Diagnostic Accuracy of Magnetic Resonance Imaging in the Pre-Operative Staging of Cervical Cancer Patients Who Underwent Neoadjuvant Treatment: A Clinical–Surgical–Pathologic Comparison
Abstract
:Simple Summary
Abstract
1. Introduction
2. Clinical Issues in MRI Evaluation of Cervical Cancer after Neoadjuvant Treatment
3. Materials and Methods
3.1. Study Design and Ethics
3.2. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Human Papillomavirus (HPV) and Cervical Cancer. Available online: http://www.who.int/mediacentre/factsheets/fs380/en/ (accessed on 27 July 2021).
- Bray, F.; Jemal, A.; Grey, N.; Ferlay, J.; Forman, D. Global cancer transitions according to the Human Development Index (2008–2030): A population-based study. Lancet Oncol. 2012, 13, 790–801. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin. 2012, 62, 10–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pecorelli, S.; Zigliani, L.; Odicino, F. Revised FIGO staging for carcinoma of the cervix. Int. J. Gynaecol. Obstet. 2009, 105, 107–108. [Google Scholar] [CrossRef]
- Bipat, S.; Glas, A.S.; van der Velden, J.; Zwinderman, A.H.; Bossuyt, P.M.; Stoker, J. Computed tomography and magnetic resonance imaging in staging of uterine cervical carcinoma: A systematic review. Gynecol. Oncol. 2003, 91, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Nicolet, V.; Carignan, L.; Bourdon, F.; Prosmanne, O. MR imaging of cervical carcinoma: A practical staging approach. Radiographics 2000, 20, 1539–1549. [Google Scholar] [CrossRef]
- Stehman, F.B.; Bundy, B.N.; DiSaia, P.J.; Keys, H.M.; Larson, J.E.; Fowler, W.C. Carcinoma of the cervix treated with radiation therapy. I. A multi-variate analysis of prognostic variables in the Gynecologic Oncology Group. Cancer 1991, 67, 2776–2785. [Google Scholar] [CrossRef]
- Ditto, A.; Martinelli, F.; Lo Vullo, S.; Reato, C.; Solima, E.; Carcangiu, M.; Haeusler, E.; Mariani, L.; Lorusso, D.; Raspagliesi, F. The role of lymphadenectomy in cervical cancer patients: The significance of the number and the status of lymph nodes removed in 526 cases treated in a single institution. Ann. Surg. Oncol. 2013, 20, 3948–3954. [Google Scholar] [CrossRef]
- Goff, B.A.; Muntz, H.G.; Paley, P.J.; Tamimi, H.K.; Koh, W.J.; Greer, B.E. Impact of surgical staging in women with locally advanced cervical cancer. Gynecol. Oncol. 1999, 74, 436–442. [Google Scholar] [CrossRef]
- Bhatla, N.; Berek, J.S.; Cuello Fredes, M.; Denny, L.A.; Grenman, S.; Karunaratne, K.; Kehoe, S.T.; Konishi, I.; Olawaiye, A.B.; Prat, J.; et al. Revised FIGO staging for carcinoma of the cervix uteri. Int. J. Gynaecol. Obstet. 2019, 145, 129–135. [Google Scholar] [CrossRef]
- Lee, S.I.; Atri, M. 2018 FIGO Staging System for Uterine Cervical Cancer: Enter Cross-sectional Imaging. Radiology 2019, 292, 15–24. [Google Scholar] [CrossRef]
- Balleyguier, C.; Sala, E.; Da Cunha, T.; Bergman, A.; Brkljacic, B.; Danza, F.; Forstner, R.; Hamm, B.; Kubik-Huch, R.; Lopez, C.; et al. Staging of uterine cervical cancer with MRI: Guidelines of the European Society of Urogenital Radiology. Eur. Radiol. 2011, 21, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, K.; Machida, H.; Mandelbaum, R.S.; Konishi, I.; Mikami, M. Validation of the 2018 FIGO cervical cancer staging system. Gynecol. Oncol. 2019, 152, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Wu, Y.; Liu, X.; Huang, H.; Jiang, H.; Zhu, C.; Man, Y.; Liu, P.; Li, X.; Chen, Z.; et al. The Role of Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Predicting Treatment Response for Cervical Cancer Treated with Concurrent Chemoradiotherapy. Cancer Manag. Res. 2021, 13, 6065–6078. [Google Scholar] [CrossRef] [PubMed]
