Molecular Insights of MAP4K4 Signaling in Inflammatory and Malignant Diseases
Abstract
:Simple Summary
Abstract
1. Introduction
2. MAP4K4: An Upstream Regulator of MAPKs
3. MAP4K4 Signaling in Inflammation
4. MAP4K4 Signaling in Vascular Inflammation and Atherosclerosis
5. MAP4K4 Signaling in Adaptive Immunity
6. The Regulatory Functions of MAP4K4 in Malignant Diseases
6.1. Role of MAP4K4 in Colorectal Cancer
6.2. Role of MAP4K4 in Hepatocellular Carcinoma
6.3. Role of MAP4K4 in Gastric Cancer
6.4. Role of MAP4K4 in Lung Adenocarcinoma
6.5. Role of MAP4K4 in Prostate Cancer
6.6. Role of MAP4K4 in Pancreatic Cancer
7. Role of MAP4K4 in Cancer Cachexia
8. MAP4K4 as a Therapeutic Target
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, G.L.; Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002, 298, 1911–1912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peti, W.; Page, R. Molecular basis of MAP kinase regulation. Protein Sci. 2013, 22, 1698–1710. [Google Scholar] [CrossRef]
- Pimienta, G.; Pascual, J. Canonical and alternative MAPK signaling. Cell Cycle 2007, 6, 2628–2632. [Google Scholar] [CrossRef] [Green Version]
- Turjanski, A.; Vaque, J.; Gutkind, J. MAP kinases and the control of nuclear events. Oncogene 2007, 26, 3240–3253. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Shepherd, E.G.; Nelin, L.D. MAPK phosphatases—Regulating the immune response. Nat. Rev. Immunol. 2007, 7, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dong, C. Regulatory mechanisms of mitogen-activated kinase signaling. Cell. Mol. Life Sci. 2007, 64, 2771–2789. [Google Scholar] [CrossRef]
- Kyriakis, J.M.; Avruch, J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: A 10-year update. Physiol. Rev. 2012, 92, 689–737. [Google Scholar] [CrossRef] [Green Version]
- Johnson, G.L.; Nakamura, K. The c-jun kinase/stress-activated pathway: Regulation, function and role in human disease. Biochim. Biophys. Acta 2007, 1773, 1341–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Y.C.; Han, J.; Xu, S.; Cobb, M.; Skolnik, E.Y. NIK is a new Ste20-related kinase that binds NCK and MEKK1 and activates the SAPK/JNK cascade via a conserved regulatory domain. EMBO J. 1997, 16, 1279–1290. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Zhou, G.; Wang, X.S.; Brown, A.; Diener, K.; Gan, H.; Tan, T.-H. A novel human STE20-related protein kinase, HGK, that specifically activates the c-Jun N-terminal kinase signaling pathway. J. Biol. Chem. 1999, 274, 2118–2125. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.-S.; Kehrl, J.H. Activation of stress-activated protein kinase/c-Jun N-terminal kinase, but not NF-κB, by the tumor necrosis factor (TNF) receptor 1 through a TNF receptor-associated factor 2-and germinal center kinase related-dependent pathway. J. Biol. Chem. 1997, 272, 32102–32107. [Google Scholar] [CrossRef] [Green Version]
- Tung, R.M.; Blenis, J. A novel human SPS1/STE20 homologue, KHS, activates Jun N-terminal kinase. Oncogene 1997, 14, 653–659. [Google Scholar] [CrossRef] [Green Version]
- Dan, I.; Watanabe, N.M.; Kobayashi, T.; Yamashita-Suzuki, K.; Fukagaya, Y.; Kajikawa, E.; Kimura, W.K.; Nakashima, T.M.; Matsumoto, K.; Ninomiya-Tsuji, J. Molecular cloning of MINK, a novel member of mammalian GCK family kinases, which is up-regulated during postnatal mouse cerebral development. FEBS Lett. 2000, 469, 19–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Leo, C.; Yu, S.; Huang, B.C.; Wang, H.; Shen, M.; Luo, Y.; Daniel-Issakani, S.; Payan, D.G.; Xu, X. Identification and functional characterization of a novel human misshapen/Nck interacting kinase-related kinase, hMINKβ. J. Biol. Chem. 2004, 279, 54387–54397. [Google Scholar] [CrossRef] [Green Version]
