Pathologic Response to Neoadjuvant Sequential Chemoradiation Therapy in Locally Advanced Breast Cancer: Preliminary, Translational Results from the French Neo-APBI-01 Trial
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Histopathological Assessments
2.3. Assessment of Tumor-Infiltrating Lymphocytes (TILs)
2.4. Blood Cell Counts and the Derived Parameters
2.5. Statistical Analysis
3. Results
3.1. Patient and Tumor Characteristics
3.2. Response to Treatment
3.3. Associations of Putative Biomarkers and Response to Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schreiber, R.D.; Old, L.J.; Smyth, M.J. Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion. Science 2011, 6024, 1565–1570. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity 2013, 39, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mittendorf, E.A.; Zhang, H.; Barrios, C.H.; Saji, S.; Jung, K.H.; Hegg, R.; Koehler, A.; Sohn, J.; Iwata, H.; Telli, M.L.; et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): A randomised, double-blind, phase 3 Trial. Lancet 2020, 396, 1090–1100. [Google Scholar] [CrossRef]
- Nanda, R.; Liu, M.C.; Yau, C.; Shatsky, R.; Pusztai, L.; Wallace, A.; Chien, A.J.; Forero-Torres, A.; Ellis, E.; Han, H.; et al. Effect of pembrolizumab plus neoadjuvant chemotherapy on pathologic complete response in women with early-stage breast cancer: An analysis of the ongoing phase 2 adaptively randomized i-spy2 trial. JAMA Oncol. 2020, 6, 676–684. [Google Scholar] [CrossRef]
- Pathak, N.; Sharma, A.; Elavarasi, A.; Sankar, J.; Deo, S.V.S.; Sharma, D.N.; Mathur, S.; Kumar, S.; Prasad, C.P.; Kumar, A.; et al. Moment of truth-adding carboplatin to neoadjuvant/adjuvant chemotherapy in triple negative breast cancer improves overall survival: An individual participant data and trial-level meta-analysis. Breast 2022, 64, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Schmid, P.; Cortes, J.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; Harbeck, N.; et al. Pembrolizumab for early triple-negative breast cancer. N. Engl. J. Med. 2020, 382, 810–821. [Google Scholar] [CrossRef]
- Rugo, H.S.; Kabos, P.; Beck, J.T.; Chisamore, M.J.; Hossain, A.; Chen, Y.; Tolaney, S.M. A phase ib study of abemaciclib in combination with pembrolizumab for patients with Hormone Receptor Positive (HR+), Human Epidermal Growth Factor Receptor 2 Negative (HER2-) locally advanced or Metastatic Breast Cancer (MBC) (NCT02779751): Interim results. JCO 2020, 38, 1051. [Google Scholar] [CrossRef]
- Ho, A.Y.; Wright, J.L.; Blitzblau, R.C.; Mutter, R.W.; Duda, G.D.; Norton, L.; Bardia, A.; Spring, L.; Isakoff, S.J.; Chen, J.H.; et al. Optimizing radiotherapy to boost systemic immune responses in breast cancer: A critical review for breast radiation oncologists. Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, 227–241. [Google Scholar] [CrossRef]
- Corradini, S.; Krug, D.; Meattini, I.; Matuschek, C.; Bölke, E.; Francolini, G.; Baumann, R.; Figlia, V.; Pazos, M.; Tonetto, F.; et al. Preoperative radiotherapy: A paradigm shift in the treatment of breast cancer? A review of literature. Crit. Rev. Oncol. Hematol. 2019, 141, 102–111. [Google Scholar] [CrossRef]
- Bondiau, P.-Y.; Courdi, A.; Bahadoran, P.; Chamorey, E.; Queille-Roussel, C.; Lallement, M.; Birtwisle-Peyrottes, I.; Chapellier, C.; Pacquelet-Cheli, S.; Ferrero, J.-M. Phase 1 Clinical trial of stereotactic body radiation therapy concomitant with neoadjuvant chemotherapy for breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 1193–1199. [Google Scholar] [CrossRef]
