Selecting the Appropriate Downstaging and Bridging Therapies for Hepatocellular Carcinoma: What Is the Role of Transarterial Radioembolization? A Pooled Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Database Searching and Selection Criteria
2.2. Quality Assessment
2.3. Data Synthesis
2.4. TARE Procedure
3. Results
3.1. Downstaging
3.2. Bridging
3.3. Mixed Indications
3.4. Pooled Analyses
3.5. Summary of TARE Effects on HCC
3.6. Comparison of TARE and other Treatments
3.7. Adverse Events
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Tang, A.; Hallouch, O.; Chernyak, V.; Kamaya, A.; Sirlin, C.B. Epidemiology of HCC: Target population for surveillance and diagnosis. Abdom. Radiol. 2018, 43, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Akinyemiju, T.; Abera, S.; Ahmed, M.; Alam, N.; Alemayohu, M.A.; Allen, C.; Al-Raddadi, R.; Alvis-Guzman, N.; Amoako, Y.; Artaman, A.; et al. The Burden of Primary Liver Cancer and Underlying Etiologies From 1990 to 2015 at the Global, Regional, and National Level: Results From the Global Burden of Disease Study 2015. JAMA Oncol. 2017, 3, 1683–1691. [Google Scholar] [PubMed]
- Altekruse, S.F.; McGlynn, K.A.; Reichman, M.E. HCC incidence, mortality, and survival trends in the United States from 1975 to 2005. J. Clin. Oncol. 2009, 27, 1485–1491. [Google Scholar] [CrossRef] [Green Version]
- Kwong, A.J.; Ghaziani, T.T.; Yao, F.; Sze, D.; Mannalithara, A.; Mehta, N. National Trends and Waitlist Outcomes of Locoregional Therapy Among Liver Transplant Candidates With HCC in the United States. Clin. Gastroenterol. Hepatol. 2022, 20, 1142–1150.e4. [Google Scholar] [CrossRef] [PubMed]
- Mazzaferro, V.; Regalia, E.; Doci, R.; Andreola, S.; Pulvirenti, A.; Bozzetti, F.; Montalto, F.; Ammatuna, M.; Morabito, A.; Gennari, L. LT for the treatment of small HCC in patients with cirrhosis. N. Engl. J. Med. 1996, 334, 693–699. [Google Scholar] [CrossRef]
- Shimamura, T.; Akamatsu, N.; Fujiyoshi, M.; Kawaguchi, A.; Morita, S.; Kawasaki, S.; Uemoto, S.; Kokudo, N.; Hasegawa, A.; Ohdan, H.; et al. Expanded living-donor LT criteria for patients with HCC based on the Japanese nationwide survey: The 5-5-500 rule-A retrospective study. Transpl. Int. 2019, 32, 356–368. [Google Scholar] [CrossRef]
- Yao, F.Y.; Ferrell, L.; Bass, N.M.; Watson, J.J.; Bacchetti, P.; Venook, A.; Ascher, N.L.; Roberts, J.P. LT for HCC: Expansion of the tumor size limits does not adversely impact survival. Hepatology 2001, 33, 1394–1403. [Google Scholar] [CrossRef]
- Duvoux, C.; Roudot-Thoraval, F.; Decaens, T.; Pessione, F.; Badran, H.; Piardi, T.; Francoz, C.; Compagnon, P.; Vanlemmens, C.; Dumortier, J.; et al. LT for HCC: A model including α-fetoprotein improves the performance of Milan criteria. Gastroenterology 2012, 143, 986–994. [Google Scholar] [CrossRef]