- He, T.S.; Huang, J.; Chen, T.; Zhang, Z.; Cai, K.; Yu, J.; Xu, L.G. The Kinase MAP4K1 Inhibits Cytosolic RNA-Induced Antiviral Signaling by Promoting Proteasomal Degradation of TBK1/IKKepsilon. Microbiol. Spectr. 2021, 9, e0145821. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Liu, X.; Qi, X.; Liu, X.; Peng, F.; Li, H.; Fu, H.; Pei, S.; Chen, L.; Chi, X.; et al. PDIA6 modulates apoptosis and autophagy of non-small cell lung cancer cells via the MAP4K1/JNK signaling pathway. EBioMedicine 2019, 42, 311–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamore, S.D.; Ahlberg, E.; Boyer, S.; Lamb, M.L.; Hortigon-Vinagre, M.P.; Rodriguez, V.; Smith, G.L.; Sagemark, J.; Carlsson, L.; Bates, S.M.; et al. Deconvoluting Kinase Inhibitor Induced Cardiotoxicity. Toxicol. Sci. 2017, 158, 213–226. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Shi, Z.H.; Han, X.Y.; Liu, C.; Yan, B.; Du, J.L. Targeting circRNA-MAP4K2 for the treatment of diabetes-induced retinal vascular dysfunction. Aging 2022, 14, 6255–6268. [Google Scholar] [CrossRef]
- Chuang, H.C.; Tan, T.H. MAP4K3/GLK in autoimmune disease, cancer and aging. J. Biomed. Sci. 2019, 26, 82. [Google Scholar] [CrossRef]
- Chuang, H.C.; Wang, X.; Tan, T.H. MAP4K Family Kinases in Immunity and Inflammation. Adv. Immunol. 2016, 129, 277–314. [Google Scholar] [CrossRef]
- Li, J.; Yan, L.; Luo, J.; Tong, L.; Gao, Y.; Feng, W.; Wang, F.; Cui, W.; Li, S.; Sun, Z. Baicalein suppresses growth of non-small cell lung carcinoma by targeting MAP4K3. Biomed. Pharmacother. 2021, 133, 110965. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Han, Q.; Zheng, H.; Liu, M.; Shi, S.; Zhang, T.; Yang, X.; Li, Z.; Xu, Q.; Guo, H.; et al. MAP4K4 mediates the SOX6-induced autophagy and reduces the chemosensitivity of cervical cancer. Cell Death Dis. 2021, 13, 13. [Google Scholar] [CrossRef]
- Singh, S.K.; Kumar, S.; Viswakarma, N.; Principe, D.R.; Das, S.; Sondarva, G.; Nair, R.S.; Srivastava, P.; Sinha, S.C.; Grippo, P.J.; et al. MAP4K4 promotes pancreatic tumorigenesis via phosphorylation and activation of mixed lineage kinase 3. Oncogene 2021, 40, 6153–6165. [Google Scholar] [CrossRef]
- Virbasius, J.V.; Czech, M.P. Map4k4 Signaling Nodes in Metabolic and Cardiovascular Diseases. Trends Endocrinol. Metab. 2016, 27, 484–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, H.C.; Tan, T.H. MAP4K4 and IL-6(+) Th17 cells play important roles in non-obese type 2 diabetes. J. Biomed. Sci. 2017, 24, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esen, E.; Sergin, I.; Jesudason, R.; Himmels, P.; Webster, J.D.; Zhang, H.; Xu, M.; Piskol, R.; McNamara, E.; Gould, S.; et al. MAP4K4 negatively regulates CD8 T cell-mediated antitumor and antiviral immunity. Sci. Immunol. 2020, 5, 2245. [Google Scholar] [CrossRef] [PubMed]
- Wang, O.H.; Azizian, N.; Guo, M.; Capello, M.; Deng, D.; Zang, F.; Fry, J.; Katz, M.H.; Fleming, J.B.; Lee, J.E.; et al. Prognostic and Functional Significance of MAP4K5 in Pancreatic Cancer. PLoS ONE 2016, 11, e0152300. [Google Scholar] [CrossRef]
- Pablos, I.; Machado, Y.; de Jesus, H.C.R.; Mohamud, Y.; Kappelhoff, R.; Lindskog, C.; Vlok, M.; Bell, P.A.; Butler, G.S.; Grin, P.M.; et al. Mechanistic insights into COVID-19 by global analysis of the SARS-CoV-2 3CL(pro) substrate degradome. Cell Rep. 2021, 37, 109892. [Google Scholar] [CrossRef]
