Potential, Limitations and Risks of Cannabis-Derived Products in Cancer Treatment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Pharmacognostic and Pharmacological Background
2.1. Cannabis Plants as a Source of Cannabinoids
2.2. Pharmacology of Cannabinoids
3. Cannabis Products
3.1. Regulation of Cannabis Products
3.2. Cannabis Products for Medical Purposes
3.3. Quality of Cannabis Products
3.4. Administration Routes for Medicinal Cannabis Products
4. Clinical Aspects of Cannabis Products
4.1. Pharmacokinetics of THC and CBD
4.2. Cytostatic Activity of Cannabinoids and Cannabis Products
4.3. Symptom Relief by Cannabis Products
4.4. Possible Interactions of Cannabis Products with Anticancer Drugs
4.4.1. Drug Transporter Proteins
4.4.2. Metabolising Enzymes
4.4.3. Immunotherapy
4.5. Possible Interactions of Cannabis Products with Other Medication Used by Patients with Cancer
4.6. Adverse Effects and Safety of Cannabis Products
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andre, C.M.; Hausman, J.-F.; Guerriero, G. Cannabis sativa: The plant of the thousand and one molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Lange, B.M.; Zager, J.J. Comprehensive inventory of cannabinoids in Cannabis sativa L.: Can we connect genotype and chemotype? Phytochem. Rev. 2022, 21, 1273–1313. [Google Scholar] [CrossRef]
- Plants of the World Online (Kew Royal Botanic Gardens). Available online: https://powo.science.kew.org (accessed on 2 November 2022).
- Kumar, P.; Mahato, D.K.; Kamle, M.; Borah, R.; Sharma, B.; Pandhi, S.; Tripathi, V.; Yadav, H.S.; Devi, S.; Patil, U.; et al. Pharmacological properties, therapeutic potential, and legal status of Cannabis sativa L.: An overview. Phytother. Res. 2021, 35, 6010–6029. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.C.; Mackie, K. An Introduction to the endogenous cannabinoid system. Biol. Psychiat. 2016, 79, 516–525. [Google Scholar] [CrossRef] [Green Version]
- Ostadhadi, S.; Rahmatollahi, M.; Dehpour, A.-R.; Rahimian, R. Therapeutic potential of cannabinoids in counteracting chemotherapy-induced adverse effects: An exploratory review. Phytother. Res. 2015, 29, 332–338. [Google Scholar] [CrossRef]
- Bogdanović, V.; Mrdjanović, J.; Borišev, I. A review of the therapeutic antitumor potential of cannabinoids. J. Altern. Complement. Med. 2017, 23, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, S.; Rassmussen, S.; Winters, B. Role of the endocannabinoid system and medical cannabis. J. Nurse Pract. 2017, 13, 525–531. [Google Scholar] [CrossRef] [Green Version]
- Hinz, B.; Ramer, R. Anti-tumour actions of cannabinoids: Anti-tumour actions of cannabinoids. Br. J. Pharmacol. 2019, 176, 1384–1394. [Google Scholar] [CrossRef]
- Singh, K.; Nassar, N.; Bachari, A.; Schanknecht, E.; Telukutla, S.; Zomer, R.; Piva, T.J.; Mantri, N. The pathophysiology and the therapeutic potential of cannabinoids in prostate cancer. Cancers 2021, 13, 4107. [Google Scholar] [CrossRef]
- Andradas, C.; Truong, A.; Byrne, J.; Endersby, R. The role of cannabinoids as anticancer agents in pediatric oncology. Cancers 2021, 13, 157. [Google Scholar] [CrossRef]
- Hinz, B.; Ramer, R. Cannabinoids as anticancer drugs: Current status of preclinical research. Br. J. Cancer 2022, 127, 1–13. [Google Scholar] [CrossRef]
- Abrams, D.I. Cannabis, cannabinoids and cannabis-based medicines in cancer care. Integr Cancer Ther. 2022, 21, 15347354221081772. [Google Scholar] [CrossRef] [PubMed]
- Abood, M.; Alexander, S.P.; Barth, F.; Bonner, T.I.; Bradshaw, H.; Cabral, G.; Casellas, P.; Cravatt, B.F.; Devane, W.A.; Di Marzo, V.; et al. Cannabinoid Receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. GtoPdb CITE 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Zou, S.; Kumar, U. Cannabinoid receptors and the endocannabinoid system: Signaling and function in the central nervous system. Int. J. Mol. Sci. 2018, 19, 833. [Google Scholar] [CrossRef] [Green Version]
- Turu, G.; Hunyady, L. Signal transduction of the CB1 cannabinoid receptor. J. Mol. Endocrinol. 2010, 44, 75–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velasco, G.; Carracedo, A.; Blázquez, C.; Lorente, M.; Aguado, T.; Haro, A.; Sánchez, C.; Galve-Roperh, I.; Guzmán, M. Cannabinoids and gliomas. Mol. Neurobiol. 2007, 36, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Moreno, E.; Cavic, M.; Krivokuca, A.; Casadó, V.; Canela, E. The endocannabinoid system as a target in cancer diseases: Are we there yet? Front. Pharmacol. 2019, 10, 339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haspula, D.; Clark, M.A. Cannabinoid receptors: An update on cell signaling, pathophysiological roles and therapeutic opportunities in neurological, cardiovascular, and inflammatory diseases. Int. J. Mol. Sci. 2020, 21, 7693. [Google Scholar] [CrossRef]
- Laezza, C.; Pagano, C.; Navarra, G.; Pastorino, O.; Proto, M.C.; Fiore, D.; Piscopo, C.; Gazzerro, P.; Bifulco, M. The endocannabinoid system: A target for cancer treatment. Int. J. Mol. Sci. 2020, 21, 747. [Google Scholar] [CrossRef] [Green Version]
- Irrera, N.; Bitto, A.; Sant’Antonio, E.; Lauro, R.; Musolino, C.; Allegra, A. Pros and cons of the cannabinoid system in cancer: Focus on hematological malignancies. Molecules 2021, 26, 3866. [Google Scholar] [CrossRef]
- Kis, B.; Ifrim, F.C.; Buda, V.; Avram, S.; Pavel, I.Z.; Antal, D.; Paunescu, V.; Dehelean, C.A.; Ardelean, F.; Diaconeasa, Z.; et al. Cannabidiol—From plant to human body: A promising bioactive molecule with multi-target effects in cancer. Int. J. Mol. Sci. 2019, 20, 5905. [Google Scholar] [CrossRef] [Green Version]
- Mangal, N.; Erridge, S.; Habib, N.; Sadanandam, A.; Reebye, V.; Sodergren, M.H. Cannabinoids in the landscape of cancer. J Cancer Res. Clin. Oncol. 2021, 147, 2507–2534. [Google Scholar] [CrossRef]