- Bosma, S.C.J.; Hoogstraat, M.; van der Leij, F.; de Maaker, M.; Wesseling, J.; Lips, E.; Loo, C.E.; Rutgers, E.J.; Elkhuizen, P.H.M.; Bartelink, H.; et al. Response to preoperative radiation therapy in relation to gene expression patterns in breast cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 174–181. [Google Scholar] [CrossRef]
- Nichols, E.; Kesmodel, S.B.; Bellavance, E.; Drogula, C.; Tkaczuk, K.; Cohen, R.J.; Citron, W.; Morgan, M.; Staats, P.; Feigenberg, S.; et al. Preoperative accelerated partial breast irradiation for early-stage breast cancer: Preliminary results of a prospective, phase 2 trial. Int. J. Radiat. Oncol. Biol. Phys. 2017, 97, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet 2014, 384, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Symmans, W.F.; Peintinger, F.; Hatzis, C.; Rajan, R.; Kuerer, H.; Valero, V.; Assad, L.; Poniecka, A.; Hennessy, B.; Green, M.; et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J. Clin. Oncol. 2007, 25, 4414–4422. [Google Scholar] [CrossRef] [PubMed]
- Denkert, C.; von Minckwitz, G.; Darb-Esfahani, S.; Lederer, B.; Heppner, B.I.; Weber, K.E.; Budczies, J.; Huober, J.; Klauschen, F.; Furlanetto, J.; et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: A pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 2018, 19, 40–50. [Google Scholar] [CrossRef]
- Denkert, C.; Loibl, S.; Noske, A.; Roller, M.; Müller, B.M.; Komor, M.; Budczies, J.; Darb-Esfahani, S.; Kronenwett, R.; Hanusch, C.; et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. JCO 2010, 28, 105–113. [Google Scholar] [CrossRef]
- Mao, Y.; Qu, Q.; Zhang, Y.; Liu, J.; Chen, X.; Shen, K. The value of Tumor Infiltrating Lymphocytes (TILs) for predicting response to neoadjuvant chemotherapy in breast cancer: A systematic review and meta-analysis. PLoS ONE 2014, 9, e115103. [Google Scholar] [CrossRef]
- Batalha, S.; Ferreira, S.; Brito, C. The peripheral immune landscape of breast cancer: Clinical findings and in vitro models for biomarker discovery. Cancers 2021, 13, 1305. [Google Scholar] [CrossRef]
- Wolff, A.C.; Hammond, M.E.H.; Hicks, D.G.; Dowsett, M.; McShane, L.M.; Allison, K.H.; Allred, D.C.; Bartlett, J.M.S.; Bilous, M.; Fitzgibbons, P.; et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of american pathologists clinical practice guideline update. J. Clin. Oncol. 2013, 31, 3997–4013. [Google Scholar] [CrossRef] [PubMed]
- Goldhirsch, A.; Winer, E.P.; Coates, A.S.; Gelber, R.D.; Piccart-Gebhart, M.; Thürlimann, B.; Senn, H.-J.; Albain, K.S.; André, F.; Bergh, J.; et al. Personalizing the treatment of women with early breast cancer: Highlights of the st gallen international expert consensus on the primary therapy of early breast cancer 2013. Ann. Oncol. 2013, 24, 2206–2223. [Google Scholar] [CrossRef]
- Bonnefoi, H.; Litière, S.; Piccart, M.; MacGrogan, G.; Fumoleau, P.; Brain, E.; Petit, T.; Rouanet, P.; Jassem, J.; Moldovan, C.; et al. Pathological complete response after neoadjuvant chemotherapy is an independent predictive factor irrespective of simplified breast cancer intrinsic subtypes: A landmark and two-step approach analyses from the EORTC 10994/BIG 1-00 phase III trial. Ann. Oncol. 2014, 25, 1128–1136. [Google Scholar] [CrossRef]