- Meng, Z.; Qiu, Y.; Lin, K.C.; Kumar, A.; Placone, J.K.; Fang, C.; Wang, K.C.; Lu, S.; Pan, M.; Hong, A.W.; et al. RAP2 mediates mechanoresponses of the Hippo pathway. Nature 2018, 560, 655–660. [Google Scholar] [CrossRef] [Green Version]
- Larhammar, M.; Huntwork-Rodriguez, S.; Rudhard, Y.; Sengupta-Ghosh, A.; Lewcock, J.W. The Ste20 Family Kinases MAP4K4, MINK1, and TNIK Converge to Regulate Stress-Induced JNK Signaling in Neurons. J. Neurosci. 2017, 37, 11074–11084. [Google Scholar] [CrossRef] [Green Version]
- Meng, Z.; Moroishi, T.; Mottier-Pavie, V.; Plouffe, S.W.; Hansen, C.G.; Hong, A.W.; Park, H.W.; Mo, J.S.; Lu, W.; Lu, S.; et al. MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat. Commun. 2015, 6, 8357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, X.; Guilherme, A.; Chakladar, A.; Powelka, A.M.; Konda, S.; Virbasius, J.V.; Nicoloro, S.M.; Straubhaar, J.; Czech, M.P. An RNA interference-based screen identifies MAP4K4/NIK as a negative regulator of PPARγ, adipogenesis, and insulin-responsive hexose transport. Proc. Natl. Acad. Sci. USA 2006, 103, 2087–2092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, C.S.; Hong, J.; Sapinoso, L.; Zhou, Y.; Liu, Z.; Micklash, K.; Schultz, P.G.; Hampton, G.M. A small interfering RNA screen for modulators of tumor cell motility identifies MAP4K4 as a promigratory kinase. Proc. Natl. Acad. Sci. USA 2006, 103, 3775–3780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zohn, I.E.; Li, Y.; Skolnik, E.Y.; Anderson, K.V.; Han, J.; Niswander, L. p38 and a p38-interacting protein are critical for downregulation of E-cadherin during mouse gastrulation. Cell 2006, 125, 957–969. [Google Scholar] [CrossRef] [Green Version]
- Taira, K.; Umikawa, M.; Takei, K.; Myagmar, B.-E.; Shinzato, M.; Machida, N.; Uezato, H.; Nonaka, S.; Kariya, K.-i. The Traf2-and Nck-interacting kinase as a putative effector of Rap2 to regulate actin cytoskeleton. J. Biol. Chem. 2004, 279, 49488–49496. [Google Scholar] [CrossRef] [Green Version]
- Nishigaki, K.; Thompson, D.; Yugawa, T.; Rulli, K.; Hanson, C.; Cmarik, J.; Gutkind, J.S.; Teramoto, H.; Ruscetti, S. Identification and characterization of a novel Ste20/germinal center kinase-related kinase, polyploidy-associated protein kinase. J. Biol. Chem. 2003, 278, 13520–13530. [Google Scholar] [CrossRef] [Green Version]
- Wright, J.H.; Wang, X.; Manning, G.; LaMere, B.J.; Le, P.; Zhu, S.; Khatry, D.; Flanagan, P.M.; Buckley, S.D.; Whyte, D.B. The STE20 kinase HGK is broadly expressed in human tumor cells and can modulate cellular transformation, invasion, and adhesion. Mol. Cell. Biol. 2003, 23, 2068–2082. [Google Scholar] [CrossRef] [Green Version]
- Diener, K.; Wang, X.S.; Chen, C.; Meyer, C.F.; Keesler, G.; Zukowski, M.; Tan, T.-H.; Yao, Z. Activation of the c-Jun N-terminal kinase pathway by a novel protein kinase related to human germinal center kinase. Proc. Natl. Acad. Sci. USA 1997, 94, 9687–9692. [Google Scholar] [CrossRef] [Green Version]
- Delpire, E. The mammalian family of sterile 20p-like protein kinases. Pflügers Arch. Eur. J. Physiol. 2009, 458, 953–967. [Google Scholar] [CrossRef]
- Di Cunto, F.; Calautti, E.; Hsiao, J.; Ong, L.; Topley, G.; Turco, E.; Dotto, G.P. Citron rho-interacting kinase, a novel tissue-specific ser/thr kinase encompassing the Rho-Rac-binding protein Citron. J. Biol. Chem. 1998, 273, 29706–29711. [Google Scholar] [CrossRef] [Green Version]