- Shabahzi, F.; Grandi, V.; Banerjee, A.; Trant, J.F. Cannabinoids and cannabinoid receptors: The story so far. iScience 2020, 23, 101301. [Google Scholar] [CrossRef] [PubMed]
- Tomko, A.; O’Leary, L.; Trask, H.; Achenbach, J.C.; Hall, S.R.; Goralski, K.B.; Ellis, L.D.; Dupré, D.J. Antitumor activity of abnormal cannabidiol and its analog O-1602 in taxol-resistant preclinical models of breast cancer. Front. Pharmacol. 2019, 10, 1124. [Google Scholar] [CrossRef] [PubMed]
- Muller, C.; Morales, P.; Reggio, P.H. Cannabinoid ligands targeting TRP channels. Front. Mol. Neurosci. 2019, 11, 487. [Google Scholar] [CrossRef] [Green Version]
- Pagano, C.; Navarra, G.; Coppola, L.; Bifulco, M.; Laezza, C. Molecular mechanism of cannabinoids in cancer progression. Int. J. Mol. Sci. 2021, 22, 3680. [Google Scholar] [CrossRef] [PubMed]
- Katchan, V.; David, P.; Shoenfeld, Y. Cannabinoids and autoimmune diseases: A systematic review. Autoimmun. Rev. 2016, 15, 513–528. [Google Scholar] [CrossRef] [PubMed]
- Cudaback, E.; Stella, N. Targeting astrocytomas and invading immune cells with cannabinoids: A promising therapeutic avenue. Mol. Neurobiol. 2007, 36, 36–44. [Google Scholar] [CrossRef]
- Zuardi, A.W.; Crippa, J.A.S.; Hallak, J.E.C.; Bhattacharyya, S.; Atakan, Z.; Martín-Santos, R.; McGuire, P.K.; Silveira Guimarães, F. A critical review of the antipsychotic effects of cannabidiol: 30 years of a translational investigation. Curr. Pharmaceut. Design 2012, 18, 5131–5140. [Google Scholar] [CrossRef] [Green Version]
- Iseger, T.A.; Bossong, M.G. A systematic review of the antipsychotic properties of cannabidiol in humans. Schizophren. Res. 2015, 162, 153–161. [Google Scholar] [CrossRef]
- Golombek, P.; Müller, M.; Barthlott, I.; Sproll, C.; Lachenmeier, D.W. Conversion of cannabidiol (CBD) into psychotropic cannabinoids including tetrahydrocannabinol (THC): A controversy in the scientific literature. Toxics 2020, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Ferber, S.G.; Namdar, D.; Hen-Shoval, D.; Eger, G.; Koltai, H.; Shoval, G.; Shbiro, L.; Weller, A. The ‘entourage effect’: Terpenes coupled with cannabinoids for the treatment of mood disorders and anxiety disorders. Curr. Neuropharmacol. 2020, 18, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Blasco-Benito, S.; Seijo-Vila, M.; Caro-Villalobos, M.; Tundidor, I.; Andradas, C.; García-Taboada, E.; Wade, J.; Smith, S.; Guzmán, M.; Pérez-Gómez, E.; et al. Appraising the ‘entourage effect’: Antitumor action of a pure cannabinoid versus a botanical drug preparation in preclinical models of breast cancer. Biochem. Pharmacol. 2018, 157, 285–293. [Google Scholar] [CrossRef] [PubMed]
- LaVigne, J.; Hecksel, R.; Streicher, J.M. In defense of the ‘entourage effect’: Terpenes found in Cannabis sativa activate the cannabinoid receptor 1 in vivo. FASEB J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Turgeman, I.; Bar-Sela, G. Cannabis for cancer—Illusion or the tip of an iceberg: A review of the evidence for the use of cannabis and synthetic cannabinoids in oncology. Exp. Opin. Investig. Drugs 2019, 28, 285–296. [Google Scholar] [CrossRef]
- Morales, P.; Jagerovic, N. Antitumor cannabinoid chemotypes: Structural insights. Front. Pharmacol. 2019, 10, 621. [Google Scholar] [CrossRef]
- Abuhasira, R.; Shbiro, L.; Landschaft, Y. Medical use of cannabis and cannabinoids containing products—Regulations in Europe and North America. Eur. J. Intern. Med. 2018, 49, 2–6. [Google Scholar] [CrossRef]
- European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). Medical Use of Cannabis and Cannabinoids: Questions and Answers for Policy Making. Publications Office of the European Union, Luxembourg, December 2018. Available online: https://www.emcdda.europa.eu/publications/rapid-communications/medical-use-of-cannabis-and-cannabinoids-questions-and-answers-for-policymaking_en (accessed on 2 February 2023).
- Richard, E.L.; Althouse, A.D.; Arnsten, J.H.; Bulls, H.W.; Kansagara, D.; Kerbag, M.N.; Lichius, C.; Lipsey, D.; Morasco, B.J.; Nugent, S.M.; et al. How medical are states’ medical cannabis policies?: Proposing a standardized scale. Int. J. Drug Policy 2021, 94, 103202. [Google Scholar] [CrossRef]
- Lebesmuehlbacher, T.; Smith, R.A. The effect of medical cannabis laws on pharmaceutical marketing to physicians. Health Econ. 2021, 30, 2409–2436. [Google Scholar] [CrossRef]
- FDA Regulation of Cannabis and Cannabis-Derived Products, including Cannabidiol (CBD). Available online: https://www.fda.gov/news-events/public-health-focus/fda-regulation-cannabis-and-cannabis-derived-products-including-cannabidiol-cbd (accessed on 2 February 2023).
- Introduction to Medicinal Cannabis Regulation in Australia. Available online: https://www.tga.gov.au/news/blog/introduction-medicinal-cannabis-regulation-australia (accessed on 3 February 2023).
- Cannabis Regulations. Available online: https://laws-lois.justice.gc.ca/eng/regulations/sor-2018-144/index.html (accessed on 2 February 2023).
- Drug Licensing Factsheet: Cannabis, CBD and Other Cannabinoids. Available online: https://www.gov.uk/government/publications/cannabis-cbd-and-other-cannabinoids-drug-licensing-factsheet/drug-licensing-factsheet-cannabis-cbd-and-other-cannabinoids (accessed on 6 February 2023).
- Cannabis Products. Available online: https://bedrocan.com/cannabis-products/ (accessed on 5 January 2023).
- Edwards, S.E.; Da Costa Rocha, I.; Williamson, E.M.; Heinrich, M. Phytopharmacy: An Evidence-Based Guide to Herbal Medicinal Products; Wiley-Blackwell: Chichester, UK, 2015. [Google Scholar]
- Medicinal Cannabis, Information Brochure for Doctors and Pharmacists. Ministry of Health, Welfare and Sport, The Hague (the Netherlands), December 2021. Available online: https://english.cannabisbureau.nl/doctor-and-pharmacists/documents/leaflets/2019/05/20/doctor-information-leaflet (accessed on 2 February 2023).