- Mazzaferro, V.; Llovet, J.M.; Miceli, R.; Bhoori, S.; Schiavo, M.; Mariani, L.; Camerini, T.; Roayaie, S.; Schwartz, M.E.; Grazi, G.L.; et al. Predicting survival after LT in patients with HCC beyond the Milan criteria: A retrospective, exploratory analysis. Lancet Oncol. 2009, 10, 35–43. [Google Scholar] [CrossRef]
- Biolato, M.; Galasso, T.; Marrone, G.; Miele, L.; Grieco, A. Upper Limits of Downstaging for HCC in LT. Cancers 2021, 13, 6337. [Google Scholar] [CrossRef]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ (Clin. Res. Ed.) 2016, 355, i4919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iñarrairaegui, M.; Pardo, F.; Bilbao, J.I.; Rotellar, F.; Benito, A.; D’Avola, D.; Herrero, J.I.; Rodriguez, M.; Martí, P.; Zozaya, G.; et al. Response to radioembolization with yttrium-90 resin microspheres may allow surgical treatment with curative intent and prolonged survival in previously unresectable HCC. Eur. J. Surg. Oncol. 2012, 38, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Pracht, M.; Edeline, J.; Lenoir, L.; Latournerie, M.; Mesbah, H.; Audrain, O.; Rolland, Y.; Clément, B.; Raoul, J.L.; Garin, E.; et al. Lobar HCC with ipsilateral portal vein tumor thrombosis treated with yttrium-90 glass microsphere radioembolization: Preliminary results. Int. J. Hepatol. 2013, 2013, 827649. [Google Scholar] [CrossRef]
- Gramenzi, A.; Golfieri, R.; Mosconi, C.; Cappelli, A.; Granito, A.; Cucchetti, A.; Marinelli, S.; Pettinato, C.; Erroi, V.; Fiumana, S.; et al. Yttrium-90 radioembolization vs sorafenib for intermediate-locally advanced HCC: A cohort study with propensity score analysis. Liver Int. 2015, 35, 1036–1047. [Google Scholar] [CrossRef]
- Labgaa, I.; Tabrizian, P.; Titano, J.; Kim, E.; Thung, S.N.; Florman, S.; Schwartz, M.; Melloul, E. Feasibility and safety of LT or resection after transarterial radioembolization with Yttrium-90 for unresectable HCC. HPB Off. J. Int. Hepato Pancreato Biliary Assoc. 2019, 21, 1497–1504. [Google Scholar] [CrossRef]
- Mehta, N.; Frenette, C.; Tabrizian, P.; Hoteit, M.; Guy, J.; Parikh, N.; Ghaziani, T.T.; Dhanasekaran, R.; Dodge, J.L.; Natarajan, B.; et al. Downstaging Outcomes for HCC: Results From the Multicenter Evaluation of Reduction in Tumor Size before LT (MERITS-LT) Consortium. Gastroenterology 2021, 161, 1502–1512. [Google Scholar] [CrossRef] [PubMed]
- Serenari, M.; Cappelli, A.; Cucchetti, A.; Mosconi, C.; Strigari, L.; Monari, F.; Ravaioli, M.; Rizzini, E.L.; Fanti, S.; Golfieri, R.; et al. Deceased Donor LT After Radioembolization for HCC and Portal Vein Tumoral Thrombosis: A Pilot Study. LT Off. Publ. Am. Assoc. Study Liver Dis. Int. LT Soc. 2021, 27, 1758–1766. [Google Scholar]