- Follen, M.; Levenback, C.F.; Iyer, R.B.; Grigsby, P.W.; Boss, E.A.; Delpassand, E.S.; Fornage, B.D.; Fishman, E.K. Imaging in cervical cancer. Cancer 2003, 98, 2028–2038. [Google Scholar] [CrossRef] [PubMed]
- Narayan, K.; McKenzie, A.; Fisher, R.; Susil, B.; Jobling, T.; Bernshaw, D. Estimation of tumor volume in cervical cancer by magnetic resonance imaging. Am. J. Clin. Oncol. 2003, 26, e163–e168. [Google Scholar] [CrossRef]
- Janus, C.L.; Mendelson, D.S.; Moore, S.; Gendal, E.S.; Dottino, P.; Brodman, M. Staging of cervical carcinoma: Accuracy of magnetic resonance imaging and computed tomography. Clin. Imaging 1989, 13, 114–116. [Google Scholar] [CrossRef]
- Greco, A.; Mason, P.; Leung, A.W.; Dische, S.; McIndoe, G.A.; Anderson, M.C. Staging of carcinoma of the uterine cervix: MRI-surgical correlation. Clin. Radiol. 1989, 40, 401–405. [Google Scholar] [CrossRef]
- de Boer, P.; Adam, J.A.; Buist, M.R.; van de Vijver, M.J.; Rasch, C.R.; Stoker, J.; Bipat, S.; Stalpers, L.J. Role of MRI in detecting involvement of the uterine internal os in uterine cervical cancer: Systematic review of diagnostic test accuracy. Eur. J. Radiol. 2013, 82, e422–e428. [Google Scholar] [CrossRef]
- Hricak, H.; Gatsonis, C.; Chi, D.S.; Amendola, M.A.; Brandt, K.; Schwartz, L.H.; Koelliker, S.; Siegelman, E.S.; Brown, J.J.; McGhee, R.B., Jr.; et al. Role of imaging in pretreatment evaluation of early invasive cervical cancer: Results of the intergroup study American College of Radiology Imaging Network 6651-Gynecologic Oncology Group 183. J. Clin. Oncol. 2005, 23, 9329–9337. [Google Scholar] [CrossRef]
- Docquier, P.L.; Paul, L.; Cartiaux, O.; Lecouvet, F.; Dufrane, D.; Delloye, C.; Galant, C. Formalin fixation could interfere with the clinical assessment of the tumor-free margin in tumor surgery: Magnetic resonance imaging-based study. Oncology 2010, 78, 115–124. [Google Scholar] [CrossRef]
- Kodaira, T.; Fuwa, N.; Toita, T.; Nomoto, Y.; Kuzuya, K.; Tachibana, K.; Furutani, K.; Ogawa, K. Clinical evaluation using magnetic resonance imaging for patients with stage III cervical carcinoma treated by radiation alone in multicenter analysis: Its usefulness and limitations in clinical practice. Am. J. Clin. Oncol. 2003, 26, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Burghardt, E.; Hofmann, H.M.H.; Ebner, F.; Haas, J.; Tamussino, K.; Justich, E. Magnetic resonance imaging in cervical cancer: A basis for objective classification. Gynecol. Oncol. 1989, 33, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Charles-Edwards, E.; Morgan, V.; Attygalle, A.D.; Giles, S.L.; Ind, T.E.; Davis, M.; Shepherd, J.; McWhinney, N.; deSouza, N.M. Endovaginal magnetic resonance imaging of stage 1A/1B cervical cancer with A T2- and diffusion-weighted magnetic resonance technique: Effect of lesion size and previous cone biopsy on tumor detectability. Gynecol. Oncol. 2011, 120, 368–373. [Google Scholar] [CrossRef]