- Sativex Oromucosal Spray. Available online: https://www.medicines.org.uk/emc/product/602/smpc#gref (accessed on 6 February 2023).
- Epidyolex. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/epidyolex (accessed on 2 February 2023).
- Cesamet. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2006/018677s011lbl.pdf (accessed on 2 February 2023).
- Syndros. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/205525s003lbl.pdf (accessed on 1 February 2023).
- Marinol. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2005/018651s021lbl.pdf (accessed on 3 February 2023).
- Medicinal Cannabis, Information Brochure for Patients. Ministry of Health, Welfare and Sport. The Hague (the Netherlands), November 2021. Available online: https://english.cannabisbureau.nl/medicinal-cannabis/documents/leaflets/2019/05/20/patient-information-leaflet (accessed on 2 February 2023).
- Apotheek, T.; Den Haag, The Netherlands. Personal Communication, 2 March 2023.
- Olejar, K.J.; Kinney, C.A. Evaluation of thermo-chemical conversion temperatures of cannabinoid acids in hemp (Cannabis sativa L.) biomass by pressurized liquid extraction. J. Cannabis Res. 2021, 3, 40. [Google Scholar] [CrossRef]
- Van Breemen, R.B.; Muchiri, R.N.; Bates, T.A.; Weinstein, J.B.; Leier, H.C.; Farley, S.; Tafesse, F.G. Cannabinoids block cellular entry of SARS-CoV-2 and the emerging variants. J. Nat. Prod. 2022, 85, 176–184. [Google Scholar] [CrossRef]
- Compilation of Terms and Definitions for Cannabis-Derived Medicinal Products. EMA/HMPC/161753/2020, 22 September 2021. Available online: https://www.ema.europa.eu/en/documents/other/compilation-terms-definitions-cannabis-derived-medicinal-products_en.pdf (accessed on 2 February 2023).
- Baratta, F.; Pignata, I.; Ravetto, E.L.; Brusa, P. Cannabis for medical use: Analysis of recent clinical trials in view of current legislation. Front. Pharmacol. 2022, 13, 888903. [Google Scholar] [CrossRef] [PubMed]
- Hazekamp, A. An evaluation of medicinal grade cannabis in the Netherlands. Cannabinoids 2006, 1, 1–9. [Google Scholar]
- Van Dolah, H.J.; Bauer, B.A.; Mauck, K.F. Clinicians’ guide to cannabidiol and hemp oils. Mayo Clin. Proc. 2019, 94, 1840–1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newton, M.; Newton, D.W. Cannabidiol or CBD oil: Help, hope, and hype for psychiatric and neurologic conditions. J. Am. Psychiatr. Nurses Assoc. 2020, 26, 447–457. [Google Scholar] [CrossRef]
- Benedict, K.; Thompson, G.R., 3rd; Jackson, B.R. Cannabis use and fungal infections in a commercially insured population, United States, 2016. Emerg. Infect. Dis. 2020, 26, 1308–1310. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Habel, S.; Fischer, B.; Herbi, F.; Zerbe, Y.; Bock, V.; Rajcic de Rezende, T.; Walch, S.G.; Sproll, C. Are adverse effects of cannabidiol (CBD) products caused by tetrahydrocannabinol (THC) contamination? F1000Research 2022, 8, 1394. [Google Scholar] [CrossRef]
- Veit, M. Quality requirements for medicinal cannabis and respective products in the European Union—Status quo. Planta Med 2022. Epub ahead of print. [Google Scholar] [CrossRef]
- Sarma, N.D.; Waye, A.; ElSohly, M.A.; Brown, P.N.; Elzinga, S.; Johnson, H.E.; Marles, R.J.; Melanson, J.E.; Russo, E.; Deyton, L.; et al. Cannabis inflorescence for medical purposes: USP considerations for quality attributes. J. Nat. Prod. 2020, 83, 1334–1351. [Google Scholar] [CrossRef] [Green Version]
- Cannabis Flos. Available online: https://www.ema.europa.eu/en/medicines/herbal/cannabis-flos (accessed on 7 March 2023).
- Hazekamp, A.; Ware, M.A.; Muller-Vahl, K.R.; Abrams, D.; Grotenhermen, F. The medicinal use of cannabis and cannabinoids—An international cross-sectional survey on administration forms. J. Psychoact. Drugs 2013, 45, 199–210. [Google Scholar] [CrossRef]
- Informatorium Medicamentorum; Koninklijke Nederlandse Maatschappij ter Bevordering der Pharmacie (Royal Dutch Association for the Advancement of Pharmacy): Hague, The Netherlands, 2023.
- Volcano Medic. Available online: https://www.vapormed.com/en/catalog/product/view/id/403 (accessed on 8 November 2022).
- SyqeAir Website. Available online: https://syqe.com (accessed on 1 March 2023).
- Lucas, C.J.; Galettis, P.; Schneider, J. The pharmacokinetics and the pharmacodynamics of cannabinoids. Br. J. Clin. Pharmacol. 2018, 84, 2477–2482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millar, S.A.; Stone, N.L.; Yates, A.S.; O’Sullivan, S.E. A systematic review on the pharmacokinetics of cannabidiol in humans. Front. Pharmacol. 2018, 9, 1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chayasirisobhon, S. Mechanisms of action and pharmacokinetics of Cannabis. Perm. J. 2021, 25, 19–200. [Google Scholar] [CrossRef]
- Grotenhermen, F. Pharmacokinetics and pharmacodynamics of cannabinoids. Clin. Pharmacokinet. 2003, 42, 327–360. [Google Scholar] [CrossRef] [PubMed]
- Niesink, R.; Van Laar, M. THC, CBD en Gezondheidseffecten van Wiet en Hasj. Update 2016. Trimbos Instituut (Netherlands Institute of Mental Health and Addiction), Utrecht (the Netherlands) 2016. Available online: https://www.trimbos.nl/wp-content/uploads/sites/31/2021/09/af1490-thc-cbd-en-gezondheidseffecten-van-hasj-en-wiet-update-2016.pdf (accessed on 2 February 2023).