- Madaule, P.; Furuyashiki, T.; Reid, T.; Ishizaki, T.; Watanabe, G.; Morii, N.; Narumiya, S. A novel partner for the GTP-bound forms of rho and rac. FEBS Lett. 1995, 377, 243–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poinat, P.; De Arcangelis, A.; Sookhareea, S.; Zhu, X.; Hedgecock, E.M.; Labouesse, M.; Georges-Labouesse, E. A conserved interaction between β1 integrin/PAT-3 and Nck-interacting kinase/MIG-15 that mediates commissural axon navigation in C. elegans. Curr. Biol. 2002, 12, 622–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, Y.; Wang, X.; Li, Z.; Gotoh, N.; Chapman, D.; Skolnik, E.Y. Mesodermal patterning defect in mice lacking the Ste20 NCK interacting kinase (NIK). Development 2001, 128, 1559–1572. [Google Scholar] [CrossRef]
- Vitorino, P.; Yeung, S.; Crow, A.; Bakke, J.; Smyczek, T.; West, K.; McNamara, E.; Eastham-Anderson, J.; Gould, S.; Harris, S.F. MAP4K4 regulates integrin-FERM binding to control endothelial cell motility. Nature 2015, 519, 425–430. [Google Scholar] [CrossRef]
- Liu, A.-W.; Cai, J.; Zhao, X.-L.; Jiang, T.-H.; He, T.-F.; Fu, H.-Q.; Zhu, M.-H.; Zhang, S.H. ShRNA-targeted MAP4K4 inhibits hepatocellular carcinoma growth. Clin. Cancer Res. 2011, 17, 710–720. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.J.; Wang, H.; Rashid, A.; Tan, T.-H.; Hwang, R.F.; Hamilton, S.R.; Abbruzzese, J.L.; Evans, D.B.; Wang, H. Expression of MAP4K4 is associated with worse prognosis in patients with stage II pancreatic ductal adenocarcinoma. Clin. Cancer Res. 2008, 14, 7043–7049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, X.J.; Pan, Q.; Wang, S.M.; Pan, Y.C.; Wang, Q.; Zhang, H.H.; Zhu, M.H.; Zhang, S.H. MAP4K4 promotes epithelial-mesenchymal transition and metastasis in hepatocellular carcinoma. Tumour Biol. 2016, 37, 11457–11467. [Google Scholar] [CrossRef]
- Hu, M.; Qiu, W.R.; Wang, X.; Meyer, C.F.; Tan, T.-H. Human HPK1, a novel human hematopoietic progenitor kinase that activates the JNK/SAPK kinase cascade. Genes Dev. 1996, 10, 2251–2264. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Rajfur, Z.; Borchers, C.; Schaller, M.D.; Jacobson, K. JNK phosphorylates paxillin and regulates cell migration. Nature 2003, 424, 219–223. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, W.; Hayashi, Y.; Jester, J.V.; Birk, D.E.; Gao, M.; Liu, C.Y.; Kao, W.W.Y.; Karin, M.; Xia, Y. A role for MEK kinase 1 in TGF-β/activin-induced epithelium movement and embryonic eyelid closure. EMBO J. 2003, 22, 4443–4454. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.-C.; Treisman, J.E.; Skolnik, E.Y. The Drosophila Ste20-related kinase misshapen is required for embryonic dorsal closure and acts through a JNK MAPK module on an evolutionarily conserved signaling pathway. Genes Dev. 1998, 12, 2371–2380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Su, Y.-C.; Becker, E.; Treisman, J.; Skolnik, E.Y. A Drosophila TNF-receptor-associated factor (TRAF) binds the ste20 kinase Misshapen and activates Jun kinase. Curr. Biol. 1999, 9, 101–104. [Google Scholar] [CrossRef] [Green Version]
- Tesz, G.J.; Guilherme, A.; Guntur, K.V.; Hubbard, A.C.; Tang, X.; Chawla, A.; Czech, M.P. Tumor necrosis factor α (TNFα) stimulates Map4k4 expression through TNFα receptor 1 signaling to c-Jun and activating transcription factor 2. J. Biol. Chem. 2007, 282, 19302–19312. [Google Scholar] [CrossRef] [Green Version]