- Malayeri, A.A.; El Khouli, R.H.; Zaheer, A.; Jacobs, M.A.; Corona-Villalobos, C.P.; Kamel, I.R.; Macura, K.J. Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up. Radiographics 2011, 31, 1773–1791. [Google Scholar] [CrossRef] [Green Version]
- Loncaster, J.A.; Carrington, B.M.; Sykes, J.R.; Jones, A.P.; Todd, S.M.; Cooper, R.; Buckley, D.L.; Davidson, S.E.; Logue, J.P.; Hunter, R.D.; et al. Prediction of radiotherapy outcome using dynamic contrast enhanced MRI of carcinoma of the cervix. Int. J. Radiat. Oncol. Biol. Phys. 2002, 54, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Vincens, E.; Balleyguier, C.; Rey, A.; Uzan, C.; Zareski, E.; Gouy, S.; Pautier, P.; Duvillard, P.; Haie-Meder, C.; Morice, P. Accuracy of magnetic resonance imaging in predicting residual disease in patients treated for stage IB2/II cervical carcinoma with chemoradiation therapy: Correlation of radiologic findings with surgicopathologic results. Cancer 2008, 113, 2158–2165. [Google Scholar] [CrossRef] [Green Version]
- Rajinikanth, V.; Dey, N. Magnetic Resonance Imaging: Recording, Reconstruction and Assessment; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Wakefield, J.C.; Downey, K.; Kyriazi, S.; deSouza, N.M. New MR techniques in gynecologic cancer. Am. J. Roentgenol. 2013, 200, 249–260. [Google Scholar] [CrossRef]
- Halaska, M.J.; Drochytek, V.; Shmakov, R.G.; Amant, F. Fertility sparing treatment in cervical cancer management in pregnancy. Best Pract. Research. Clin. Obstet. Gynaecol. 2021, 75, 101–112. [Google Scholar] [CrossRef]
- Patel-Lippmann, K.; Robbins, J.B.; Barroilhet, L.; Anderson, B.; Sadowski, E.A.; Boyum, J. MR Imaging of Cervical Cancer. Magn. Reson. Imaging Clin. N. Am. 2017, 25, 635–649. [Google Scholar] [CrossRef]
- Otero-Garcia, M.M.; Mesa-Alvarez, A.; Nikolic, O.; Blanco-Lobato, P.; Basta-Nikolic, M.; de Llano-Ortega, R.M.; Paredes-Velazquez, L.; Nikolic, N.; Szewczyk-Bieda, M. Role of MRI in staging and follow-up of endometrial and cervical cancer: Pitfalls and mimickers. Insights Imaging 2019, 10, 19. [Google Scholar] [CrossRef]
- Bourgioti, C.; Chatoupis, K.; Antoniou, A.; Panourgias, E.; Tzavara, C.; Rodolakis, A.; Moulopoulos, L. T2-weighted MRI findings predictive of parametrial involvement in patients with cervical cancer and histologically confirmed full thickness stromal invasion. Hell. J. Radiol. 2018, 3, 23–32. [Google Scholar]
- Young, P.; Daniel, B.; Sommer, G.; Kim, B.; Herfkens, R. Intravaginal gel for staging of female pelvic cancers—Preliminary report of safety, distention, and gel-mucosal contrast during magnetic resonance examination. J. Comput. Assist. Tomogr. 2012, 36, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Sironi, S.; Belloni, C.; Taccagni, G.; DelMaschio, A. Invasive cervical carcinoma: MR imaging after preoperative chemotherapy. Radiology 1991, 180, 719–722. [Google Scholar] [CrossRef] [PubMed]
- Manfredi, R.; Maresca, G.; Smaniotto, D.; Greggi, S.; Andrulli, D.; Rabitti, C.; Summaria, V.; Valentini, A.L.; Panici, P.B.; Cellini, N.; et al. Cervical cancer response to neoadjuvant therapy: MR imaging assessment. Radiology 1998, 209, 819–824. [Google Scholar] [CrossRef]
- Gui, B.; Valentini, A.L.; Miccò, M.; D’Agostino, G.R.; Tagliaferri, L.; Zannoni, G.F.; Fanfani, F.; Manfredi, R.; Bonomo, L. Cervical cancer response to neoadjuvant chemoradiotherapy: MRI assessment compared with surgery. Acta Radiol. 2016, 57, 1123–1131. [Google Scholar] [CrossRef]