- Foster, B.C.; Abramovici, H.; Harris, C.S. Cannabis and cannabinoids: Kinetics and Interactions. Am. J. Med. 2019, 132, 1266–1270. [Google Scholar] [CrossRef] [PubMed]
- Zamarripa, C.A.; Spindle, T.R.; Surujunarain, R.; Weerts, E.M.; Bansal, S.; Unadkat, J.D.; Paine, M.F.; Vandrey, R. Assessment of orally administered Δ9-tetrahydrocannabinol when coadministered with cannabidiol on Δ9-tetrahydrocannabinol pharmacokinetics and pharmacodynamics in healthy adults: A randomized clinical trial. JAMA Netw. Open 2023, 6, e2254752. [Google Scholar] [CrossRef] [PubMed]
- Munson, A.E.; Harris, L.S.; Friedman, M.A.; Dewey, W.L.; Carchman, R.A. Antineoplastic activity of cannabinoids. J. Natl. Cancer Inst. 1975, 55, 597–602. [Google Scholar] [CrossRef]
- Dariš, B.; Verboten, M.T.; Knez, Ž.; Ferk, P. Cannabinoids in cancer treatment: Therapeutic potential and legislation. Bosn. J. Basic. Med. Sci. 2019, 19, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Alsherbiny, M.A.; Bhuyan, D.J.; Low, M.N.; Chang, D.; Li, C.G. Synergistic Interactions of cannabidiol with chemotherapeutic drugs in MCF7 cells: Mode of interaction and proteomics analysis of mechanisms. Int. J. Mol. Sci. 2021, 22, 10103. [Google Scholar] [CrossRef]
- Inkol, J.M.; Hocker, S.E.; Mutsaers, A.J. Combination therapy with cannabidiol and chemotherapeutics in canine urothelial carcinoma cells. PLoS ONE 2021, 16, e0255591. [Google Scholar] [CrossRef]
- Torres, S.; Lorente, M.; Rodríguez-Fornés, F.; Hernández-Tiedra, S.; Salazar, M.; García-Taboada, E.; Barcia, J.; Guzmán, M.; Velasco, G. A combined preclinical therapy of cannabinoids and temozolomide against glioma. Mol. Cancer Ther. 2011, 10, 90–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donadelli, M.; Dando, I.; Zaniboni, T.; Costanzo, C.; Dalla Pozza, E.; Scupoli, M.T.; Scarpa, A.; Zappavigna, S.; Marra, M.; Abbruzzese, A.; et al. Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism. Cell Death Dis. 2011, 2, e152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, K.A.; Dalgleish, A.G.; Liu, W.M. The combination of cannabidiol and Δ9-tetrahydrocannabinol enhances the anticancer effects of radiation in an orthotopic murine glioma model. Mol. Cancer Ther. 2014, 13, 2955–2967. [Google Scholar] [CrossRef] [Green Version]
- Ramer, R.; Hinz, B. Cannabinoids as anticancer drugs. Adv. Pharmacol. 2017, 80, 397–436. [Google Scholar] [CrossRef] [PubMed]
- Kenyon, J.; Liu, W.; Dalgleish, A. Report of objective clinical responses of cancer patients to pharmaceutical-grade synthetic cannabidiol. Anticancer. Res. 2018, 38, 5831–5835. [Google Scholar] [CrossRef] [Green Version]
- Dall’Stella, P.B.; Docema, M.F.L.; Maldaun, M.V.C.; Feher, O.; Lancellotti, C.L.P. Case report: Clinical outcome and image response of two patients with secondary high-grade glioma treated with chemoradiation, PCV, and cannabidiol. Front. Oncol. 2019, 8, 643. [Google Scholar] [CrossRef] [Green Version]
- Twelves, C.; Sabel, M.; Checketts, D.; Miller, S.; Tayo, B.; Jove, M.; Brazil, L.; Short, S.C. A phase 1b randomised, placebo-controlled trial of nabiximols cannabinoid oromucosal spray with temozolomide in patients with recurrent glioblastoma. Br. J. Cancer 2021, 124, 1379–1387. [Google Scholar] [CrossRef]
- Phase II Clinical Trial of Cannabis Derivatives. Available online: https://www.thebraintumourcharity.org/brain-tumour-diagnosis-treatment/types-of-brain-tumour-adult/glioblastoma/glioblastoma-research/clinical-trial-cannabis-derivative/ (accessed on 4 January 2023).
- Schloss, J.; Lacey, J.; Sinclair, J.; Steel, A.; Sughrue, M.; Sibbritt, D.; Teo, C. A phase 2 randomised clinical trial assessing the tolerability of two different ratios of medicinal cannabis in patients with high grade gliomas. Front. Oncol. 2021, 11, 649555. [Google Scholar] [CrossRef]
- TN-TC11G (THC + CBD) Combination with Temozolomide and Radiotherapy in Patients with Newly-Diagnosed Glioblastoma (GEINOCANN). Available online: https://clinicaltrials.gov/ct2/show/NCT03529448 (accessed on 28 March 2023).
- European Union Clinicat Trial Register. Available online: https://www.clinicaltrialsregister.eu/ctr-search/search?query=2018-004505-34 (accessed on 28 March 2023).
- Lynch, M.E.; Cesar-Rittenberg, P.; Hohmann, A.G. A double-blind, placebo-controlled, crossover pilot trial with extension using an oral mucosal cannabinoid extract for treatment of chemotherapy-induced neuropathic pain. J. Pain Symptom Managem. 2014, 47, 166–173. [Google Scholar] [CrossRef]
- O’Hearn, S.; Diaz, P.; Wan, B.A.; DeAngelis, C.; Lao, N.; Malek, L.; Chow, E.; Blake, A. Modulating the endocannabinoid pathway as treatment for peripheral neuropathic pain: A selected review of preclinical studies. Ann. Palliat. Med. 2017, 6, S209–S214. [Google Scholar] [CrossRef] [Green Version]
- Kittelson, S.M.; Elie, M.-C.; Pennypacker, L. Palliative care symptom management. Crit. Care Nurs. Clin. North Am. 2015, 27, 315–339. [Google Scholar] [CrossRef] [PubMed]
- Bar-Sela, G.; Vorobeichik, M.; Drawsheh, S.; Omer, A.; Goldberg, V.; Muller, E. The medical necessity for medicinal cannabis: Prospective, observational study evaluating the treatment in cancer patients on supportive or palliative care. Evid.-Based Complement. Altern. Med. 2013, 2013, 510392. [Google Scholar] [CrossRef]