- Lopez, A.D.; Mathers, C.D.; Ezzati, M.; Jamison, D.T.; Murray, C.J. Global and regional burden of disease and risk factors, 2001: Systematic analysis of population health data. Lancet 2006, 367, 1747–1757. [Google Scholar] [CrossRef] [PubMed]
- Greig, H.B. Etiology of artherosclerosis. Nature 1956, 178, 422. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Schilperoort, M.; Cao, Y.; Shi, J.; Tabas, I.; Tao, W. Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nat. Rev. Cardiol. 2022, 19, 228–249. [Google Scholar] [CrossRef]
- Pober, J.S. Endothelial activation: Intracellular signaling pathways. Arthritis Res. Ther. 2002, 4, S109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aouadi, M.; Tesz, G.J.; Nicoloro, S.M.; Wang, M.; Chouinard, M.; Soto, E.; Ostroff, G.R.; Czech, M.P. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 2009, 458, 1180–1184. [Google Scholar] [CrossRef] [Green Version]
- Bouzakri, K.; Ribaux, P.; Halban, P.A. Silencing mitogen-activated protein 4 kinase 4 (MAP4K4) protects beta cells from tumor necrosis factor-α-induced decrease of IRS-2 and inhibition of glucose-stimulated insulin secretion. J. Biol. Chem. 2009, 284, 27892–27898. [Google Scholar] [CrossRef] [Green Version]
- Pannekoek, W.-J.; Linnemann, J.R.; Brouwer, P.M.; Bos, J.L.; Rehmann, H. Rap1 and Rap2 antagonistically control endothelial barrier resistance. PLoS ONE 2013, 8, e57903. [Google Scholar] [CrossRef]
- Flach, R.J.R.; Skoura, A.; Matevossian, A.; Danai, L.V.; Zheng, W.; Cortes, C.; Bhattacharya, S.K.; Aouadi, M.; Hagan, N.; Yawe, J.C. Endothelial protein kinase MAP4K4 promotes vascular inflammation and atherosclerosis. Nat. Commun. 2015, 6, 1–11. [Google Scholar]
- Kubota, T.; Kubota, N.; Kumagai, H.; Yamaguchi, S.; Kozono, H.; Takahashi, T.; Inoue, M.; Itoh, S.; Takamoto, I.; Sasako, T.; et al. Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metab. 2011, 13, 294–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chait, A.; den Hartigh, L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front. Cardiovasc. Med. 2020, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- Baier-Bitterlich, G.; Uberall, F.; Bauer, B.; Fresser, F.; Wachter, H.; Grunicke, H.; Utermann, G.; Altman, A.; Baier, G. Protein kinase C-theta isoenzyme selective stimulation of the transcription factor complex AP-1 in T lymphocytes. Mol. Cell. Biol. 1996, 16, 1842–1850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coudronniere, N.; Villalba, M.; Englund, N.; Altman, A. NF-κB activation induced by T cell receptor/CD28 costimulation is mediated by protein kinase C-θ. Proc. Natl. Acad. Sci. USA 2000, 97, 3394–3399. [Google Scholar] [CrossRef] [Green Version]
- Mack, K.D.; Von Goetz, M.; Lin, M.; Venegas, M.; Barnhart, J.; Lu, Y.; Lamar, B.; Stull, R.; Silvin, C.; Owings, P. Functional identification of kinases essential for T-cell activation through a genetic suppression screen. Immunol. Lett. 2005, 96, 129–145. [Google Scholar] [CrossRef]
- Huang, H.; Tang, Q.; Chu, H.; Jiang, J.; Zhang, H.; Hao, W.; Wei, X. MAP4K4 deletion inhibits proliferation and activation of CD4+ T cell and promotes T regulatory cell generation in vitro. Cell. Immunol. 2014, 289, 15–20. [Google Scholar] [CrossRef]
- Han, S.-X.; Zhu, Q.; Ma, J.-L.; Zhao, J.; Huang, C.; Jia, X.; Zhang, D. Lowered HGK expression inhibits cell invasion and adhesion in hepatocellular carcinoma cell line HepG2. World J. Gastroenterol. 2010, 16, 4541. [Google Scholar] [CrossRef]