- Dhondt, E.; Lambert, B.; Hermie, L.; Huyck, L.; Vanlangenhove, P.; Geerts, A.; Verhelst, X.; Aerts, M.; Vanlander, A.; Berrevoet, F.; et al. 90Y Radioembolization versus Drug-eluting Bead Chemoembolization for Unresectable HCC: Results from the TRACE Phase II Randomized Controlled Trial. Radiology 2022, 303, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Mantry, P.S.; Mehta, A.; Madani, B.; Mejia, A.; Shahin, I. Selective internal radiation therapy using yttrium-90 resin microspheres in patients with unresectable HCC: A retrospective study. J. Gastrointest. Oncol. 2017, 8, 799–807. [Google Scholar] [CrossRef] [Green Version]
- Radunz, S.; Treckmann, J.; Baba, H.A.; Best, J.; Müller, S.; Theysohn, J.M.; Paul, A.; Benkö, T. Long-Term Outcome After LT for HCC Following Yttrium-90 Radioembolization Bridging Treatment. Ann. Transplant. 2017, 22, 215–221. [Google Scholar] [CrossRef]
- Zori, A.G.; Ismael, M.N.; Limaye, A.R.; Firpi, R.; Morelli, G.; Soldevila-Pico, C.; Suman, A.; Vogel, J.D.; Lazarowicz, M.; Geller, B.; et al. Locoregional Therapy Protocols With and Without Radioembolization for HCC as Bridge to LT. Am. J. Clin. Oncol. 2020, 43, 325–333. [Google Scholar] [CrossRef]
- Tohme, S.; Sukato, D.; Chen, H.W.; Amesur, N.; Zajko, A.B.; Humar, A.; Geller, D.A.; Marsh, J.W.; Tsung, A. Yttrium-90 radioembolization as a bridge to LT: A single-institution experience. J. Vasc. Interv. Radiol. 2013, 24, 1632–1638. [Google Scholar] [CrossRef]
- Abdelfattah, M.R.; Al-Sebayel, M.; Broering, D.; Alsuhaibani, H. Radioembolization using yttrium-90 microspheres as bridging and downstaging treatment for unresectable HCC before LT: Initial single-center experience. Transpl. Proc. 2015, 47, 408–411. [Google Scholar] [CrossRef] [PubMed]
- Ettorre, G.M.; Levi Sandri, G.B.; Laurenzi, A.; Colasanti, M.; Meniconi, R.L.; Lionetti, R.; Santoro, R.; Lepiane, P.; Sciuto, R.; Pizzi, G.; et al. Yttrium-90 Radioembolization for HCC Prior to LT. World J. Surg. 2017, 41, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Gabr, A.; Abouchaleh, N.; Ali, R.; Vouche, M.; Atassi, R.; Memon, K.; Asadi, A.A.; Baker, T.; Caicedo, J.C.; Desai, K.; et al. Comparative study of post-transplant outcomes in HCC patients treated with chemoembolization or radioembolization. Eur. J. Radiol. 2017, 93, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Wiktor, S.Z.; Scott, J.D. What is the impact of treatment for hepatitis C virus infection? Lancet 2017, 390, 107–109. [Google Scholar] [CrossRef]
- Hessheimer, A.J.; Coll, E.; Torres, F.; Ruíz, P.; Gastaca, M.; Rivas, J.I.; Gómez, M.; Sánchez, B.; Santoyo, J.; Ramírez, P.; et al. Normothermic regional perfusion vs. super-rapid recovery in controlled donation after circulatory death liver transplantation. J. Hepatol. 2019, 70, 658–665. [Google Scholar] [CrossRef]