- Salgado, R.; Denkert, C.; Demaria, S.; Sirtaine, N.; Klauschen, F.; Pruneri, G.; Wienert, S.; Van den Eynden, G.; Baehner, F.L.; Penault-Llorca, F.; et al. The evaluation of Tumor-Infiltrating Lymphocytes (TILs) in breast cancer: Recommendations by an international TILs working group 2014. Ann. Oncol. 2015, 26, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.S.; Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 2017, 541, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Bankhead, P.; Loughrey, M.B.; Fernández, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef] [PubMed]
- To, N.H.; Kossai, M.; Ouidir, N.; Grellier, N.; Assaf, E.; Gabelle-Flandin, I.; Belkacemi, Y.; Radosevic-Robin, N. Atypical responses to neoadjuvant chemotherapy combined with accelerated partial breast tumor-directed radiotherapy: Two cases and considerations for future clinical trials. Rep. Pract. Oncol. Radiother. 2022, 27, 1114–1118. [Google Scholar] [CrossRef]
- Fluss, R.; Faraggi, D.; Reiser, B. Estimation of the youden index and its associated cutoff point. Biom. J. 2005, 47, 458–472. [Google Scholar] [CrossRef]
- Vittinghoff, E.; McCulloch, C.E. Relaxing the rule of ten events per variable in logistic and cox regression. Am. J. Epidemiol. 2007, 165, 710–718. [Google Scholar] [CrossRef]
- Correa, C.; Harris, E.E.; Leonardi, M.C.; Smith, B.D.; Taghian, A.G.; Thompson, A.M.; White, J.; Harris, J.R. Accelerated partial breast irradiation: Executive summary for the update of an ASTRO evidence-based consensus statement. Pract. Radiat. Oncol. 2017, 7, 73–79. [Google Scholar] [CrossRef]
- Van der Leij, F.; Bosma, S.C.J.; van de Vijver, M.J.; Wesseling, J.; Vreeswijk, S.; Rivera, S.; Bourgier, C.; Garbay, J.-R.; Foukakis, T.; Lekberg, T.; et al. First results of the Preoperative Accelerated Partial Breast Irradiation (PAPBI) trial. Radiother. Oncol. 2015, 114, 322–327. [Google Scholar] [CrossRef]
- Horton, J.K.; Jagsi, R.; Woodward, W.A.; Ho, A. Breast cancer biology: Clinical implications for breast radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 23–37. [Google Scholar] [CrossRef]
- Yaremko, B.; Brackstone, M.; Guidolin, K.; Lynn, K.; Gaede, S.; Yu, E.; Sexton, T.L.; Dinniwell, R.; Kornecki, A.; Muscedere, G.; et al. Results of a prospective cohort trial: Stereotactic Image-Guided Neoadjuvant Ablative Radiation Then Lumpectomy (SIGNAL) for early-stage breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, S69. [Google Scholar] [CrossRef]
- Caro, J.J.; Salas, M.; Ward, A.; Goss, G. Anemia as an independent prognostic factor for survival in patients with cancer: A systemic, quantitative review. Cancer 2001, 91, 2214–2221. [Google Scholar] [CrossRef] [PubMed]
- Harrison, L.B.; Chadha, M.; Hill, R.J.; Hu, K.; Shasha, D. Impact of tumor hypoxia and anemia on radiation therapy outcomes. Oncologist 2002, 7, 492–508. [Google Scholar] [CrossRef] [PubMed]
- Riera-Domingo, C.; Audigé, A.; Granja, S.; Cheng, W.-C.; Ho, P.-C.; Baltazar, F.; Stockmann, C.; Mazzone, M. Immunity, hypoxia, and metabolism–the ménage à trois of cancer: Implications for immunotherapy. Physiol. Rev. 2020, 100, 1–102. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Assumpção, J.A.F.; Pasquarelli-do-Nascimento, G.; Duarte, M.S.V.; Bonamino, M.H.; Magalhães, K.G. The ambiguous role of obesity in oncology by promoting cancer but boosting antitumor immunotherapy. J. Biomed. Sci. 2022, 29, 12. [Google Scholar] [CrossRef]