- Jovanovic, D.; Yan, S.; Baumgartner, M. The molecular basis of the dichotomous functionality of MAP4K4 in proliferation and cell motility control in cancer. Front. Oncol. 2022, 12, 1059513. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Shen, Z.-L.; Gao, Z.-D.; Zhao, G.; Wang, C.-Y.; Yang, Y.; Zhang, J.-Z.; Yan, Y.-C.; Shen, C.; Jiang, K.-W. MiR-194, commonly repressed in colorectal cancer, suppresses tumor growth by regulating the MAP4K4/c-Jun/MDM2 signaling pathway. Cell Cycle 2015, 14, 1046–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruix, J.; Llovet, J.M. Major achievements in hepatocellular carcinoma. Lancet 2009, 373, 614–616. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.-F.; De Oliveira, A.C.; Santoro, A.; Raoul, J.-L.; Forner, A. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [Green Version]
- Cheng, A.-L.; Kang, Y.-K.; Chen, Z.; Tsao, C.-J.; Qin, S.; Kim, J.S.; Luo, R.; Feng, J.; Ye, S.; Yang, T.-S. Efficacy and safety of Sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: A phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009, 10, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Vogelaar, I.P.; van der Post, R.S.; Bisseling, T.M.; van Krieken, J.H.J.; Ligtenberg, M.J.; Hoogerbrugge, N. Familial gastric cancer: Detection of a hereditary cause helps to understand its etiology. Hered. Cancer Clin. Pract. 2012, 10, 18. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.F.; Qu, G.Q.; Lu, Y.M.; Kong, W.M.; Liu, Y.; Chen, W.X.; Liao, X.H. Silencing of MAP4K4 by short hairpin RNA suppresses proliferation, induces G1 cell cycle arrest and induces apoptosis in gastric cancer cells. Mol. Med. Rep. 2016, 13, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Cai, X.; Cui, W.; Wei, Z. Bioinformatics and Experimental Analyses Reveal MAP4K4 as a Potential Marker for Gastric Cancer. Genes 2022, 13, 1786. [Google Scholar] [CrossRef]
- Qiu, M.-H.; Qian, Y.-M.; Zhao, X.-L.; Wang, S.-M.; Feng, X.-J.; Chen, X.-F.; Zhang, S.-H. Expression and prognostic significance of MAP4K4 in lung adenocarcinoma. Pathol. Res. Pract. 2012, 208, 541–548. [Google Scholar] [CrossRef]
- Garcia-Garcia, S.; Rodrigo-Faus, M.; Fonseca, N.; Manzano, S.; Gyorffy, B.; Ocana, A.; Bragado, P.; Porras, A.; Gutierrez-Uzquiza, A. HGK promotes metastatic dissemination in prostate cancer. Sci. Rep. 2021, 11, 12287. [Google Scholar] [CrossRef]
- Kim, J.W.; Berrios, C.; Kim, M.; Schade, A.E.; Adelmant, G.; Yeerna, H.; Damato, E.; Iniguez, A.B.; Florens, L.; Washburn, M.P.; et al. STRIPAK directs PP2A activity toward MAP4K4 to promote oncogenic transformation of human cells. Elife 2020, 9, 53003. [Google Scholar] [CrossRef]
- Warshaw, A.; Fernandez-del Castillom, C. Pancreatic carcinoma. N. Engl. J. Med. 1992, 326, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Wang, B.; Liu, Y.; Zhang, J.-G.; Deng, S.-C.; Qin, Q.; Tian, K.; Li, X.; Zhu, S.; Niu, Y. miRNA-141, downregulated in pancreatic cancer, inhibits cell proliferation and invasion by directly targeting MAP4K4. Mol. Cancer Ther. 2013, 12, 2569–2580. [Google Scholar] [CrossRef] [Green Version]
