Pancreatic Neuroendocrine Tumors and Survival Predicted by Ki67. Ann. Surg. Oncol. 2018, 25, 2467–2474. [Google Scholar] [CrossRef]
- Zaidi, M.Y.; Lopez-Aguiar, A.G.; Switchenko, J.M.; Lipscomb, J.; Andreasi, V.; Partelli, S.; Gamboa, A.C.; Lee, R.M.; Poultsides, G.A.; Dillhoff, M.; et al. A Novel Validated Recurrence Risk Score to Guide a Pragmatic Surveillance Strategy After Resection of Pancreatic Neuroendocrine Tumors. Ann. Surg. 2019, 270, 422–433. [Google Scholar] [CrossRef]
- Kulke, M.H.; Anthony, L.B.; Bushnell, D.L.; De Herder, W.W.; Goldsmith, S.J.; Klimstra, D.S.; Marx, S.J.; Pasieka, J.L.; Pommier, R.F.; Yao, J.C.; et al. NANETS Treatment Guidelines: Well-Differentiated Neuroendocrine Tumors of the Stomach and Pancreas. Pancreas 2010, 39, 735–752. [Google Scholar] [CrossRef] [Green Version]
- Kulke, M.H.; Shah, M.H.; Benson, A.B., 3rd; Bergsland, E.; Berlin, J.D.; Blaszkowsky, L.S.; Emerson, L.; Engstrom, P.F.; Fanta, P.; Giordano, T.; et al. National comprehensive cancer network. Neuroendocrine tumors, version 1.2015. J. Natl. Compr. Cancer Netw. 2015, 13, 78–108. [Google Scholar] [CrossRef]
- Jensen, R.T.; Bodei, L.; Capdevila, J.; Couvelard, A.; Falconi, M.; Glasberg, S.; Kloppel, G.; Lamberts, S.; Peeters, M.; Rindi, G.; et al. Unmet Needs in Functional and Nonfunctional Pancreatic Neuroendocrine Neoplasms. Neuroendocrinology 2019, 108, 26–36. [Google Scholar] [CrossRef]
- Moons, K.G.; Altman, D.G.; Reitsma, J.B.; Collins, G.S. New Guideline for the Reporting of Studies Developing, Validating, or Updating a Multivariable Clinical Prediction Model: The TRIPOD Statement. Adv. Anat. Pathol. 2015, 22, 303–305. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef]
- Lloyd, R.V.O.R.; Klöppel, G.; Rosai, J. WHO Classification of Tumours of Endocrine Organs, 4th ed.; International Agency for Research on Cancer: Lyon, France, 2017; p. 355. [Google Scholar]
- Luo, G.; Javed, A.; Strosberg, J.R.; Jin, K.; Zhang, Y.; Liu, C.; Xu, J.; Soares, K.; Weiss, M.J.; Zheng, L.; et al. Modified Staging Classification for Pancreatic Neuroendocrine Tumors on the Basis of the American Joint Committee on Cancer and European Neuroendocrine Tumor Society Systems. J. Clin. Oncol. 2017, 35, 274–280. [Google Scholar] [CrossRef]
- Moons, K.G.; de Groot, J.A.; Bouwmeester, W.; Vergouwe, Y.; Mallett, S.; Altman, D.G.; Reitsma, J.B.; Collins, G.S. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: The CHARMS checklist. PLoS Med. 2014, 11, e1001744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolff, R.F.; Moons, K.G.M.; Riley, R.D.; Whiting, P.F.; Westwood, M.; Collins, G.S.; Reitsma, J.B.; Kleijnen, J.; Mallett, S. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann. Intern. Med. 2019, 170, 51–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steyerberg, E.W.; Moons, K.G.M.; van der Windt, D.A.; Hayden, J.A.; Perel, P.; Schroter, S.; Riley, R.D.; Hemingway, H.; Altman, D.G. Prognosis Research Strategy (PROGRESS) 3: Prognostic model research. PLoS Med. 2013, 10, e1001381. [Google Scholar] [CrossRef] [Green Version]
- Altman, D.G.; Vergouwe, Y.; Royston, P.; Moons, K.G.M. Prognosis and prognostic research: Validating a prognostic model. BMJ 2009, 338, b605. [Google Scholar] [CrossRef] [PubMed]
- Royston, P.; Moons, K.G.M.; Altman, D.G.; Vergouwe, Y. Prognosis and prognostic research: Developing a prognostic model. BMJ 2009, 338, b604. [Google Scholar] [CrossRef]