- Fraguas-Sánchez, A.I.; Torres-Suárez, A.I. Medical use of cannabinoids. Drugs 2018, 78, 1665–1703. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Burnell-Nugent, M.; Lossignol, D.; Ganae-Motan, E.D.; Potts, R.; Fallon, M.T. Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC:CBD extract and THC extract in patients with intractable cancer-related pain. J. Pain Sympt. Managem. 2010, 39, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Zylla, D.M.; Eklund, J.; Gilmore, G.; Gavenda, A.; Guggisberg, J.; VazquezBenitez, G.; Pawloski, P.A.; Arneson, T.; Richter, S.; Birnbaum, A.K.; et al. A randomized trial of medical cannabis in patients with stage IV cancers to assess feasibility, dose requirements, impact on pain and opioid use, safety, and overall patient satisfaction. Support. Care Cancer 2021, 29, 7471–7478. [Google Scholar] [CrossRef] [PubMed]
- Kleckner, A.S.; Kleckner, I.R.; Kamen, C.S.; Tejani, M.A.; Janelsins, M.C.; Morrow, G.R.; Peppone, L.J. Opportunities for cannabis in supportive care in cancer. Ther. Adv. Med. Oncol. 2019, 11, 1758835919866362. [Google Scholar] [CrossRef] [Green Version]
- Abalo, R.; Uranga, J.A.; Pérez-García, I.; de Andrés, R.; Girón, R.; Vera, G.; López-Pérez, A.E.; Martí-Fontelles, M.I. May cannabinoids prevent the development of chemotherapy-induced diarrhea and intestinal mucositis? Experimental study in the rat. Neurogastroenterol. Motil. 2017, 29, e12952. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Wu, Z.; Liu, Y.; Chen, L.; Zhao, H.; Guo, H.; Zhu, K.; Wang, W.; Chen, S.; Zhou, N.; et al. Cannabinoid receptor 2 activation decreases severity of cyclophosphamide-induced cystitis via regulating autophagy. Neurourol. Urodyn. 2020, 39, 158–169. [Google Scholar] [CrossRef]
- Li, L.; Xuan, Y.; Zhu, B.; Wang, X.; Tian, X.; Zhao, L.; Wang, Y.; Jiang, X.; Wen, N. Protective effects of cannabidiol on chemotherapy-induced oral mucositis via the Nrf2/Keap1/ARE signaling pathways. Oxidat. Med. Cell Longev. 2022, 2022, 4619760. [Google Scholar] [CrossRef]
- Pulito, C.; Cristaudo, A.; Porta, C.L.; Zapperi, S.; Blandino, G.; Morrone, A.; Strano, S. Oral mucositis: The hidden side of cancer therapy. J. Exp. Clin. Cancer Res. 2020, 39, 210. [Google Scholar] [CrossRef]
- Oelen, Y.; Revenberg, S.; de Vos-Geelen, J.; van Geel, R.; Schoenmaekers, J.; van den Beuken-Everdingen, M.; Valkenburg-van Iersel, L. Cannabinoid consumption among cancer patients receiving systemic anti-cancer treatment in the Netherlands. J. Cancer Res. Clin. Oncol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.W.; Ruhlmann, C.H.; Eckhoff, L.; Brønnum, D.; Herrstedt, J.; Dalton, S.O. Cannabis use among Danish patients with cancer: A cross-sectional survey of sociodemographic traits, quality of life, and patient experiences. Support. Care Cancer 2022, 30, 1181–1190. [Google Scholar] [CrossRef]
- Vigano, A.; Moride, Y.; Hachem, Y.; Canac-Marquis, M.; Gamaoun, R.; Kalaba, M.; Martel, M.O.; Perez, J.; Néron, A.; Beaulieu, P.; et al. The Quebec Cannabis Registry: Investigating the safety and effectiveness of medical cannabis. Cannabis Cannabinoid. Res. 2022; Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Lichtman, A.H.; Lux, E.A.; McQuade, R.; Rossetti, S.; Sanchez, R.; Sun, W.; Wright, S.; Kornyeyeva, E.; Fallon, M.T. Results of a double-blind, randomized, placebo-controlled study of nabiximols oromucosal spray as an adjunctive therapy in advanced cancer patients with chronic uncontrolled pain. J. Pain Symptom Managem. 2018, 55, 179–188.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bar-Lev Schleider, L.; Mechoulam, R.; Lederman, V.; Hilou, M.; Lencovsky, O.; Betzalel, O.; Shbiro, L.; Novack, V. Prospective analysis of safety and efficacy of medical cannabis in large unselected population of patients with cancer. Eur. J. Intern. Med. 2018, 49, 37–43. [Google Scholar] [CrossRef]
- Turcott, J.G.; del Rocío Guillen Núñez, M.; Flores-Estrada, D.; Oñate-Ocaña, L.F.; Zatarain-Barrón, Z.L.; Barrón, F.; Arreita, O. The effect of nabilone on appetite, nutritional status, and quality of life in lung cancer patients: A randomized, double-blind clinical trial. Support. Care Cancer 2018, 26, 3029–3038. [Google Scholar] [CrossRef]
- Grimison, P.; Mersiades, A.; Kirby, A.; Lintzeris, N.; Morton, R.; Haber, P.; Olver, I.; Walsh, A.; McGregor, I.; Chenung, Y.; et al. Oral THC:CBD cannabis extract for refractory chemotherapy-induced nausea and vomiting: A randomised, placebo-controlled, phase II crossover trial. Ann. Oncol. 2020, 31, 1553–1560. [Google Scholar] [CrossRef] [PubMed]
- Hammond, S.; Erridge, S.; Mangal, N.; Pacchetti, B.; Sodergren, M.H. The effect of cannabis-based medicine in the treatment of cachexia: A systematic review and meta-analysis. Cannabis Cannabinoid. Res. 2021, 6, 474–487. [Google Scholar] [CrossRef]
- Wang, L.; Hong, P.J.; May, C.; Rehman, Y.; Oparin, Y.; Hong, C.J.; Hong, B.Y.; AminiLari, M.; Gallo, L.; Kaushal, A.; et al. Medical cannabis or cannabinoids for chronic non-cancer and cancer related pain: A systematic review and meta-analysis of randomised clinical trials. BMJ 2021, 374, n1034. [Google Scholar] [CrossRef]
- Simon, L.; Baldwin, C.; Anastasia, Z.K.; Slee, A. Cannabinoid interventions for improving cachexia outcomes in cancer: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2022, 13, 23–41. [Google Scholar] [CrossRef]
- Noori, A.; Miroshnychenko, A.; Shergill, Y.; Ashoorion, V.; Rehman, Y.; Couban, R.J.; Buckley, D.N.; Thabane, L.; Bhandari, M.; Guyatt, G.H.; et al. Opioid-sparing effects of medical cannabis or cannabinoids for chronic pain: A systematic review and meta-analysis of randomised and observational studies. BMJ Open 2021, 11, e047717. [Google Scholar] [CrossRef]
- Barakji, J.; Korang, S.K.; Feinberg, J.; Maagaard, M.; Mathiesen, O.; Gluud, C.; Jakobsen, J.C. Cannabinoids versus placebo for pain: A systematic review with meta-analysis and Trial Sequential Analysis. PLoS ONE 2023, 18, e0267420. [Google Scholar] [CrossRef] [PubMed]