- Di Cosimo, S.; Porcu, L.; Agbor-Tarh, D.; Cinieri, S.; Franzoi, M.A.; De Santis, M.C.; Saura, C.; Huober, J.; Fumagalli, D.; Izquierdo, M.; et al. Effect of body mass index on response to neo-adjuvant therapy in HER2-Positive breast cancer: An exploratory analysis of the NeoALTTO trial. Breast Cancer Res. 2020, 22, 115. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, S.; Yee, D.; Basu, S.; Beckwith, H.; Potter, D.; Blaes, A. Impact of body mass index on pathological complete response following neoadjuvant chemotherapy in operable breast cancer: A meta-analysis. Breast Cancer 2021, 28, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Hedrick, C.C.; Malanchi, I. Neutrophils in cancer: Heterogeneous and multifaceted. Nat. Rev. Immunol. 2022, 22, 173–187. [Google Scholar] [CrossRef]
- Corbeau, I.; Jacot, W.; Guiu, S. Neutrophil to lymphocyte ratio as prognostic and predictive factor in breast cancer patients: A systematic review. Cancers 2020, 12, 958. [Google Scholar] [CrossRef] [PubMed]
- Uribe-Querol, E.; Rosales, C. Neutrophils in Cancer: Two sides of the same coin. J. Immunol. Res. 2015, 2015, 983698. [Google Scholar] [CrossRef] [PubMed]
- Suppan, C.; Bjelic-Radisic, V.; La Garde, M.; Groselj-Strele, A.; Eberhard, K.; Samonigg, H.; Loibner, H.; Dandachi, N.; Balic, M. Neutrophil/lymphocyte ratio has no predictive or prognostic value in breast cancer patients undergoing preoperative systemic therapy. BMC Cancer 2015, 15, 1027. [Google Scholar] [CrossRef] [PubMed]
- Savas, P.; Virassamy, B.; Ye, C.; Salim, A.; Mintoff, C.P.; Caramia, F.; Salgado, R.; Byrne, D.J.; Teo, Z.L.; Dushyanthen, S.; et al. Single-cell profiling of breast cancer t cells reveals a tissue-resident memory subset associated with improved prognosis. Nat. Med. 2018, 24, 986–993. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Li, B.; Pollom, E.L.; Horst, K.C.; Li, R. Integrating radiosensitivity and immune gene signatures for predicting benefit of radiotherapy in breast cancer. Clin. Cancer Res. 2018, 24, 4754–4762. [Google Scholar] [CrossRef]
- To, N.H.; (Department of Radiation Oncology and The Henri Mondor Breast Center, Henri Mondor University Hospital, AP-HP, 1 Rue Gustave Eiffel, Creteil, France); Gabelle-Flandin, I.; (The Grenoble Alpes University Hospital Centre, University Clinic of Cancerology-Radiotherapy, Avenue des Maquis du Grésivaudan, Grenoble, France); Luong, T.M.H.; (Solna Rheumatology Unit, Department of Medicine, Karolinska Institutet, Solna, Sweden); Loganadane, G.; (Department of Radiation Oncology and The Henri Mondor Breast Center, Henri Mondor University Hospital, AP-HP, 1 Rue Gustave Eiffel, Creteil, France); Ouidir, N.; (Department of Pathology, Henri Mondor University Hospital, AP-HP, 1 Rue Gustave Eiffel, Creteil, France); Boukhobza, C.; (Department of Radiation Oncology and The Henri Mondor Breast Center, Henri Mondor University Hospital, AP-HP, 1 Rue Gustave Eiffel, Creteil, France); Grellier, N.; (Department of Radiation Oncology and The Henri Mondor Breast Center, Henri Mondor University Hospital, AP-HP, 1 Rue Gustave Eiffel, Creteil, France); Verry, C.; (The Grenoble Alpes University Hospital Centre, University Clinic of Cancerology-Radiotherapy, Avenue des Maquis du Grésivaudan, Grenoble, France); Thiolat, A.; (INSERM Unit 955, Immunoregulation and Biotherapy (I-Biot) Team, The Mondor Institute for Biomedical Research (IMRB), University of Paris-Est Creteil (UPEC), Creteil, France); Cohen, J.L.; (INSERM Unit 955, Immunoregulation and Biotherapy (I-Biot) Team, The Mondor Institute for Biomedical Research (IMRB), University of Paris-Est Creteil (UPEC), Creteil, France); et al. Personal communication, 2023.