- Ndubaku, C.O.; Crawford, T.D.; Chen, H.; Boggs, J.W.; Drobnick, J.; Harris, S.F.; Jesudason, R.; McNamara, E.; Nonomiya, J.; Sambrone, A.; et al. Structure-Based Design of GNE-495, a Potent and Selective MAP4K4 Inhibitor with Efficacy in Retinal Angiogenesis. ACS Med. Chem. Lett. 2015, 6, 913–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.-D.; Chao, M.-W.; Lee, H.-Y.; Liu, Y.-T.; Tu, H.-J.; Lien, S.-T.; Lin, T.E.; Sung, T.-Y.; Yen, S.-C.; Huang, S.-H.; et al. In silico identification and biological evaluation of a selective MAP4K4 inhibitor against pancreatic cancer. J. Enzym. Inhib. Med. Chem. 2023, 38, 2166039. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, S.K.; Viswakarma, N.; Sondarva, G.; Nair, R.S.; Sethupathi, P.; Dorman, M.; Sinha, S.C.; Hoskins, K.; Thatcher, G.; et al. Rationalized inhibition of mixed lineage kinase 3 and CD70 enhances life span and antitumor efficacy of CD8(+) T cells. J. Immunother. Cancer 2020, 8, 494. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, S.K.; Viswakarma, N.; Sondarva, G.; Nair, R.S.; Sethupathi, P.; Sinha, S.C.; Emmadi, R.; Hoskins, K.; Danciu, O.; et al. Mixed lineage kinase 3 inhibition induces T cell activation and cytotoxicity. Proc. Natl. Acad. Sci. USA 2020, 117, 7961–7970. [Google Scholar] [CrossRef]
- Kumar, S.; Das, S.; Sun, J.; Huang, Y.; Singh, S.K.; Srivastava, P.; Sondarva, G.; Nair, R.S.; Viswakarma, N.; Ganesh, B.B.; et al. Mixed lineage kinase 3 and CD70 cooperation sensitize trastuzumab-resistant HER2(+) breast cancer by ceramide-loaded nanoparticles. Proc. Natl. Acad. Sci. USA 2022, 119, e2205454119. [Google Scholar] [CrossRef] [PubMed]
- Baracos, V.E.; Martin, L.; Korc, M.; Guttridge, D.C.; Fearon, K.C.H. Cancer-associated cachexia. Nat. Rev. Dis. Prim. 2018, 4, 17105. [Google Scholar] [CrossRef]
- Fearon, K.C.; Glass, D.J.; Guttridge, D.C. Cancer cachexia: Mediators, signaling, and metabolic pathways. Cell Metab. 2012, 16, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Ronga, I.; Gallucci, F.; Riccardi, F.; Uomo, G. Anorexia–cachexia syndrome in pancreatic cancer: Recent advances and new pharmacological approach. Adv. Med. Sci. 2014, 59, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Fox, K.M.; Brooks, J.M.; Gandra, S.R.; Markus, R.; Chiou, C.F. Estimation of Cachexia among Cancer Patients Based on Four Definitions. J. Oncol. 2009, 2009, 693458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baba, M.R.; Buch, S.A. Revisiting Cancer Cachexia: Pathogenesis, Diagnosis, and Current Treatment Approaches. Asia Pac. J. Oncol. Nurs. 2021, 8, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Batista, M., Jr.; Peres, S.; McDonald, M.; Alcântara, P.S.M.d.; Olivan, M.; Otoch, J.P.; Farmer, S.; Seelaender, M. Adipose tissue inflammation and cancer cachexia: Possible role of nuclear transcription factors. Cytokine 2012, 57, 9–16. [Google Scholar] [CrossRef]
- Guilherme, A.; Virbasius, J.V.; Puri, V.; Czech, M.P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 2008, 9, 367–377. [Google Scholar] [CrossRef] [Green Version]
- Alter, J.; Rozentzweig, D.; Bengal, E. Inhibition of myoblast differentiation by tumor necrosis factor α is mediated by c-Jun N-terminal kinase 1 and leukemia inhibitory factor. J. Biol. Chem. 2008, 283, 23224–23234. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-E.; Jin, B.; Li, Y.-P. TNF-α regulates myogenesis and muscle regeneration by activating p38 MAPK. Am. J. Physiol. Cell Physiol. 2007, 292, C1660–C1671. [Google Scholar] [CrossRef]
- Coletti, D.; Yang, E.; Marazzi, G.; Sassoon, D. TNFα inhibits skeletal myogenesis through a PW1-dependent pathway by recruitment of caspase pathways. EMBO J. 2002, 21, 631–642. [Google Scholar] [CrossRef] [Green Version]
- Wang, M. Role of Map4k4 in Skeletal Muscle Differentiation: A Dissertation. Ph.D. Thesis, University of Massachusetts Graduate School of Biomedical Sciences, Worcester, MS, USA, 2013. [Google Scholar]