- Hatano, K.; Sekiya, Y.; Araki, H.; Sakai, M.; Togawa, T.; Narita, Y.; Akiyama, Y.; Kimura, S.; Ito, H. Evaluation of the therapeutic effect of radiotherapy on cervical cancer using magnetic resonance imaging. Int. J. Radiat. Oncol. Biol. Phys. 1999, 45, 639–644. [Google Scholar] [CrossRef]
- Ferrandina, G.; Legge, F.; Fagotti, A.; Fanfani, F.; Distefano, M.; Morganti, A.; Cellini, N.; Scambia, G. Preoperative concomitant chemoradiotherapy in locally advanced cervical cancer: Safety, outcome, and prognostic measures. Gynecol. Oncol. 2007, 107, S127–S132. [Google Scholar] [CrossRef]
- Levy, A.; Medjhoul, A.; Caramella, C.; Zareski, E.; Berges, O.; Chargari, C.; Boulet, B.; Bidault, F.; Dromain, C.; Balleyguier, C. Interest of diffusion-weighted echo-planar MR imaging and apparent diffusion coefficient mapping in gynecological malignancies: A review. J. Magn. Reson. Imaging 2011, 33, 1020–1027. [Google Scholar] [CrossRef] [Green Version]
- Schreuder, S.M.; Lensing, R.; Stoker, J.; Bipat, S. Monitoring treatment response in patients undergoing chemoradiotherapy for locally advanced uterine cervical cancer by additional diffusion-weighted imaging: A systematic review. J. Magn. Reson. Imaging 2015, 42, 572–594. [Google Scholar] [CrossRef]
- Fu, Z.Z.; Peng, Y.; Cao, L.Y.; Chen, Y.S.; Li, K.; Fu, B.H. Value of apparent diffusion coefficient (ADC) in assessing radiotherapy and chemotherapy success in cervical cancer. Magn. Reson. Imaging 2015, 33, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Gui, B.; Miccò, M.; Valentini, A.L.; Cambi, F.; Pasciuto, T.; Testa, A.; Autorino, R.; Zannoni, G.F.; Rufini, V.; Gambacorta, M.A.; et al. Prospective multimodal imaging assessment of locally advanced cervical cancer patients administered by chemoradiation followed by radical surgery—The “PRICE” study 2: Role of conventional and DW-MRI. Eur. Radiol. 2019, 29, 2045–2057. [Google Scholar] [CrossRef]
- Choi, S.H.; Kim, S.H.; Choi, H.J.; Park, B.K.; Lee, H.J. Preoperative magnetic resonance imaging staging of uterine cervical carcinoma: Results of prospective study. J. Comput. Assist. Tomogr. 2004, 28, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Sheu, M.H.; Chang, C.Y.; Wang, J.H.; Yen, M.S. Preoperative staging of cervical carcinoma with MR imaging: A reappraisal of diagnostic accuracy and pitfalls. Eur. Radiol. 2001, 11, 1828–1833. [Google Scholar] [CrossRef]
- Klerkx, W.M.; Bax, L.; Veldhuis, W.B.; Heintz, A.P.; Mali, W.P.; Peeters, P.H.; Moons, K.G. Detection of lymph node metastases by gadolinium-enhanced magnetic resonance imaging: Systematic review and meta-analysis. J. Natl. Cancer Inst. 2010, 102, 244–253. [Google Scholar] [CrossRef] [Green Version]
- Thomeer, M.G.; Vandecaveye, V.; Braun, L.; Mayer, F.; Franckena-Schouten, M.; de Boer, P.; Stoker, J.; Van Limbergen, E.; Buist, M.; Vergote, I.; et al. Evaluation of T2-W MR imaging and diffusion-weighted imaging for the early post-treatment local response assessment of patients treated conservatively for cervical cancer: A multicentre study. Eur. Radiol. 2019, 29, 309–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, S.; Moon, M.H.; Cho, J.Y.; Kim, S.H.; Kim, S.Y. Diagnostic Performance of MRI for Assessing Parametrial Invasion in Cervical Cancer: A Head-to-Head Comparison between Oblique and True Axial T2-Weighted Images. Korean J. Radiol. 2019, 20, 378–384. [Google Scholar] [CrossRef] [PubMed]