- Harrell, F.E. Regression Modeling Strategies: With Applications to Linear Models lr, and Survival Analysis; Springer: New York, NY, USA, 2001. [Google Scholar]
- Moons, K.G.; Kengne, A.P.; Grobbee, D.E.; Royston, P.; Vergouwe, Y.; Altman, D.G.; Woodward, M. Risk prediction models: II. External validation, model updating, and impact assessment. Heart 2012, 98, 691–698. [Google Scholar] [CrossRef]
- Steyerberg, E.W. Clinical Prediction Models: A Practical Approach to Development V, and Updating; Springer: New York, NY, USA, 2009. [Google Scholar]
- Dong, D.H.; Zhang, X.F.; Lopez-Aguiar, A.G.; Poultsides, G.; Rocha, F.; Weber, S.; Fields, R.l.; Idrees, K.; Cho, C.; Maithel, S.K.; et al. Recurrence of Non-functional Pancreatic Neuroendocrine Tumors After Curative Resection: A Tumor Burden-Based Prediction Model. World J. Surg. 2021, 45, 2134–2141. [Google Scholar] [CrossRef]
- Sun, H.T.; Zhang, S.L.; Liu, K.; Zhou, J.J.; Wang, X.X.; Shen, T.T.; Song, X.H.; Guo, Y.L.; Wang, X.L. MRI-based nomogram estimates the risk of recurrence of primary nonmetastatic pancreatic neuroendocrine tumors after curative resection. J. Magn. Reson. Imaging 2019, 50, 397–409. [Google Scholar] [CrossRef]
- Ballian, N.; Loeffler, A.G.; Rajamanickam, V.; Norstedt, P.A.; Weber, S.M.; Cho, C.S. A simplified prognostic system for resected pancreatic neuroendocrine neoplasms. HPB 2009, 11, 422–428. [Google Scholar] [CrossRef] [Green Version]
- Fisher, A.V.; Lopez-Aguiar, A.G.; Rendell, V.R.; Pokrzywa, C.; Rocha, F.G.; Kanji, Z.S.; Poultsides, G.A.; Eleftherios, A.M.; Dillhoff, M.E.; Beal, E.W.; et al. Predictive Value of Chromogranin A and a Pre-Operative Risk Score to Predict Recurrence after Resection of Pancreatic Neuroendocrine Tumors. J. Gastrointest. Surg. 2019, 23, 651–658. [Google Scholar] [CrossRef]
- Genç, C.G.; Jilesen, A.P.; Partelli, S.; Falconi, M.; Muffatti, F.; van Kemenade, F.J.; van Eeden, S.; Verheij, J.; van Dieren, S.; van Eijck, C.H.J.; et al. A New Scoring System to Predict Recurrent Disease in Grade 1 and 2 Nonfunctional Pancreatic Neuroendocrine Tumors. Ann. Surg. 2018, 267, 1148–1154. [Google Scholar] [CrossRef]
- Sho, S.; Court, C.M.; Winograd, P.; Toste, P.A.; Pisegna, J.R.; Lewis, M.; Donahue, T.R.; Hines, O.J.; Reber, H.A.; Dawson, D.W.; et al. A Prognostic Scoring System for the Prediction of Metastatic Recurrence Following Curative Resection of Pancreatic Neuroendocrine Tumors. J. Gastrointest. Surg. 2019, 23, 1392–1400. [Google Scholar] [CrossRef]
- Primavesi, F.; Andreasi, V.; Hoogwater, F.J.H.; Partelli, S.; Wiese, D.; Heidsma, C.; Cardini, B.; Klieser, E.; Marsoner, K.; Fröschl, U.; et al. A Preoperative Clinical Risk Score Including C-Reactive Protein Predicts Histological Tumor Characteristics and Patient Survival after Surgery for Sporadic Non-Functional Pancreatic Neuroendocrine Neoplasms: An International Multicenter Cohort Study. Cancers 2020, 12, 1235. [Google Scholar] [CrossRef]
- Zhou, B.; Zhan, C.; Wu, J.; Liu, J.; Zhou, J.; Zheng, S. Prognostic significance of preoperative gamma-glutamyltransferase to lymphocyte ratio index in nonfunctional pancreatic neuroendocrine tumors after curative resection. Sci. Rep. 2017, 7, 13372. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Hamilton, N.; Hawkins, W.; Gao, F.; Cao, D. Comparison of WHO Classifications (2004, 2010), the Hochwald Grading System, and AJCC and ENETS Staging Systems in Predicting Prognosis in Locoregional Well-differentiated Pancreatic Neuroendocrine Tumors. Am. J. Surg. Pathol. 2013, 37, 853–859. [Google Scholar] [CrossRef]