- Nielsen, T.O.; Leung, S.C.Y.; Rimm, D.L.; Dodson, A.; Acs, B.; Badve, S.; Denkert, C.; Ellis, M.J.; Fineberg, S.; Flowers, M.; et al. Assessment of Ki67 in breast cancer: Updated recommendations from the international Ki67 in breast cancer working group. J. Nat. Cancer Inst. 2021, 113, 808–819. [Google Scholar] [CrossRef]
- Yerushalmi, R.; Woods, R.; Ravdin, P.M.; Hayes, M.M.; Gelmon, K.A. Ki67 in breast cancer: Prognostic and predictive potential. Lancet Oncol. 2010, 11, 174–183. [Google Scholar] [CrossRef]
- Ishibashi, N.; Maebayashi, T.; Aizawa, T.; Sakaguchi, M.; Nishimaki, H.; Masuda, S. Correlation between the Ki-67 proliferation index and response to radiation therapy in small cell lung cancer. Radiat. Oncol. 2017, 12, 16. [Google Scholar] [CrossRef]
- Darb-Esfahani, S.; Denkert, C.; Stenzinger, A.; Salat, C.; Sinn, B.; Schem, C.; Endris, V.; Klare, P.; Schmitt, W.; Blohmer, J.-U.; et al. Role of TP53 mutations in triple negative and HER2-Positive breast cancer treated with neoadjuvant anthracycline/taxane-based chemotherapy. Oncotarget 2016, 7, 67686–67698. [Google Scholar] [CrossRef]
- Silwal-Pandit, L.; Vollan, H.K.M.; Chin, S.-F.; Rueda, O.M.; McKinney, S.; Osako, T.; Quigley, D.A.; Kristensen, V.N.; Aparicio, S.; Børresen-Dale, A.-L.; et al. TP53 mutation spectrum in breast cancer is subtype specific and has distinct prognostic relevance. Clin. Cancer Res. 2014, 20, 3569–3580. [Google Scholar] [CrossRef]
- Bertheau, P.; Lehmann-Che, J.; Varna, M.; Dumay, A.; Poirot, B.; Porcher, R.; Turpin, E.; Plassa, L.-F.; de Roquancourt, A.; Bourstyn, E.; et al. P53 in breast cancer subtypes and new insights into response to chemotherapy. Breast 2013, 22 (Suppl. S2), S27–S29. [Google Scholar] [CrossRef]
- Köbel, M.; Kang, E.Y. The Many Uses of P53 Immunohistochemistry in Gynecological Pathology: Proceedings of the ISGyP Companion Society Session at the 2020 USCAP Annual9 Meeting. Int. J. Gynecol. Pathol. 2021, 40, 32–40. [Google Scholar] [CrossRef] [PubMed]
Variable | N | NACT, N = 21 | NACRT, N = 21 | p-Value 1 |
---|---|---|---|---|
Age (y) Median (IQR) | 42 | 48 (41, 52) | 45 (40, 50) | 0.3 |
Menopause | 42 | >0.9 | ||
No | 16 (76%) | 17 (81%) | ||
Yes | 5 (24%) | 4 (19%) | ||