- MacCallum, C.A.; Russo, E.B. Practical considerations in medical cannabis administration and dosing. Eur. J. Intern. Med. 2018, 49, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Campos, D.A.; Mendivil, E.J.; Romano, M.; Garcia, M.; Martinez, M.E. A systematic review of medical cannabinoids dosing in human. Clin. Therap. 2022, 44, E39–E58. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.; Greer, R.; Huggett, G.; Kearney, A.; Gurgenci, T.; Good, P. Phase IIb randomized, placebo-controlled, dose-escalating, double-blind study of cannabidiol oil for the relief of symptoms in advanced cancer (MedCan1-CBD). J. Clin. Oncol. 2023, 41, 1444–1452. [Google Scholar] [CrossRef]
- Bouquié, R.; Deslandes, G.; Mazaré, H.; Cogné, M.; Mahé, J.; Grégoire, M.; Jolliet, P. Cannabis and anticancer drugs: Societal usage and expected pharmacological interactions—A review. Fundam. Clin. Pharmacol. 2018, 32, 462–484. [Google Scholar] [CrossRef]
- Choi, M.-K.; Song, I.-S. Pharmacokinetic drug-drug interactions and herb-drug interactions. Pharmaceutics 2021, 13, 610. [Google Scholar] [CrossRef]
- Holland, M.L.; Panetta, J.A.; Hoskins, J.M.; Bebawy, M.; Roufogalis, B.D.; Allen, J.D.; Arnold, J.C. The effects of cannabinoids on P-glycoprotein transport and expression in multidrug resistant cells. Biochem. Pharmacol. 2006, 71, 1146–1154. [Google Scholar] [CrossRef]
- Bi, Y.; Wang, X.; Ding, H.; He, F.; Han, L.; Zhang, Y. Transporter-mediated natural product-drug interactions. Planta Med. 2023, 89, 119–133. [Google Scholar] [CrossRef]
- Brecht, K.; Schäfer, A.M.; Meyer zu Schwabedissen, H.E. Uptake transporters of the SLC21, SLC22A, and SLC15A families in anticancer therapy—Modulators of cellular entry or pharmacokinetics? Cancers 2020, 12, 2263. [Google Scholar] [CrossRef]
- Teo, Y.L.; Ho, H.K.; Chan, A. Metabolism-related pharmacokinetic drug−drug interactions with tyrosine kinase inhibitors: Current understanding, challenges and recommendations. Br. J. Clin. Pharmacol. 2015, 79, 241–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holland, M.L.; Lau, D.T.T.; Allen, J.D.; Arnold, J.C. The multidrug transporter ABCG2 (BCRP) is inhibited by plant-derived cannabinoids: Plant-derived cannabinoids inhibit ABCG2. Br. J. Pharmacol. 2007, 152, 815–824. [Google Scholar] [CrossRef] [Green Version]
- Feinshtein, V.; Erez, O.; Ben-Zvi, Z.; Erez, N.; Eshkoli, T.; Sheizaf, B.; Sheiner, E.; Huleihel, M.; Holcberg, G. Cannabidiol changes P-gp and BCRP expression in trophoblast cell lines. PeerJ 2013, 1, e153. [Google Scholar] [CrossRef] [Green Version]
- Holland, M.L.; Allen, J.D.; Arnold, J.C. Interaction of plant cannabinoids with the multidrug transporter ABCC1 (MRP1). Eur. J. Pharmacol. 2008, 59, 128–131. [Google Scholar] [CrossRef] [PubMed]
- Wittgen, H.G.; Van den Heuvel, J.J.; Van den Broek, P.H.; Dinter-Heidorn, H.; Koenderink, J.B.; Russel, F.G. Cannabinoid type 1 receptor antagonists modulate transport activity of multidrug resistance-associated proteins MRP1, MRP2, MRP3, and MRP4. Drug Metab. Dispos. 2011, 39, 1294–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sparreboom, A.; Nooter, K.; Loos, W.; Verweij, J. The (ir)relevance of plasma protein binding of anticancer drugs. Netherl. J. Med. 2001, 59, 196–207. [Google Scholar] [CrossRef]
- Zia, K.H.; Siddiqui, T.; Ali, S.S.; Rehman, A.A.; Ahsan, H.; Khan, H.F. Chemotherapeutic drugs and plasma proteins: Exploring new dimensions. Curr. Prot. Pept. Sci. 2018, 19, 937–947. [Google Scholar] [CrossRef]
- Wang, J.; Tao, J.; Jia, S.; Wang, M.; Jiang, H.; Du, Z. The protein-binding behavior of platinum anticancer drugs in blood revealed by mass spectrometry. Pharmaceuticals 2021, 14, 104. [Google Scholar] [CrossRef]
- Yamaori, S.; Ebisawa, J.; Okushima, Y.; Yamamoto, I.; Watanabe, K. Potent inhibition of human cytochrome P450 3A isoforms by cannabidiol: Role of phenolic hydroxyl groups in the resorcinol moiety. Life Sci. 2011, 88, 730–736. [Google Scholar] [CrossRef]
- Yamaori, S.; Okamoto, Y.; Yamamoto, I.; Watanabe, K. Cannabidiol, a major phytocannabinoid, as a potent atypical Inhibitor for CYP2D6. Drug Metab. Dispos. 2011, 39, 2049. [Google Scholar] [CrossRef] [Green Version]
- Yamaori, S.; Maeda, C.; Yamamoto, I.; Watanabe, K. Differential inhibition of human cytochrome P450 2A6 and 2B6 by major phytocannabinoids. Forensic. Toxicol. 2011, 29, 117–124. [Google Scholar] [CrossRef]
- Yamaori, S.; Koeda, K.; Kushihara, M.; Hada, Y.; Yamamoto, I.; Watanabe, K. Comparison in the in vitro inhibitory effects of major phytocannabinoids and polycyclic aromatic hydrocarbons contained in marijuana smoke on cytochrome P450 2C9 activity. Drug Metab. Pharmacokinet. 2012, 27, 294–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, Y.; Gurley, B.J.; Markowitz, J.S. The potential for pharmacokinetic interactions between cannabis products and conventional medications. J. Clin. Psychopharmacol. 2019, 3, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Bansal, S.; Paine, M.F.; Unadkat, J.D. Comprehensive predictions of cytochrome P450 (P450)-mediated in vivo cannabinoid-drug interactions based on reversible and time-dependent P450 inhibition in human liver microsomes. Drug Metab. Dispos. 2022, 50, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Nasrin, S.; Watson, C.J.W.; Bardhi, K.; Fort, G.; Chen, G.; Lazarus, P. Inhibition of UDP-glucuronosyltransferase enzymes by major cannabinoids and their metabolites. Drug Metab. Dispos. 2021, 49, 1081–1089. [Google Scholar] [CrossRef]