- Wei, M.; Xu, J.; Hua, J.; Meng, Q.; Liang, C.; Liu, J.; Zhang, B.; Wang, W.; Yu, X.; Shi, S. From the Immune Profile to the Immunoscore: Signatures for Improving Postsurgical Prognostic Prediction of Pancreatic Neuroendocrine Tumors. Front. Immunol. 2021, 12, 654660. [Google Scholar] [CrossRef]
- Zou, S.; Jiang, Y.; Wang, W.; Zhan, Q.; Deng, X.; Shen, B. Novel scoring system for recurrence risk classification of surgically resected G1/2 pancreatic neuroendocrine tumors—Retrospective cohort study. Int. J. Surg. 2020, 74, 86–91. [Google Scholar] [CrossRef]
- Viudez, A.; Carvalho, F.L.; Maleki, Z.; Zuharak, M.; Laheru, L.; Stark, A.; Azad, N.Z.; Wolfgang, C.L.; Baylin, S.; Herman, J.G.; et al. A new immunohistochemistry prognostic score (IPS) for recurrence and survival in resected pancreatic neuroendocrine tumors (PanNET). Oncotarget 2016, 7, 24950–24961. [Google Scholar] [CrossRef]
- Hochwald, S.N.; Zee, S.; Conlon, K.C.; Colleoni, R.; Louie, O.; Brennan, M.F.; Klimstra, D.S. Prognostic factors in pancreatic endocrine neoplasms: An analysis of 136 cases with a proposal for low-grade and intermediate-grade groups. J. Clin. Oncol. 2002, 20, 2633–2642. [Google Scholar] [CrossRef]
- Heidsma, C.M.; van Roessel, S.; van Dieren, S.; Engelsman, A.F.; Strobel, O.; Buechler, M.W.; Schimmack, S.; Perinel, J.; Adham, M.; Deshpande, V.; et al. International Validation of a Nomogram to Predict Recurrence after Resection of Grade 1 and 2 Non-Functioning Pancreatic Neuroendocrine Tumors. Neuroendocrinology 2021, 112, 571–579. [Google Scholar] [CrossRef]
- Dong, D.H.; Zhang, X.F.; Lopez-Aguiar, A.G.; Poultsides, G.; Makris, E.; Rocha, F.; Kanji, Z.; Weber, S.; Fisher, A.; Fields, R.; et al. Tumor burden score predicts tumor recurrence of non-functional pancreatic neuroendocrine tumors after curative resection. HPB 2020, 22, 1149–1157. [Google Scholar] [CrossRef] [PubMed]
- Andreasi, V.; Ricci, C.; Partelli, S.; Guarneri, G.; Ingaldi, C.; Muffatti, F.; Crippa, S.; Casadei, R.; Falconi, M. Predictors of disease recurrence after curative surgery for nonfunctioning pancreatic neuroendocrine neoplasms (NF-PanNENs): A systematic review and meta-analysis. J. Endocrinol. Investig. 2022, 45, 705–718. [Google Scholar] [CrossRef] [PubMed]
- Steyerberg, E. Clinical Prediction Models—A Practical Approach to Development, Validation and Updating; Springer Nature Switzerland AG: Cham, Switzerland, 2019. [Google Scholar]
- Lopez-Aguiar, A.G.; Ethun, C.G.; Postlewait, L.M.; Zhelnin, K.; Krasinskas, A.; El-Rayes, B.F.; Russell, M.C.; Sarmiento, J.M.; Kooby, D.A.; Staley, C.A.; et al. Redefining the Ki-67 Index Stratification for Low-Grade Pancreatic Neuroendocrine Tumors: Improving Its Prognostic Value for Recurrence of Disease. Ann. Surg. Oncol. 2018, 25, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Lip, G.Y.; Nieuwlaat, R.; Pisters, R.; Lane, D.A.; Crijns, H.J. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: The euro heart survey on atrial fibrillation. Chest 2010, 137, 263–272. [Google Scholar] [CrossRef]