Body Mass Index | 42 | 0.5 | ||
Normal | 10 (48%) | 12 (57%) | ||
High | 11 (52%) | 9 (43%) | ||
Tumor size | 42 | 0.2 | ||
cT 1 | 3 (14%) | 0 (0%) | ||
cT 2 | 15 (71%) | 19 (90%) | ||
cT 3 | 3 (14%) | 2 (9.5%) | ||
Nodal status | 42 | 0.5 | ||
cN 0 | 9 (43%) | 13 (62%) | ||
cN + | 12 (57%) | 8 (38%) | ||
Histological grade | 42 | 0.5 | ||
Grade 2 | 7 (33%) | 5 (24%) | ||
Grade 3 | 14 (67%) | 16 (76%) | ||
Ki67 Median (IQR) | 42 | 80 (60, 95) | 85 (60, 95) | >0.9 |
Molecular subtype | 42 | >0.9 | ||
Triple-negative | 13 (62%) | 13 (62%) | ||
Luminal B | 8 (38%) | 8 (38%) |
Response | NACT, N = 21 | NACRT, N = 21 |
---|---|---|
pCR, n (%) | N = 7 (33%) | N = 8 (38%) |
Triple-negative | 5 (71%) | 7 (88%) |
Luminal B | 2 (29%) | 1 (12%) |
Response to neoadjuvant therapy | ||
Any primary tumor downstaging | 20 (95.3%) | 20 (95.3%) |
Mean tumor size reduction (mm) | 26.6 | 23.0 |
cN− to ypN− | 8 (38.1%) | 12 (57.1%) |
cN+ to ypN− | 9 (42.9%) | 2 (16.7%) |
cN− to ypN+ | 1 (4.8%) | 1 (4.8%) |
cN+ to ypN+ | 3 (14.3%) | 6 (28.6%) |
NACT | NACRT | |||||||
---|---|---|---|---|---|---|---|---|
Parameters | pCR+ | pCR− | OR (95% CI) | p-Value | pCR+ | pCR− | OR (95% CI) | p-Value |
Age (years) | 0.004 | 0.52 | ||||||
≤48 | 7 | 4 | — | 6 | 8 | — | ||
>48 | 0 | 10 | 0 | 2 | 5 | 0.53 (0.1–3.5) | ||
Body mass index | >0.99 | 0.018 | ||||||
≤26 | 4 | 8 | — | 8 | 6 | — | ||
>26 | 3 | 6 | 1 (0.2–6.3) | 0 | 7 | 0 | ||
LN involvement | >0.99 | 0.08 | ||||||
Negative | 3 | 6 | — | 7 | 6 | — | ||
Positive | 4 | 8 | 1 (0.1–6.8) | 1 | 7 | 0.1 (0.1–1.0) | ||
Baseline PNN | 0.34 | 0.08 | ||||||
<3.3 G/L | 5 | 7 | — | 1 | 7 | — | ||
≥3.3 G/L | 2 | 7 | 0.4 (0.1–2.6) | 7 | 6 | 8.2 (1–177) | ||
Baseline Hb | 0.34 | 0.006 | ||||||
<13 g/dL | 5 | 7 | — | 0 | 8 | — | ||
≥13 g/dL | 2 | 7 | 0.4 (0.1–2.6) | 8 | 5 | 8.2 (1–177) | ||
Baseline NLR | >0.99 | 0.03 | ||||||
≤2.2 | 5 | 9 | — | 3 | 10 | — | ||
>2.2 | 2 | 5 | 1 (0.1–7.2) | 5 | 3 | 10 (1.5–101) | ||
Baseline SII | 0.05 | 0.15 | ||||||
≤252 | 4 | 7 | — | 0 | 2 | — | ||
>252 | 3 | 7 | 0.1 (0.01–1) | 8 | 11 | 3 × 107 (0–NA) | ||
Pre-APBI LMR | >0.99 | 0.08 | ||||||
<1.9 | 3 | 7 | — | 2 | 9 | — | ||
≥1.9 | 4 | 7 | 1.3 (0.2–9) | 6 | 4 | 8.2 (1–177) | ||
Delta-NLR | >0.99 | 0.06 | ||||||