- Engels, F.K.; de Jong, F.A.; Sparreboom, A.; Mathot, R.A.; Loos, W.J.; Kitzen, J.J.; de Bruijn, P.; Verweij, J.; Mathijssen, R.H. Medicinal cannabis does not influence the clinical pharmacokinetics of irinotecan and docetaxel. Oncologist 2007, 12, 291–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, C.; Shu, C.; Cao, D.; Yang, Y.; Liu, J.; Shi, S.; Shao, Z.; Wang, N.; Yang, T.; Liang, H.; et al. UGT1A1*6, UGT1A7*3 and UGT1A9*1b polymorphisms are predictive markers for severe toxicity in patients with metastatic gastrointestinal cancer treated with irinotecan-based regimens. Oncol. Lett. 2016, 12, 4231–4237. [Google Scholar] [CrossRef] [Green Version]
- Cronin-Fenton, D.P.; Damkier, P. Tamoxifen and CYP2D6: A controversy in pharmacogenetics. Adv. Pharmacol. 2018, 83, 65–91. [Google Scholar] [CrossRef] [Green Version]
- Ryman, J.T.; Meibohm, B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometr. Syst. Pharmacol. 2017, 6, 576–588. [Google Scholar] [CrossRef]
- Bar-Sela, G.; Cohen, I.; Campisi-Pinto, S.; Lewitus, G.M.; Oz-Ari, L.; Jehassi, A.; Peer, A.; Turgeman, I.; Vernicova, O.; Berman, P.; et al. Cannabis consumption used by cancer patients during immunotherapy correlates with poor clinical outcome. Cancers 2020, 12, 2447. [Google Scholar] [CrossRef]
- Henriksen, A.; Dyhl-Polk, A.; Chen, I.; Nielsen, D. Checkpoint inhibitors in pancreatic cancer. Cancer Treat. Rev. 2019, 78, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Taha, T.; Meiri, D.; Talhamy, S.; Wollner, M.; Peer, A.; Bar-Sela, G. Cannabis impacts tumor response rate to nivolumab in patients with advanced malignancies. Oncologist 2019, 24, 549–554. [Google Scholar] [CrossRef] [Green Version]
- Van den Beuken-van Everdingen, M.H.J.; Hochstenbach, L.M.J.; Joosten, E.A.J.; Tjan-Heijnen, V.C.G.; Janssen, D.J.A. Update on prevalence of pain in patients with cancer: Systematic review and meta-Analysis. J. Pain Symptom Managem. 2016, 51, 1070–1090.e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Culp, C.; Kim, H.K.; Abdi, S. Ketamine use for cancer and chronic pain management. Front. Pharmacol. 2021, 11, 599721. [Google Scholar] [CrossRef] [PubMed]
- Janelsins, M.C.; Tejani, M.A.; Kamen, C.; Peoples, A.R.; Mustian, K.M.; Morrow, G.R. Current pharmacotherapy for chemotherapy-induced nausea and vomiting in cancer patients. Exp. Opin. Pharmacother. 2013, 14, 757–766. [Google Scholar] [CrossRef]
- IKNL and the NCR. Available online: https://iknl.nl/en (accessed on 25 January 2023).
- Farmacotherapeutisch Kompas. Available online: https://www.farmacotherapeutischkompas.nl (accessed on 6 February 2023).
- Abrams, D.I.; Couey, P.; Shade, S.B.; Kelly, M.E.; Benowitz, N.L. Cannabinoid-opioid interaction in chronic pain. Clin. Pharmacol. Ther. 2011, 90, 844–851. [Google Scholar] [CrossRef]
- Alsherbiny, M.A.; Li, C.G. Medicinal cannabis-potential drug interactions. Medicines 2018, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Geffrey, A.L.; Pollack, S.F.; Bruno, P.L.; Thiele, E.A. Drug–drug interaction between clobazam and cannabidiol in children with refractory epilepsy. Epilepsy 2015, 56, 1246–1251. [Google Scholar] [CrossRef]
- Riera, R.; Pacheco, R.L.; Bagattini, A.M.; Cabrera Martimbianco, A.L. Efficacy and safety of therapeutic use of cannabis derivatives and their synthetic analogs: Overview of systematic reviews. Phytotherapy. Res. 2022, 36, 5–21. [Google Scholar] [CrossRef]
- Ware, M.A.; Wang, T.; Shapiro, S.; Collet, J.-P. Cannabis for the management of pain: Assessment of safety study (COMPASS). J. Pain 2015, 16, 1233–1242. [Google Scholar] [CrossRef] [Green Version]
- Aviram, J.; Lewitus, G.M.; Vysotski, Y.; Amna, M.A.; Ouryvaev, A.; Procaccia, S.; Cohen, I.; Leibovici, A.; Akria, L.; Goncharov, D.; et al. The effectiveness and safety of medical cannabis for treating cancer related symptoms in oncology Patients. Front. Pain Res. 2022, 3, 861037. [Google Scholar] [CrossRef]
- Taylor, L.; Gidal, B.; Blakey, G.; Tayo, B.; Morrison, G. A phase I, randomized, double-blind, placebo-controlled, single ascending dose, multiple dose, and food effect trial of the safety, tolerability and pharmacokinetics of highly purified cannabidiol in healthy subjects. CNS Drugs 2018, 32, 1053–1067. [Google Scholar] [CrossRef] [Green Version]
- Tumati, S.; Lanctôt, K.L.; Wang, R.; Li, A.; Davis, A.; Herrmann, N. Medical cannabis use among older adults in Canada: Self-reported data on types and amount used, and perceived effects. Drugs Aging 2022, 39, 153–163. [Google Scholar] [CrossRef]
- Bar-Lev Schleider, L.; Mechoulam, R.; Sikorin, I.; Naftali, T.; Novack, V. Adherence, safety, and effectiveness of medical cannabis and epidemiological characteristics of the patient population: A prospective study. Front. Med. 2022, 9, 827849. [Google Scholar] [CrossRef]
- Englund, A.; Oliver, D.; Chesney, E.; Chester, L.; Wilson, J.; Sovi, S.; De Mitcheli, A.; Hodsoll, J.; Fusar-Poli, P.; Strang, J.; et al. Does cannabidiol make cannabis safer? A randomised, double-blind, cross-over trial of cannabis with four different CBD:THC ratios. Neuropsychopharmacology, 2022; Online ahead of print. [Google Scholar] [CrossRef]
- Lawn, W.; Trinci, K.; Mokrysz, C.; Borissova, A.; Ofori, S.; Petrilli, K.; Bloomfield, M.; Haniff, Z.R.; Hall, D.; Fernandez-Vinson, N.; et al. The acute effects of cannabis with and without cannabidiol in adults and adolescents: A randomised, double-blind, placebo-controlled, crossover experiment. Addiction, 2023; Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Jack, S. Pharmacovigilance of cannabis products for medical ad non-medical purposes. In Pharmacovigilance for Herbal and Traditional Medicines; Barnes, J., Ed.; Springer Nature Switzerland AG: Cham, Switzerland, 2022; pp. 317–333. [Google Scholar]