- Wells, P.S.G.J.; Anderson, D.R.; Kearon, C.; Gent, M.; Turpie, A.G.; Bormanis, J.; Weitz, J.; Chamberlain, M.; Bowie, D.; Barnes, D.; et al. Use of clinical model for safe management of patients with suspected pulmonary embolism. Ann. Intern. Med. 1998, 129, 997–1005. [Google Scholar] [CrossRef]
- Cai, L.; Michelakos, T.; Deshpande, V.; Arora, K.S.; Yamada, T.; Ting, D.T.; Taylor, M.S.; Fernancez-Del Castillo, C.; Warshaw, A.L.; Lillemoe, K.T.; et al. Role of Tumor-Associated Macrophages in the Clinical Course of Pancreatic Neuroendocrine Tumors (PanNETs). Clin. Cancer Res. 2019, 25, 2644–2655. [Google Scholar] [CrossRef]
- Takkenkamp, T.J.; Jalving, M.; Hoogwater, F.J.H.; Walenkamp, A.M.E. The immune tumour microenvironment of neuroendocrine tumours and its implications for immune checkpoint inhibitors. Endocr. Relat. Cancer 2020, 27, R329–R343. [Google Scholar] [CrossRef]
- Bosch, F.; Bruwer, K.; Altendorf-Hofmann, A.; Auernhammer, C.J.; Spitzweg, C.; Westphalen, C.B.; Boeck, S.; Schubert-Fritschle, G.; Werner, J.; Heinemann, V.; et al. Immune checkpoint markers in gastroenteropancreatic neuroendocrine neoplasia. Endocr. Relat. Cancer 2019, 26, 293–301. [Google Scholar] [CrossRef]
- Takahashi, D.; Kojima, M.; Suzuki, T.; Sugimoto, M.; Kobayashi, S.; Takahashi, S.; Konishi, M.; Gotohda, N.; Ikeda, M.; Nakatsura, T.; et al. Profiling the Tumour Immune Microenvironment in Pancreatic Neuroendocrine Neoplasms with Multispectral Imaging Indicates Distinct Subpopulation Characteristics Concordant with WHO 2017 Classification. Sci. Rep. 2018, 8, 13166. [Google Scholar] [CrossRef]
- Dasari, A.; Shen, C.; Halperin, D.; Zhao, B.; Zhou, S.; Xu, Y.; Shih, T.; Yao, J.C. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients with Neuroendocrine Tumors in the United States. JAMA Oncol. 2017, 3, 1335–1342. [Google Scholar] [CrossRef]
- Heidsma, C.M.; Engelsman, A.F.; van Dieren, S.; Stommel, M.W.J.; de Hingh, I.; Vriens, M.; Hol, L.; Festen, S.; Hoogwater, F.J.H.; Daams, F.; et al. Watchful waiting for small non-functional pancreatic neuroendocrine tumours: Nationwide prospective cohort study (PANDORA). Br. J. Surg. 2021, 108, 888–891. [Google Scholar] [CrossRef]
- Peduzzi, P.C.J.; Feinstein, A.R.; Holford, T.R. Importance of events per independent variable in proportional hazards regression analysis. J. Clin. Epidemiol. 1995, 48, 1503–1510. [Google Scholar] [CrossRef]
- Ogundimu, E.O.; Altman, D.G.; Collins, G.S. Adequate sample size for developing prediction models is not simply related to events per variable. J. Clin. Epidemiol. 2016, 76, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Riley, R.D.; Ensor, J.; Snell, K.I.E.; Harrell, F.E., Jr.; Martin, G.P.; Reitsma, J.B.; Moons, K.G.M.; Collins, G.; van Smeden, M. Calculating the sample size required for developing a clinical prediction model. BMJ 2020, 368, m441. [Google Scholar] [CrossRef] [Green Version]
- Moons, K.G.M.; Wolff, R.F.; Riley, R.D.; Whiting, P.F.; Westwood, M.; Collins, G.S.; Reitsma, J.B.; Kleijnen, J.; Mallett, S. PROBAST: A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies: Explanation and Elaboration. Ann. Intern. Med. 2019, 170, W1–W33. [Google Scholar] [CrossRef] [Green Version]
- Siontis, G.C.; Tzoulaki, I.; Castaldi, P.J.; Ioannidis, J.P. External validation of new risk prediction models is infrequent and reveals worse prognostic discrimination. J. Clin. Epidemiol. 2015, 68, 25–34. [Google Scholar] [CrossRef]