- McEvoy, S.H.; Nougaret, S.; Abu-Rustum, N.R.; Vargas, H.A.; Sadowski, E.A.; Menias, C.O.; Shitano, F.; Fujii, S.; Sosa, R.E.; Escalon, J.G.; et al. Fertility-sparing for young patients with gynecologic cancer: How MRI can guide patient selection prior to conservative management. Abdom. Radiol. 2017, 42, 2488–2512. [Google Scholar] [CrossRef]
- Zhang, A.; Song, J.; Ma, Z.; Chen, T. Application of apparent diffusion coefficient values derived from diffusion-weighted imaging for assessing different sized metastatic lymph nodes in cervical cancers. Acta Radiol. 2020, 61, 848–855. [Google Scholar] [CrossRef]
- deSouza, N.M.; Dina, R.; McIndoe, G.A.; Soutter, W.P. Cervical cancer: Value of an endovaginal coil magnetic resonance imaging technique in detecting small volume disease and assessing parametrial extension. Gynecol. Oncol. 2006, 102, 80–85. [Google Scholar] [CrossRef]
- Thomeer, M.G.; Gerestein, C.; Spronk, S.; van Doorn, H.C.; van der Ham, E.; Hunink, M.G. Clinical examination versus magnetic resonance imaging in the pretreatment staging of cervical carcinoma: Systematic review and meta-analysis. Eur. Radiol. 2013, 23, 2005–2018. [Google Scholar] [CrossRef]
- Woo, S.; Suh, C.H.; Kim, S.Y.; Cho, J.Y.; Kim, S.H. Magnetic resonance imaging for detection of parametrial invasion in cervical cancer: An updated systematic review and meta-analysis of the literature between 2012 and 2016. Eur. Radiol. 2018, 28, 530–541. [Google Scholar] [CrossRef]
- Park, J.J.; Kim, C.K.; Park, S.Y.; Park, B.K. Parametrial invasion in cervical cancer: Fused T2-weighted imaging and high-b-value diffusion-weighted imaging with background body signal suppression at 3 T. Radiology 2015, 274, 734–741. [Google Scholar] [CrossRef]
- Chiappa, V.; Di Legge, A.; Valentini, A.L.; Gui, B.; Micco, M.; Ludovisi, M.; Giansiracusa, C.; Testa, A.C.; Valentin, L. Agreement of two-dimensional and three-dimensional transvaginal ultrasound with magnetic resonance imaging in assessment of parametrial infiltration in cervical cancer. Ultrasound Obstet. Gynecol. 2015, 45, 459–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.T.; Lam, W.W.; Yu, M.Y.; Cheung, T.H.; Metreweli, C. Comparison of dynamic helical CT and dynamic MR imaging in the evaluation of pelvic lymph nodes in cervical carcinoma. Am. J. Roentgenol. 2000, 175, 759–766. [Google Scholar] [CrossRef]
- Ozsarlak, O.; Tjalma, W.; Schepens, E.; Corthouts, B.; Op de Beeck, B.; Van Marck, E.; Parizel, P.M.; De Schepper, A.M. The correlation of preoperative CT, MR imaging, and clinical staging (FIGO) with histopathology findings in primary cervical carcinoma. Eur. Radiol. 2003, 13, 2338–2345. [Google Scholar] [CrossRef] [PubMed]
- Grubnic, S.; Vinnicombe, S.J.; Norman, A.R.; Husband, J.E. MR evaluation of normal retroperitoneal and pelvic lymph nodes. Clin. Radiol. 2002, 57, 193–200; discussion 194–201. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.B.; Carrington, B.M.; Davidson, S.E.; Swindell, R.; Lawrance, J.A. Staging of advanced cervical carcinoma using MRI-predictors of outcome after radical radiotherapy. Clin. Radiol. 2003, 58, 532–541. [Google Scholar] [CrossRef]