<0.8 | 4 | 7 | — | 2 | 7 | — | ||
≥0.8 | 3 | 7 | 1 (0.2–6.4) | 6 | 6 | 6.8 (1–63) | ||
Delta-PLR | 0.74 | 0.05 | ||||||
<120 | 2 | 5 | — | 2 | 8 | — | ||
≥120 | 5 | 9 | 1.4 (0.2–12) | 6 | 5 | 11 (1.4–245) |
NACT | NACRT | |||||||
---|---|---|---|---|---|---|---|---|
Parameters | pCR+ | pCR− | OR (95% CI) | p-Value | pCR+ | pCR− | OR (95% CI) | p-Value |
Subtype | 0.52 | 0.08 | ||||||
Triple-negative | 5 | 8 | — | 7 | 6 | — | ||
Luminal B | 2 | 6 | 0.5 (0.1–3.5) | 1 | 7 | 0.1 (0.1–1.0) | ||
Ki-67 index | 0.54 | 0.03 | ||||||
<90% | 3 | 8 | — | 2 | 10 | — | ||
≥90% | 4 | 6 | 1. 8 (0.3–12) | 6 | 3 | 10 (1.5–101) | ||
TILs (%) | 0.68 | 0.1 | ||||||
<10 | 4 | 8 | — | 3 | 8 | — | ||
≥10 | 3 | 4 | 1.5 (0.2–11) | 5 | 5 | 4.8 (0.8–43) | ||
ID phenotype | 0.87 | 0.1 | ||||||
No | 5 | 3 | — | 8 | 8 | — | ||
Yes | 2 | 9 | 1.2 (0.1–9.9) | 0 | 4 | 0 | ||
TIL-CD8+ | 0.01 | 0.25 | ||||||
<930/mm2 | 2 | 11 | — | 4 | 9 | — | ||
≥930/mm2 | 5 | 1 | 28 (2.8–725) | 4 | 3 | 3 (0.5–23) | ||
TIL-CD4+ | 0.08 | 0.36 | ||||||
<1360/mm2 | 2 | 9 | — | 3 | 8 | — | ||
≥1360/mm2 | 5 | 3 | 6 (0.8–64) | 5 | 4 | 2.3 (0.4–16) | ||
TIL-FOXP3+ | 0.04 | 0.55 | ||||||
<480/mm2 | 3 | 11 | — | 5 | 9 | — | ||
≥480/mm2 | 4 | 1 | 15 (1.5–356) | 3 | 3 | 1.8 (0.3–13) | ||
TIL-CD20+ | 0.01 | 0.36 | ||||||
<428/mm2 | 1 | 11 | — | 3 | 7 | — | ||
≥428/mm2 | 6 | 1 | 66 (5–2,648) | 5 | 5 | 2.3 (0.4–16) | ||
TIL-T cells | 1 | 0.05 | ||||||
<3076/mm2 | 3 | 12 | — | 3 | 10 | — | ||
≥3076/mm2 | 4 | 0 | 4 × 108 (0–NA) | 5 | 2 | 8.3 (1.2–86) | ||
TIL-CD8/FOXP3 | 0.02 | 0.46 | ||||||
<1.9 | 2 | 9 | — | 4 | 4 | — | ||
≥1.9 | 5 | 3 | 18 (2–426) | 4 | 8 | 0.5 (0.1–3.1) | ||
TIL-CD8/CD4 | 0.03 | 0.46 | ||||||
<0.4 | 2 | 9 | — | 4 | 4 | — | ||
≥0.4 | 4 | 3 | 15 (1.6–360) | 4 | 8 | 0.5 (0.1–3.1) | ||
PD-L1 ic | 0.07 | 0.51 | ||||||
<10% | 3 | 11 | — | 5 | 5 | — | ||
≥10% | 3 | 1 | 11 (1–276) | 2 | 4 | 0.5 (0.1–3.9) | ||
TP53 mutation | 0.68 | 0.2 | ||||||
No | 1 | 3 | — | 0 | 4 | — | ||
Yes | 6 | 9 | 1.5 (0.2–11) | 6 | 7 | 9 × 107 (0–NA) |
Author, Year [Ref.] | N | Tumor Characteristics | RT Dose | NACT | Time to Surgery | pCR Rate |
---|---|---|---|---|---|---|
Bondiau et al., 2013 [10] | 25 | Unifocal, HER2-, BCS unsuitable | 3 × 6.5–10.5 Gy | Yes | 4–8 weeks | 36% |