- Reilly, B.M.; Evans, A.T. Translating clinical research into clinical practice: Impact of using prediction rules to make decisions. Ann. Intern. Med. 2006, 144, 201–209. [Google Scholar] [CrossRef]
Author (Year) | n | Setting | Country | Single or Multicenter | Study Interval | Model Development Method | Study Type | Follow-Up (IQR) | Outcome Predicted | Definition of Outcome |
---|---|---|---|---|---|---|---|---|---|---|
Ballian et al. (2009) | 43 | Postop | USA | Single center | 1991–2007 | Univariable Cox regression analysis | DEV | 68 months | RFS (5-year) DSS (5-year) | Radiographic evidence of new tumors |
Dong et al. (2021) | 416 | Postop | China | 8 centers | 1997–2016 | Uni- and multivariable logistic regression analysis | DEV | 31 months (11.3–56.6) | RFS (5-, 10-year) | Time from surgery to the time of identification of suspicious imaging findings or biopsy-proven tumor |
Fisher et al. (2019) | 224 | Preop | USA | 8 centers | 2000–2016 | Univariable Cox regression analysis | DEV | 37 months (15–62) | RFS | Time of resection until the time of radiographic or pathological evidence of tumor recurrence |
Genç et al. (2018) | 211 | Postop | Netherlands, Italy | 3 centers | 1992–2015 | Uni- and multivariable Cox regression analysis | DEV | 51 months (29–72) | RFS (5-year) DSS (5-year) | RFS: Percentage of patients without recurrence in the pancreas, new positive lymph nodes, or distant metastasis after resection DSS: Percentage of patients who have not died due to pNET |
Heidsma et al. (2021) | 342 | Postop | Australia, Austria, France, Germany, Netherlands, Sweden, USA | 7 centers | 1991–2018 | Uni- and multivariable Cox regression analysis | VAL | 50.5 months (22.3–103) | RFS (5-year) | Date of the first cross-sectional imaging on which a new local or metastatic lesion was detected |
Liu et al. (2013) | 75 | Postop | USA | Single center | 1993–2009 | Uni- and multivariable Cox regression analysis | DEV | 69 months (range 1–212) | RFS | Time from surgery to death due to disease or to disease recurrence at local, regional, or distant sites, whichever occurred first |
Primavesi et al. (2020) | D: 160 V: 204 | Preop | Austria, Germany, Italy, Netherlands | D: 6 centers V: 4 centers | D: 1998–2017 V: 1990–2018 | Uni- and multivariable Cox regression analysis | DEV | 57.5 months (28.3–83.3) | RFS (5-, 10-year) DSS (5-, 10-year) OS (5-, 10-year) | RFS: Time from initial curative intent to recurrence/last follow-up DSS: Time to pNET related-death/last follow-up OS: Time from first surgery to death/last follow-up |
Pulvirenti et al. (2021) | D: 632 V: 328 | Postop | Australia, UK, USA | 2000–2016 | Univariable Cox regression analysis | DEV | 51 months | RFS (5-year) | Date of curative surgery until date of first recurrence identified through routine postoperative CT-scans | |
Sho et al. (2019) | 140 | Postop | USA | Single center | 1989–2015 | Uni- and multivariable Cox regression analysis | DEV | 56 months | RFS (5-year) | Time to the last known date the patient was disease free |
Sun et al. (2019) | 81 | Preop | China | Single center | 2009–2017 | Uni- and multivariable Cox regression analysis | DEV | 16 months (range 6–108) | RFS (1-, 2-, 3-year) | Day of surgery to the time of local recurrence or distant metastatic disease on radiological images, last clinical follow-up, or death |