- Dutkowski, P.; Guarrera, J.V.; de Jonge, J.; Martins, P.N.; Porte, R.J.; Clavien, P.A. Evolving Trends in Machine Perfusion for Liver Transplantation. Gastroenterology 2019, 156, 1542–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, W.E.; Malamon, J.S.; Kaplan, B.; Saben, J.L.; Schold, J.D.; Pomposelli, J.J.; Pomfret, E.A. Survival Benefit of Living-Donor Liver Transplant. JAMA Surg. 2022, 157, 926–932. [Google Scholar] [CrossRef] [PubMed]
- Sapisochin, G.; Hibi, T.; Toso, C.; Man, K.; Berenguer, M.; Heimbach, J.; Greten, T.F.; Pugh, T.J.; Dawson, L.A.; Mazzaferro, V. Transplant Oncology in Primary and Metastatic Liver Tumors: Principles, Evidence, and Opportunities. Ann. Surg. 2021, 273, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Ince, V.; Sahin, T.T.; Akbulut, S.; Yilmaz, S. Liver transplantation for hepatocellular carcinoma: Historical evolution of transplantation criteria. World J. Clin. Cases 2022, 10, 10413–10427. [Google Scholar] [CrossRef] [PubMed]
- Baker, T.; Tabrizian, P.; Zendejas, I.; Gamblin, T.C.; Kazimi, M.; Boudjema, K.; Geller, D.; Salem, R. Conversion to resection post radioembolization in patients with HCC: Recommendations from a multidisciplinary working group. HPB (Oxford) 2022, 24, 1007–1018. [Google Scholar] [CrossRef]
- El Fouly, A.; Ertle, J.; El Dorry, A.; Shaker, M.K.; Dechêne, A.; Abdella, H.; Mueller, S.; Barakat, E.; Lauenstein, T.; Bockisch, A.; et al. In intermediate stage HCC: Radioembolization with yttrium 90 or chemoembolization? Liver Int. 2015, 35, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Lobo, L.; Yakoub, D.; Picado, O.; Ripat, C.; Pendola, F.; Sharma, R.; ElTawil, R.; Kwon, D.; Venkat, S.; Portelance, L.; et al. Unresectable HCC: Radioembolization Versus Chemoembolization: A Systematic Review and Meta-analysis. Cardiovasc. Interv. Radiol. 2016, 39, 1580–1588. [Google Scholar] [CrossRef]
- Kim, M.A.; Jang, H.; Choi, N.R.; Nam, J.Y.; Lee, Y.B.; Cho, E.J.; Lee, J.-H.; Yu, S.J.; Kim, H.-C.; Chung, J.W.; et al. Yttrium-90 Radioembolization Is Associated with Better Clinical Outcomes in Patients with HCC Compared with Conventional Chemoembolization: A Propensity Score-Matched Study. J. Hepatocell Carcinoma 2021, 8, 1565–1577. [Google Scholar] [CrossRef]
Study | Period | Sex (Male/Female), n | Age, Years | Child-Pugh (A,B,C), n | MELD, Score | Etiology (HBV/HCV/ ALC/NASH/ Others), n | BCLC (0/A/B/C/D), n | Multifocal, n | Number of Nodules, n | Size of Largest Nodule, mm | AFP, ng/mL | Time from TARE to LT, Months |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Downstaging | ||||||||||||
Iñarrairaegui et al. [13] | 2003–2010 | 17/4 | 72 | - | - | - | 0/12/9/0/0 | 5 | 16/4/1 (1/2/3) | 80 | 12 | 22.5 (10–35) |
Pracht et al. [14] | 2007–2010 | 12/6 | 63 (44–77) | 13/5/0 | - | 0/4/10/1/3 | - | 7 | - | - | 36.5 (3–91,000) | - |
Gramenzi et al. [15] | 2005–2012 | 28/4 | 18/4 (<70/≥70 years) | 29/3/0 | 11/21 (<9/≥9) | - | 0/0/15/17/0 | 27 | - | - | 13/12/7 (≤20/21–200/>200 ng/mL), n | - |
Labgaa et al. [16] | 2012–2016 | 15/7 | 61 (56–64) | 0/8/13 | 31 (25–33) | 2/15/2/0/3 | 0/19/3/0/0 | 14 | - | - | - | - |