- Rizzo, S.; Calareso, G.; Maccagnoni, S.; Angileri, S.A.; Landoni, F.; Raimondi, S.; Pasquali, E.; Lazzari, R.; Bellomi, M. Pre-operative MR evaluation of features that indicate the need of adjuvant therapies in early stage cervical cancer patients. A single-centre experience. Eur. J. Radiol. 2014, 83, 858–864. [Google Scholar] [CrossRef]
- Choi, H.J.; Ju, W.; Myung, S.K.; Kim, Y. Diagnostic performance of computer tomography, magnetic resonance imaging, and positron emission tomography or positron emission tomography/computer tomography for detection of metastatic lymph nodes in patients with cervical cancer: Meta-analysis. Cancer Sci. 2010, 101, 1471–1479. [Google Scholar] [CrossRef]
- Ruan, J.; Zhang, Y.; Ren, H. Meta-analysis of PET/CT Detect Lymph Nodes Metastases of Cervical Cancer. Open Med. 2018, 13, 436–442. [Google Scholar] [CrossRef]
- Manganaro, L.; Lakhman, Y.; Bharwani, N.; Gui, B.; Gigli, S.; Vinci, V.; Rizzo, S.; Kido, A.; Cunha, T.M.; Sala, E.; et al. Staging, recurrence and follow-up of uterine cervical cancer using MRI: Updated Guidelines of the European Society of Urogenital Radiology after revised FIGO staging 2018. Eur. Radiol. 2021, 31, 7802–7816. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Chen, Z.; Kuang, F.; Li, H.; Zhong, Q.; Ma, M. Evaluation of international federation of gynecology and obstetrics stage IB cervical cancer: Comparison of diffusion-weighted and dynamic contrast-enhanced magnetic resonance imaging at 3.0 T. J. Comput. Assist. Tomogr. 2013, 37, 989–994. [Google Scholar] [CrossRef]
- Oldan, J.D.; Shah, S.N.; Rose, T.L. Applications of PET/MR Imaging in Urogynecologic and Genitourinary Cancers. Magn. Reson. Imaging Clin. N. Am. 2017, 25, 335–350. [Google Scholar] [CrossRef]
- Caruso, D.; Polici, M.; Zerunian, M.; Pucciarelli, F.; Guido, G.; Polidori, T.; Landolfi, F.; Nicolai, M.; Lucertini, E.; Tarallo, M.; et al. Radiomics in Oncology, Part 2: Thoracic, Genito-Urinary, Breast, Neurological, Hematologic and Musculoskeletal Applications. Cancers 2021, 13, 2681. [Google Scholar] [CrossRef] [PubMed]
- Laliscia, C.; Gadducci, A.; Mattioni, R.; Orlandi, F.; Giusti, S.; Barcellini, A.; Gabelloni, M.; Morganti, R.; Neri, E.; Paiar, F. MRI-based radiomics: Promise for locally advanced cervical cancer treated with a tailored integrated therapeutic approach. Tumori J. 2022, 108, 376–385. [Google Scholar] [CrossRef]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H. Artificial intelligence in radiology. Nat. Rev. Cancer. 2018, 18, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huang, K.; Zhang, Q.; Shen, J.; Zhou, H.; Yang, R.; Wang, L.; Liu, J.; Zhang, J.; Sun, H.; et al. Early response to neoadjuvant chemotherapy can help predict long-term survival in patients with cervical cancer. Oncotarget 2016, 7, 87485–87495. [Google Scholar] [CrossRef] [Green Version]
N (%) or Mean (Min–Max) | |
---|---|
Number of patients | 126 (100%) |
Age (years) | 55 (45–74) |
FIGO Staging * | |
IA | 6 (4.8) |
IB1-2 | 38 (30.2) |
IB3 | 16 (12.7) |
IIA | 10 (7.9) |
IIB | 56 (44.4) |
Pathological Staging | |
0 | 24 (19.0) |
IA | 6 (4.8) |
IB | 54 (42.9) |
IIA | 14 (11.1) |
IIB | 28 (22.2) |
MRI Staging | |
0 | 14 (11.1) |
IA | 0 |
IB | 62 (49.2) |
IIA | 8 (6.3) |
IIB | 42 (33.3) |