Viúdez et al. (2016) | 92 | Postop | USA | Single center | 1998–2010 | Uni- and multivariable Cox regression analysis | DEV | n.r. | RFS OS | Time of surgery to date of relapse, death, or last follow-up |
Wei et al. (2021) | D: 125 V: 77 | Postop | China | Single center | 2012–2018 | Uni- and multivariable Cox regression analysis | DEV | 41 months (27–59.8) | RFS (3-, 5-year) | n.r. |
Zhou et al. (2017) | 125 | Preop | China | Single center | 2003–2016 | Uni- and multivariable Cox regression analysis | DEV | 45.8 months (SD 37.01) | RFS OS | RFS: Time from date of surgery to date of recurrence OS: Time from date of initial diagnosis until date of death from any cause or date of last known contact |
Zou et al. (2020) | 245 | Postop | China | Single center | 2002–2018 | Uni- and multivariable Cox regression analysis | DEV | 40 months | RFS (3-, 5-year) | RFS: Date of recurrence in any forms |
Author (Year) | Model Type | No. of Variables Screened | Predictors in Final Model | Discrimination, c Statistic (95% CI) | Calibration | Internal Validation | External Validation |
---|---|---|---|---|---|---|---|
Ballian et al. (2009) | Scoring system | 9 | Tumor size ≥ 5 cm, Hochwald grading system (mitotic index + necrosis), positive lymph node, R1 resection | RFS: 0.80 (0.68–0.91) DSS: 0.81 (0.73–0.90) | n.r. | n.r. | n.r. |
Dong et al. (2021) | Nomogram | 10 | Tumor grade (2010), tumor burden score ((max. tumor diameter)2 + (number of tumors)2), positive lymph node | 0.75 (0.66–0.79) | Good performance | Bootstrapping: 5000 iterations 0.71 (0.65–0.75) | n.r. |
Fisher et al. (2019) | Scoring system | 6 | Tumor grade 2 or 3, chromogranin A > 5× upper limit, surgery for tumor recurrence, tumor size ≥ 4 cm | See internal validation | n.r. | Split-sample validation AUC: 0.78 | n.r. |
Genç et al. (2018) | Nomogram | 11 | Tumor grade (2010), positive lymph node, perineural invasion | 0.81 (0.75–0.87) | GOF; Hosmer Lemeshow Chi-square 11.25, p = 0.258 | Performed | n.r. |
Heidsma et al. (2021) | Nomogram | N/A | Tumor grade (2017), positive lymph node, perineural invasion | 0.77 (0.71–0.83) | Calibration slope 0.74 | N/A | N/A |
Liu et al. (2013) | Staging system | 9 | Ki-67 index, Hochwald grading system (mitotic index + necrosis) | 0.79 | n.r. | n.r. | n.r. |
Primavesi et al. (2020) | Scoring system | 7 | CRP > 0.2 mg/dL, tumor size > 3 cm, metastasis | RFS: AUC 66.5 (58.9–74.2) DSS: AUC 77.3 (67.2–87.5) OS: AUC 68.9 (61.5–76.4) | n.r. | n.r. | n.r. |
Pulvirenti et al. (2021) | Nomogram | 11 | Number of positive lymph nodes, Ki-67 index, tumor size, vascular and/or perineural invasion | 0.85 | Performed | Bootstrapping: 100 iterations | 0.84 (0.79–0.88) |
Sho et al. (2019) | Scoring system | 13 | Tumor size ≥ 5 cm, positive lymph node, tumor grade (2010) | 0.82 (0.72–0.92) | n.r. | Bootstrapping: 1000 iterations | n.r. |
Sun et al. (2019) | Nomogram | 22 | Tumor size > 2 cm, hypoenhancement, apparent diffusion coefficient | 0.91 (0.84–0.98) | Performed | n.r. | n.r. |
Viúdez et al. (2016) | Scoring system | 14 | RFS: AJCC, tumor size, tumor grade, Immunohistochemistry Prognostic Score (MGMT, PHLDA-3, NDRG-1 expressions) OS: AJCC, age > 60, Immunohistochemistry Prognostic Score (MGMT, PHLDA-3, NDRG-1 expressions) | RFS: 0.80 OS: 0.79 | n.r. | n.r. | n.r. |
Wei et al. (2021) | Nomogram | 20 | Metastasis, tumor grade, Immunoscore (0.261 × the status of CCL19) + (0.490 × the status of IL-16) + (0.123 × the status of CD163) + (0.044 × the status of CD8PT)–(0.011× the status of CD8IT)–(0.493× the status of IRF4) | 0.92 (0.88–0.95) | Good agreement | Bootstrapping | 0.86 (0.80–0.93) |