Mehta et al. [17] | 2016–2019 | 45/17 | 63 (60–66) | 50/12/0 | 8.5 (7–10) | - | - | - | 30/25/7 (1/2–3/4–5) | - | 17.9 (5.7–238.4) | 15.9 (11.2–19.2) |
Serenari et al. [18] | 2013–2016 | 15/2 | 53 (50–56) | 15/2/0 | - | 1/12/0/3/1 | - | - | 1 (1–2) | 59 (43–70) | 18.6 (7.3–103.4) | 24.9 (6.2–32.6) |
Dhondt et al. [19] | 2011–2018 | 28/4 | 68 (64–74) | 30/2/0 | - | 0/5/21/1/5 | 0/5/27/0/0 | 25 | 17 (>3 nodules) | 42 (32–56) | 28/3/1 (<400/≥400/data missing ng/mL) | - |
Bridging | ||||||||||||
Mantry et al. [20] | 2004–2013 | 85/26 | 65.8 ± 9.6 * | 82/26/3 | 16/25/18/20/32 (6/7/8/9/≥10) | 9/65/27/12/8 | 0/38/51/22/0 | - | - | - | - | - |
Radunz et al. [21] | 2007–2015 | 32/8 | 59 ± 6 * | - | 12 (6–40) | 8/9/12/0/11 | 3/15/4 | 25 | - | 35 (5–110) | 22.5 (1–13,926) | 4.2 (0.4–21.6) |
Zori et al. [22] | 2012–2017 | 21/7 | 23/5 (<65 ≥ 65) | - | 13.5 ** | 2/19/1/0/6 | - | 17 | - | - | 121 ** | 10.1 ** |
Mixed | ||||||||||||
Tohme et al. [23] | 2001–2011 | 16/4 | 60.2 ± 6.8 * | - | 13 ± 8 * | 3/8/4/0/5 | - | - | 9/7/4 (1/1–3/>3) | - | 17 ** | 3.5 ** |
Abdelfattah et al. [24] | - | 4/5 | 53.8 ± 9.5 * | - | - | 1/5/0/0/3 | 0/12/9/0/0 | - | - | 50 (10–87) | 13 (5–499) | 15.8 ± 17.7 * |
Ettorre et al. [25] | 2002–2015 | 22/0 | 55 (41–67) | - | - | 2/17/2/1/0 | 0/3/15/4/0 | 4 | 2 (0–13) | 18.5 (0–60) | - | 14.5 (2–60) |
Gabr et al. [26] | 2003–2013 | 24/69 | 60 (57–64) | 47/42/4 | - | 11/47/14/6/15 | 2/62/16/9/4 | 33 | - | - | 18.4 (5.1–250.3) | 6.5 (3.7–9.9) |
Study | TARE → LT, n | Reccurence, n (%) | Median PFS, Months | Median OS, Months | 1 Year OS, % and 95% CI | 2 Year OS, % and 95% CI | 3 Year OS, % and 95% CI | 5 Year OS, % |
---|---|---|---|---|---|---|---|---|
Downstaging | ||||||||
Iñarrairaegui et al. [13] | 21 → 2 | 0 (0.0) | - | 27 (5.0–48.9) * | 100 | 100 | 100 | - |
Pracht et al. [14] | 18 → 1 | - | 50.6, [11.0 (8.0–16.5) *] | 16.0 | 70.3 ± 21.1 *‡ | - | - | - |
Gramenzi et al. [15] | 32 → 2 | 18 (41.9) * | - | 11.2 (6.7–15.7) * | 44.7 * | 19.0 * | 9.5 * | - |
Labgaa et al. [16] | 22 → 22 | 0 (0.0) | - | - | 100 | 95 | 91 | 91 |
Mehta et al. [17] | 62 → 14 | 5 (7.9) | 16.8 (9.7–22.3) † | - | 100 | 95.0 | 83.1 | - |
Serenari et al. [18] | 17 → 5 | 3 (60.0) | 34.6 (10.9–58.2) | - | 80 | - | 80 | 60 |
Dhondt et al. [19] | 32 → 9 | - | 17.1 (6.5–27.8) * | 30.2 (20.4–39.9) * | 81.3 * | 56.3 * | 21.9 * | 6.3 * |
Bridging | ||||||||
Mantry et al. [20] | 111 → 6 | - | 9.8 (6.8–14.8) * | 69.0, [13.1 (10.3–18.4) *] | 46.8 * | 26.1 * | 10.8 * | - |
Radunz et al. [21] | 40 → 40 | 9 (22.5) | 13 (4–56) † | 46 | 77.5 | - | - | 50 |
Zori et al. [22] | 28 → 28 | - | 16.8 † | - | 96.4 ± 3.5 ‡ | 96.4 ± 3.5 ‡ | 92.9 ± 4.9 ‡ | - |
Mixed | ||||||||
Tohme et al. [23] | 20 → 20 | 4 (20.0) | 36.8 (9.4–62.1) † | 75.1 (36.9–106.0) | 95 | 84 | - | 79 |