Van der Leij et al., 2015 [29] | 70 | >60 yo, unifocal ≤ 3 cm, SLN- | 10 × 4 Gy or 5 × 6 Gy | No | 6 weeks | 10% (near-pCR) |
Nichols et al., 2017 [12] | 27 | Unifocal, <3 cm, cN0 | 10 × 3.85 Gy bid | No | 21 days | 15% |
Horton et al., 2018 [30] | 32 | ≥55 yo, T1, cN0, ER/PR+ HER- | 1 × 15–21 Gy | No | 10 days | NR |
Yaremko et al., 2018 [31] | 39 | Unifocal, <3 cm, cN0, ER+ | 1 × 21 Gy | No | 1 week | NR |
Current study | 21 | Locally advanced TNBC, LB | 10 × 2.5 Gy bid or 8 × 3.125 Gy qid | Yes | 4–6 weeks | 38% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
To, N.H.; Gabelle-Flandin, I.; Luong, T.M.H.; Loganadane, G.; Ouidir, N.; Boukhobza, C.; Grellier, N.; Verry, C.; Thiolat, A.; Cohen, J.L.; et al. Pathologic Response to Neoadjuvant Sequential Chemoradiation Therapy in Locally Advanced Breast Cancer: Preliminary, Translational Results from the French Neo-APBI-01 Trial. Cancers 2023, 15, 2030. https://doi.org/10.3390/cancers15072030
To NH, Gabelle-Flandin I, Luong TMH, Loganadane G, Ouidir N, Boukhobza C, Grellier N, Verry C, Thiolat A, Cohen JL, et al. Pathologic Response to Neoadjuvant Sequential Chemoradiation Therapy in Locally Advanced Breast Cancer: Preliminary, Translational Results from the French Neo-APBI-01 Trial. Cancers. 2023; 15(7):2030. https://doi.org/10.3390/cancers15072030
Chicago/Turabian StyleTo, Nhu Hanh, Isabelle Gabelle-Flandin, Thi My Hanh Luong, Gokoulakrichenane Loganadane, Nabila Ouidir, Chahrazed Boukhobza, Noémie Grellier, Camille Verry, Allan Thiolat, José L. Cohen, and et al. 2023. "Pathologic Response to Neoadjuvant Sequential Chemoradiation Therapy in Locally Advanced Breast Cancer: Preliminary, Translational Results from the French Neo-APBI-01 Trial" Cancers 15, no. 7: 2030. https://doi.org/10.3390/cancers15072030
APA StyleTo, N. H., Gabelle-Flandin, I., Luong, T. M. H., Loganadane, G., Ouidir, N., Boukhobza, C., Grellier, N., Verry, C., Thiolat, A., Cohen, J. L., Radosevic-Robin, N., & Belkacemi, Y. (2023). Pathologic Response to Neoadjuvant Sequential Chemoradiation Therapy in Locally Advanced Breast Cancer: Preliminary, Translational Results from the French Neo-APBI-01 Trial. Cancers, 15(7), 2030. https://doi.org/10.3390/cancers15072030