Zhou et al. (2017) | Staging system | 27 | AJCC, tumor grade (2010) | OS: AUC 0.83 (0.75–0.91) | n.r. | n.r. | Not performed |
Zou et al. (2020) | Scoring system | 11 | Positive lymph node, tumor size, tumor grade (2017) | 3 year: 0.91 5 year: 0.94 8 year: 0.93 | Good performance | n.r. | n.r. |
Tumor Grade/ Ki-67 Index | Tumor Size | Positive Lymph Node | Sex | Age | Perineural Invasion | R1 Resection | Vascular Invasion | Histological Grade | Functional Tumor | Symptomatic | Distant Metastasis | TNM-Stage | Minimally Invasive | Predictors Screened | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Study | |||||||||||||||
Pulvirenti (2021) b | ✓ | ✓ | ✓ | X | ✓ | ✓ | ✓ | ✓ | ✓ | X | 10 | ||||
Dong (2021) b | ✓ | ✓ | X | X | X | X | ✓ | X | ✓ | 9 | |||||
Liu (2013) a | ✓ | ✓ | ✓ | X | X | X | ✓ | X | 8 | ||||||
Ballian (2009) b | ✓ | ✓ | X | X | ✓ | ✓ | X | 7 | |||||||
Zhou (2017) a | ✓ | X | ✓ | X | X | X | ✓ | 7 | |||||||
Primavesi (2020) a | X | X | ✓ | X | ✓ | 5 | |||||||||
Zou (2020) a | ✓ | ✓ | X | X | X | 5 | |||||||||
Fisher (2019) b | ✓ | ✓ | X | X | 4 | ||||||||||
Sho (2019) a | ✓ | ✓ | ✓ | ✓ | 4 | ||||||||||
Sun (2019) a | X | ✓ | X | X | 4 | ||||||||||
Genç (2018) a | ✓ | ✓ | ✓ | 3 | |||||||||||
Viúdez (2016) a | ✓ | ✓ | X | 3 | |||||||||||
Wei (2021) a | ✓ | X | X | 3 | |||||||||||
Predictor analyzed by study (out of 13), n (%) | 11 (85) | 11 (85) | 8 (62) | 7 (54) | 6 (46) | 6 (46) | 4 (31) | 4 (31) | 3 (23) | 3 (23) | 3 (23) | 2 (15) | 2 (15) | 2 (15) | |
Predictor significance, n (%) | 10/11 (91) | 8/11 (72) | 6/8 (75) | 1/7 (14) | 2/6 (33) | 3/6 (50) | 2/4 (50) | 2/4 (50) | 2/3 (67) | 1/3 (33) | 0/3 (0) | 1/2 (50) | 1/2 (50) | 1/2 (50) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.W.; Heidsma, C.M.; Engelsman, A.F.; Kabaktepe, E.; van Dieren, S.; Falconi, M.; Besselink, M.G.; Nieveen van Dijkum, E.J.M. Clinical Prediction Models for Recurrence in Patients with Resectable Grade 1 and 2 Sporadic Non-Functional Pancreatic Neuroendocrine Tumors: A Systematic Review. Cancers 2023, 15, 1525. https://doi.org/10.3390/cancers15051525
Chen JW, Heidsma CM, Engelsman AF, Kabaktepe E, van Dieren S, Falconi M, Besselink MG, Nieveen van Dijkum EJM. Clinical Prediction Models for Recurrence in Patients with Resectable Grade 1 and 2 Sporadic Non-Functional Pancreatic Neuroendocrine Tumors: A Systematic Review. Cancers. 2023; 15(5):1525. https://doi.org/10.3390/cancers15051525
Chicago/Turabian StyleChen, Jeffrey W., Charlotte M. Heidsma, Anton F. Engelsman, Ertunç Kabaktepe, Susan van Dieren, Massimo Falconi, Marc G. Besselink, and Els J. M. Nieveen van Dijkum. 2023. "Clinical Prediction Models for Recurrence in Patients with Resectable Grade 1 and 2 Sporadic Non-Functional Pancreatic Neuroendocrine Tumors: A Systematic Review" Cancers 15, no. 5: 1525. https://doi.org/10.3390/cancers15051525
APA StyleChen, J. W., Heidsma, C. M., Engelsman, A. F., Kabaktepe, E., van Dieren, S., Falconi, M., Besselink, M. G., & Nieveen van Dijkum, E. J. M. (2023). Clinical Prediction Models for Recurrence in Patients with Resectable Grade 1 and 2 Sporadic Non-Functional Pancreatic Neuroendocrine Tumors: A Systematic Review. Cancers, 15(5), 1525. https://doi.org/10.3390/cancers15051525