Abdelfattah et al. [24] | 9 → 9 | 0 (0.0) | - | - | - | - | - | - |
Ettorre et al. [25] | 22 → 22 | - | 29.6 (mean) | 30.2 (mean) | - | - | - | - |
Gabr et al. [26] | 93 → 93 | 8 (9.0) | 15.9 (7.8–46.8) † | 57% (OS at 100 months) | - | - | - | 67 * |
Overall AE Rates | Minor AEs | Severe AEs | Treatment Related Death | |
---|---|---|---|---|
Pracht et al. [14] | 27.80% | Ascites (27.8%) | - | - |
Gramenzi et al. [15] | 59% | Fatigue (9%), fever (6%), nausea/vomiting (2%), abdominal pain (8%), Child–Pugh score deterioration (21 patients). | Radiation pneumonia (8%), RILD (8%), cholecystitis (5%). | - |
Serenari et al. [18] | 23.50% | Grade 1 abdominal pain in 3 patients, and grade 1 fever and fatigue in 1 patient, mild ascites in 2 patients. | - | - |
Dhondt et al. [19] | 39% | - | Renal and urinary disorders (15%), hepatobiliary disorders (42%), RILD (3%) | 3% |
Mantry et al. [20] | 43.40% | Abdominal pain (14.2%), ascites (18.9%), nausea (5.7%), edema (6.6%), fatigue (2.8%), vomiting (4.7%). | Ulcer (4.7%), jaundice (3.8%), GI bleeding (7.5%) | - |
Zori et al. [22] | 1.70% | Hyperbilirubinemia (1.7%) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez-Lopez, V.; Miura, K.; Kuemmerli, C.; Capel, A.; Eshmuminov, D.; Ferreras, D.; Baroja-Mazo, A.; Cascales-Campos, P.; Jiménez-Mascuñán, M.I.; Pons, J.A.; et al. Selecting the Appropriate Downstaging and Bridging Therapies for Hepatocellular Carcinoma: What Is the Role of Transarterial Radioembolization? A Pooled Analysis. Cancers 2023, 15, 2122. https://doi.org/10.3390/cancers15072122
Lopez-Lopez V, Miura K, Kuemmerli C, Capel A, Eshmuminov D, Ferreras D, Baroja-Mazo A, Cascales-Campos P, Jiménez-Mascuñán MI, Pons JA, et al. Selecting the Appropriate Downstaging and Bridging Therapies for Hepatocellular Carcinoma: What Is the Role of Transarterial Radioembolization? A Pooled Analysis. Cancers. 2023; 15(7):2122. https://doi.org/10.3390/cancers15072122
Chicago/Turabian StyleLopez-Lopez, Victor, Kohei Miura, Christoph Kuemmerli, Antonio Capel, Dilmurodjon Eshmuminov, David Ferreras, Alberto Baroja-Mazo, Pedro Cascales-Campos, María Isabel Jiménez-Mascuñán, José Antonio Pons, and et al. 2023. "Selecting the Appropriate Downstaging and Bridging Therapies for Hepatocellular Carcinoma: What Is the Role of Transarterial Radioembolization? A Pooled Analysis" Cancers 15, no. 7: 2122. https://doi.org/10.3390/cancers15072122
APA StyleLopez-Lopez, V., Miura, K., Kuemmerli, C., Capel, A., Eshmuminov, D., Ferreras, D., Baroja-Mazo, A., Cascales-Campos, P., Jiménez-Mascuñán, M. I., Pons, J. A., Castellon, M. I., Sánchez-Bueno, F., Robles-Campos, R., & Ramírez, P. (2023). Selecting the Appropriate Downstaging and Bridging Therapies for Hepatocellular Carcinoma: What Is the Role of Transarterial Radioembolization? A Pooled Analysis. Cancers, 15(7), 2122. https://doi.org/10.3390/cancers15072122