Histology † | |
Squamous cell carcinoma | 86 (68.3) |
Adenocarcinoma | 32 (25.4) |
Adenosquamous | 8 (6.3) |
Extrauterine disease | |
Parametrial invasion | 28 (22.2) |
Vaginal infiltration | 30 (23.8) |
Lymphnode metastasis | 24 (19.9) |
Parametrial Status | Nodal Status | Vaginal Status | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Staging | Pts n° | Se% CI95% | Sp% CI95% | PPV% CI95% | NPV% CI95% | A% CI95% | Se% CI95% | Sp% CI95% | PPV% CI95% | NPV% CI95% | A% CI95% | Se% CI95% | Sp% CI95% | PPV% CI95% | NPV% CI95% | A% CI95% |
MRI (whole series) | 126 | 50.2 (37.6–62.8) | 70.2 (58.1–82.3) | 35.0 (23.2–46.8) | 83.0 (74.7–91.3) | 65.8 (53.5–78.1) | 32.6 (21.0–44.2) | 89.3 (83.4–95.2) | 43.7 (32.8–54.6) | 85.1 (76.7–93.5) | 79.4 (68.1–90.7) | 40.3 (28.5–52.1) | 91.5 (84.3–98.7) | 60.0 (48.8–71.2) | 83.9 (74.0–93.8) | 79.4 (69.4–89.4) |
MRI (NAT group) | 94 | 49.8 (35.8–63.8) | 67.3 (54.2–80.4) | 29.2 (15.5–42.9) | 83.0 (73.9–92.1) | 62.9 (49.7–76.1) | 29.8 (17.4–42.2) | 91.4 (83.9–98.9) | 50.2 (36.6–63.8) | 82.7 (71.4–94.0) | 80.1 (69.1–91.1) | 46.9 (32.0–61.8) | 91.6 (83.8–99.4) | 67.1 (53.2–81.0) | 82.6 (70.3–94.9) | 78.2 (66.4–90.0) |
MRI (control group) | 32 | 50.1 (26.2–74.0) | 82.9 (66.1–100.0) | 50.1 (26.9–73.3) | 83.3 (68.0–100.0) | 75.5 (65.0–86.0) | 50.1 (26.4–73.8) | 84.8 (62.6–100) | 34.2 (10.1–58.3) | 91.8 (79.8–100) | 80.9 (61.6–100) | 56.4 (43.5–69.3) | 92.3 (65.5–100) | 72.7 (56.5–88.9) | 87.4 (70.1–100) | 81.1 (62.1–100) |
Physical examination (whole series) | 126 | 49.8 (38.0–61.6) | 92.1 (85.1–99.1) | 62.8 (51.3–74.3) | 85.6 (75.4–95.8) | 83.0 (73.2–92.8) | NA | NA | NA | NA | NA | 33.0 (21.9–44.1) | 91.7 (84.9–98.5) | 55.6 (43.1–68.1) | 81.3 (71.9–90.7) | 78.0 (67.5–88.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ditto, A.; Leone Roberti Maggiore, U.; Evangelisti, G.; Bogani, G.; Chiappa, V.; Martinelli, F.; Raspagliesi, F. Diagnostic Accuracy of Magnetic Resonance Imaging in the Pre-Operative Staging of Cervical Cancer Patients Who Underwent Neoadjuvant Treatment: A Clinical–Surgical–Pathologic Comparison. Cancers 2023, 15, 2061. https://doi.org/10.3390/cancers15072061
Ditto A, Leone Roberti Maggiore U, Evangelisti G, Bogani G, Chiappa V, Martinelli F, Raspagliesi F. Diagnostic Accuracy of Magnetic Resonance Imaging in the Pre-Operative Staging of Cervical Cancer Patients Who Underwent Neoadjuvant Treatment: A Clinical–Surgical–Pathologic Comparison. Cancers. 2023; 15(7):2061. https://doi.org/10.3390/cancers15072061
Chicago/Turabian StyleDitto, Antonino, Umberto Leone Roberti Maggiore, Giulio Evangelisti, Giorgio Bogani, Valentina Chiappa, Fabio Martinelli, and Francesco Raspagliesi. 2023. "Diagnostic Accuracy of Magnetic Resonance Imaging in the Pre-Operative Staging of Cervical Cancer Patients Who Underwent Neoadjuvant Treatment: A Clinical–Surgical–Pathologic Comparison" Cancers 15, no. 7: 2061. https://doi.org/10.3390/cancers15072061
APA StyleDitto, A., Leone Roberti Maggiore, U., Evangelisti, G., Bogani, G., Chiappa, V., Martinelli, F., & Raspagliesi, F. (2023). Diagnostic Accuracy of Magnetic Resonance Imaging in the Pre-Operative Staging of Cervical Cancer Patients Who Underwent Neoadjuvant Treatment: A Clinical–Surgical–Pathologic Comparison. Cancers, 15(7), 2061. https://doi.org/10.3390/cancers15072061