- Molla, R.; Shimizu, A.; Komeno, M.; Rahman, N.I.A.; Soh, J.E.C.; Nguyen, L.K.C.; Khan, M.R.; Tesega, W.W.; Chen, S.; Pang, X.; et al. Vascular smooth muscle RhoA counteracts abdominal aortic aneurysm formation by modulating MAP4K4 activity. Commun. Biol. 2022, 5, 1071. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, S.; Ross, K.N.; Lander, E.S.; Golub, T.R. A molecular signature of metastasis in primary solid tumors. Nat. Genet. 2003, 33, 49–54. [Google Scholar] [CrossRef]
- Van De Vijver, M.J.; He, Y.D.; Van’t Veer, L.J.; Dai, H.; Hart, A.A.; Voskuil, D.W.; Schreiber, G.J.; Peterse, J.L.; Roberts, C.; Marton, M.J. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 2002, 347, 1999–2009. [Google Scholar] [CrossRef] [Green Version]
- Kallioniemi, A. Molecular signatures of breast cancer—Predicting the future. Mass. Med. Soc. 2002, 347, 2067–2068. [Google Scholar] [CrossRef] [PubMed]
- Migliavacca, J.; Züllig, B.; Capdeville, C.; Grotzer, M.A.; Baumgartner, M. Cooperation of Striatin 3 and MAP4K4 promotes growth and tissue invasion. Commun. Biol. 2022, 5, 795, Erratum in Commun. Biol. 2022, 5, 880. [Google Scholar] [CrossRef] [PubMed]
Affected Cell/Tissue(s) | Inhibition Methods | Role and Effect | References |
---|---|---|---|
Colorectal cancer | RNAi or knockdown of MAP4K4 in vitro and in vivo | Regulation and progression of colorectal cancer | [71] |
Hepatocellular carcinoma | Silencing of MAP4K4 with shRNA in HepG2 and Hep3B | ↓ Cell proliferation, ↓ Blocked cell cycle progression at the S phase, ↑ Increased spontaneous apoptosis | [45] |
Gastric cancer | Silencing of MAP4K4 by RNAi in BGC-823 cells | ↑ Cell cycle arrest in the G1 phase, ↓ Cell proliferation | [76] |
Lung adenocarcinoma | Induced mRNA transcript and protein levels of MAP4K4 | MAP4K4 elevation was negatively associated with patients’ prognosis. | [78] |
PDAC | Ectopic expression of miR-141 and knockdown of MAP4K4 | ↓ Tumorigenesis, ↓ Cell growth in vitro and in vivo, ↑ G1 arrest and apoptosis improved the chemosensitivity of pancreatic cancer cells. | [82] |
PDAC | Inhibit MAP4K4 using GNE-495 | ↓ Tumor volume, ↓ Migration, ↑ Cell cycle arrest and ↑ survival | [23] |
Endothelial cells | siRNA-mediated MAP4K4 depletion in endothelial cells | ↓ Inflammatory capacity by reducing TNF-α-mediated permeability, ↓ TNF-α-induced leukocyte adhesion and leukocyte adhesion molecule expression | [61] |
CD4+ T cell | MAP4K4 deletion using PMA and ionomycin | ↓ CD4+ T cell proliferation | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.K.; Roy, R.; Kumar, S.; Srivastava, P.; Jha, S.; Rana, B.; Rana, A. Molecular Insights of MAP4K4 Signaling in Inflammatory and Malignant Diseases. Cancers 2023, 15, 2272. https://doi.org/10.3390/cancers15082272
Singh SK, Roy R, Kumar S, Srivastava P, Jha S, Rana B, Rana A. Molecular Insights of MAP4K4 Signaling in Inflammatory and Malignant Diseases. Cancers. 2023; 15(8):2272. https://doi.org/10.3390/cancers15082272
Chicago/Turabian StyleSingh, Sunil Kumar, Ruchi Roy, Sandeep Kumar, Piush Srivastava, Saket Jha, Basabi Rana, and Ajay Rana. 2023. "Molecular Insights of MAP4K4 Signaling in Inflammatory and Malignant Diseases" Cancers 15, no. 8: 2272. https://doi.org/10.3390/cancers15082272
APA StyleSingh, S. K., Roy, R., Kumar, S., Srivastava, P., Jha, S., Rana, B., & Rana, A. (2023). Molecular Insights of MAP4K4 Signaling in Inflammatory and Malignant Diseases. Cancers, 15(8), 2272. https://doi.org/10.3390/cancers15082272