- Greish, K.; Mathur, A.; Al Zahrani, R.; Elkaissi, S.; Al Jishi, M.; Nazzal, O.; Taha, S.; Pittalla, V.; Taurin, S. Synthetic cannabinoids nano-micelles for the management of triple negative breast cancer. J. Control. Rel. 2018, 291, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Macedo, A.C.; Oliveira Vilela de Faria, A.; Bizzi, I.; Moreira, F.A.; Colasanti, A.; Ghezzi, P. Online information on medical cannabis is not always aligned with scientific evidence and may raise unrealistic expectations. J. Cannabis Res. 2022, 4, 37. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.; Kilgore, M.; Babalonis, S. Label accuracy of unregulated cannabidiol (CBD) products: Measured concentration vs. label claim. J. Cannabis Res. 2022, 4, 28. [Google Scholar] [CrossRef] [PubMed]
Cannabis Product | Concentration THC | Concentration CBD | Indications and Uses | Formulation | Reference |
---|---|---|---|---|---|
Bedrocan | Standardised on 22.0% | < 1.0% | Symptoms include poor appetite, emaciation and vomiting, anorexia, cachexia and emesis. In conditions such as Tourette’s syndrome and therapy-resistant glaucoma. | Cannabis flos | [46,48] |
Bedrobinol | Standardised on 13.5% | < 1.0% | As for Bedrocan | Cannabis flos | [46,48] |
Bediol | Standardised on 6.3% | Standardised on 8.0% | Inexperienced (with cannabis) patient. Pain, with and without spasm, in patients with MS. Other pathologies with spasms and abnormal muscle activity. | Granulate | [46,48] |
Bedica | Standardised on 14.0% | < 1.0% | Patient suffering from restlessness, insomnia or spasms. | Granulate | [46,48] |
Bedrolite | < 1.0 % | Standardised on 7.5% | Patients with epilepsy and epilepsy syndromes. | Granulate | [46,48] |
Sativex (Nabiximols) | 27 mg/mL | 25 mg/mL | Spasticity due to multiple sclerosis, in patients who have failed to respond adequately to conventional treatments. | Oromucosal spray | [49] |
Epidyolex | - | 100 mg/mL | Lennox-Gastaut syndrome and Dravet syndrome as adjuvant therapy. Orphan drug. | Oral liquid | [50] |
Cesamet (Nabilone) | Synthetic THC analogue; 1 mg | - | Chemotherapy-induced nausea and vomiting. | Capsules | [51] |
Syndros (Dronabinol) | Synthetic THC; 5 mg/mL | - | Anorexia associated with weight loss in patients with AIDS. Nausea and vomiting associated with cancer chemotherapy in patients who have failed to respond adequately to conventional antiemetic treatments. | Oral liquid | [52] |
Marinol (Dronabinol) | Synthetic THC; 2.5/5/10 mg | - | Anorexia associated with weight loss in patients with AIDS. Nausea and vomiting associated with cancer chemotherapy in patients who have failed to respond adequately to conventional antiemetic treatments. | Capsules | [53] |
Administration Route | Product | Dose (adults) 1 | Dose frequency 1 | Remarks |
---|---|---|---|---|
Oral | Tea, prepared from cannabis flos 2 | 200 mL hot or cold tea prepared from 1 g raw material per L | 1x daily in the evening | In case of insufficient effect after 1–2 weeks, increase the dose to 200 mL 2x daily (morning and evening) |
Pulmonary | Cannabis flos 2 | To be determined individually | 1–2 times daily several inhalations; wait 5–15 min between inhalations | Vaporiser is filled with 100–200 mg raw material |
Sublingual | Cannabis oil, prepared from cannabis flos or granulates 2 | 0.05 mL or 1–2 droplets 3 | 2–3 times daily 3 | For oil containing 20 mg/mL THC and 20 or 13 mg/mL CBD; in case of insufficient effect increase the dose to max 0.25 mL or 10 droplets 3x daily |
THC | CBD | |
---|---|---|
Absorption | Oral Tmax = 1–5 h F = < 10% Inhalation Tmax = 3–10 min F = 10–35% Oromucosal/sublingual Tmax = 1–2 min F = 2–20% | Oral Tmax = 1–6 h F = circa 6% Inhalation Tmax = 3–10 min F = circa 30% Oromucosal/sublingual Tmax = 1.5–5 h F = circa 30% |
Distribution | Plasma-protein binding 95–99% Vd = 30 L/kg | Plasma-protein binding 99% Vd = 30 L/kg |
Metabolism | Phase I Oxidation THC → 11-OH-THC→ 11-COOH-THC CYP2C9, CYP2C19, CYP3A4 Phase II Glucuronidation 11-OH-THC by UGT1A9, UTG1A10 11-COOH-THC by UGT1A1, UGT1A3 | Phase I Oxidation CBD → 7-OH-CBD → 7-COOH-CBD CYP2C19, CYP3A4 (primarily) and CYP1A1, CYP1A2, CYP2C9, CYP2D6 (to a lesser extent) Phase II Glucuronidation 7-OH-CBD, 7-COOH-CBD by UGT1A7, UGT1A9, UGT2B7 |
Elimination/ Excretion | t1/2 = 1–30 h Mainly as metabolites, in faeces and in urine | t1/2 = 1–5 d Mainly as metabolites, in faeces and in urine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woerdenbag, H.J.; Olinga, P.; Kok, E.A.; Brugman, D.A.P.; van Ark, U.F.; Ramcharan, A.S.; Lebbink, P.W.; Hoogwater, F.J.H.; Knapen, D.G.; de Groot, D.J.A.; et al. Potential, Limitations and Risks of Cannabis-Derived Products in Cancer Treatment. Cancers 2023, 15, 2119. https://doi.org/10.3390/cancers15072119
Woerdenbag HJ, Olinga P, Kok EA, Brugman DAP, van Ark UF, Ramcharan AS, Lebbink PW, Hoogwater FJH, Knapen DG, de Groot DJA, et al. Potential, Limitations and Risks of Cannabis-Derived Products in Cancer Treatment. Cancers. 2023; 15(7):2119. https://doi.org/10.3390/cancers15072119
Chicago/Turabian StyleWoerdenbag, Herman J., Peter Olinga, Ellen A. Kok, Donald A. P. Brugman, Ulrike F. van Ark, Arwin S. Ramcharan, Paul W. Lebbink, Frederik J. H. Hoogwater, Daan G. Knapen, Derk Jan A. de Groot, and et al. 2023. "Potential, Limitations and Risks of Cannabis-Derived Products in Cancer Treatment" Cancers 15, no. 7: 2119. https://doi.org/10.3390/cancers15072119
APA StyleWoerdenbag, H. J., Olinga, P., Kok, E. A., Brugman, D. A. P., van Ark, U. F., Ramcharan, A. S., Lebbink, P. W., Hoogwater, F. J. H., Knapen, D. G., de Groot, D. J. A., & Nijkamp, M. W. (2023). Potential, Limitations and Risks of Cannabis-Derived Products in Cancer Treatment. Cancers, 15(7), 2119. https://doi.org/10.3390/cancers15072119