EZH2 and POU2F3 Can Aid in the Distinction of Thymic Carcinoma from Thymoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Immunohistochemistry
2.3. Statistical Analysis
3. Results
3.1. Patients
3.2. EZH2
3.3. POU2F3
3.4. Comparison of EZH2, POU2F3, CD5, CD117, TdT, BAP1, and MTAP Immunoreactivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Filosso, P.L.; Yao, X.; Ruffini, E.; Ahmad, U.; Antonicelli, A.; Huang, J.; Guerrera, F.; Venuta, F.; van Raemdonck, D.; Travis, W.; et al. Comparison of outcomes between neuroendocrine thymic tumours and other subtypes of thymic carcinomas: A joint analysis of the European Society of Thoracic Surgeons and the International Thymic Malignancy Interest Group. Eur. J. Cardiothorac. Surg. 2016, 50, 766–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weis, C.A.; Yao, X.; Deng, Y.; Detterbeck, F.C.; Marino, M.; Nicholson, A.G.; Huang, J.; Ströbel, P.; Antonicelli, A.; Marx, A. The impact of thymoma histotype on prognosis in a worldwide database. J. Thorac. Oncol. 2015, 10, 367–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roden, A.C.; Yi, E.S.; Jenkins, S.M.; Edwards, K.K.; Donovan, J.L.; Lewis, J.E.; Cassivi, S.D.; Marks, R.S.; Garces, Y.I.; Aubry, M.C. Reproducibility of 3 histologic classifications and 3 staging systems for thymic epithelial neoplasms and its effect on prognosis. Am. J. Surg. Pathol. 2015, 39, 427–441. [Google Scholar] [CrossRef]
- Kim, B.S.; Kim, J.K.; Kang, C.H.; Kim, Y.T.; Jung, K.C.; Won, J.K. An immunohistochemical panel consisting of EZH2, C-KIT, and CD205 is useful for distinguishing thymic squamous cell carcinoma from type B3 thymoma. Pathol. Res. Pract. 2018, 214, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Nonaka, D.; Henley, J.D.; Chiriboga, L.; Yee, H. Diagnostic utility of thymic epithelial markers CD205 (DEC205) and Foxn1 in thymic epithelial neoplasms. Am. J. Surg. Pathol. 2007, 31, 1038–1044. [Google Scholar] [CrossRef]
- Kojika, M.; Ishii, G.; Yoshida, J.; Nishimura, M.; Hishida, T.; Ota, S.J.; Murata, Y.; Nagai, K.; Ochiai, A. Immunohistochemical differential diagnosis between thymic carcinoma and type B3 thymoma: Diagnostic utility of hypoxic marker, GLUT-1, in thymic epithelial neoplasms. Mod. Pathol. 2009, 22, 1341–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoury, T.; Chandrasekhar, R.; Wilding, G.; Tan, D.; Cheney, R.T. Tumour eosinophilia combined with an immunohistochemistry panel is useful in the differentiation of type B3 thymoma from thymic carcinoma. Int. J. Exp. Pathol. 2011, 92, 87–96. [Google Scholar] [CrossRef]
- Jeong, J.H.; Pyo, J.S.; Kim, N.Y.; Kang, D.W. Diagnostic Roles of Immunohistochemistry in Thymic Tumors: Differentiation between Thymic Carcinoma and Thymoma. Diagnostics 2020, 10, 460. [Google Scholar] [CrossRef]
- Angirekula, M.; Chang, S.Y.; Jenkins, S.M.; Greipp, P.T.; Sukov, W.R.; Marks, R.S.; Olivier, K.R.; Cassivi, S.D.; Roden, A.C. CD117, BAP1, MTAP, and TdT Is a Useful Immunohistochemical Panel to Distinguish Thymoma from Thymic Carcinoma. Cancers 2022, 14, 2299. [Google Scholar] [CrossRef]
- Caprio, C.; Lania, G.; Bilio, M.; Ferrentino, R.; Chen, L.; Baldini, A. EZH2 is required for parathyroid and thymic development through differentiation of the third pharyngeal pouch endoderm. Dis. Model. Mech. 2021, 14, dmm046789. [Google Scholar] [CrossRef]
- Yamashita, J.; Ohmoto, M.; Yamaguchi, T.; Matsumoto, I.; Hirota, J. Skn-1a/Pou2f3 functions as a master regulator to generate Trpm5-expressing chemosensory cells in mice. PLoS ONE 2017, 12, e0189340. [Google Scholar] [CrossRef] [Green Version]
- Baine, M.K.; Febres-Aldana, C.A.; Chang, J.C.; Jungbluth, A.A.; Sethi, S.; Antonescu, C.R.; Travis, W.D.; Hsieh, M.S.; Roh, M.S.; Homer, R.J.; et al. POU2F3 in SCLC: Clinicopathologic and Genomic Analysis with a Focus on Its Diagnostic Utility in Neuroendocrine-Low SCLC. J. Thorac. Oncol. 2022, 17, 1109–1121. [Google Scholar] [CrossRef] [PubMed]
- Bornstein, C.; Nevo, S.; Giladi, A.; Kadouri, N.; Pouzolles, M.; Gerbe, F.; David, E.; Machado, A.; Chuprin, A.; Tóth, B.; et al. Single-cell mapping of the thymic stroma identifies IL-25-producing tuft epithelial cells. Nature 2018, 559, 622–626. [Google Scholar] [CrossRef]
- Miller, C.N.; Proekt, I.; von Moltke, J.; Wells, K.L.; Rajpurkar, A.R.; Wang, H.; Rattay, K.; Khan, I.S.; Metzger, T.C.; Pollack, J.L.; et al. Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development. Nature 2018, 559, 627–631. [Google Scholar] [CrossRef]
- Yamada, Y.; Sugimoto, A.; Hoki, M.; Yoshizawa, A.; Hamaji, M.; Date, H.; Haga, H.; Marx, A. POU2F3 beyond thymic carcinomas: Expression across the spectrum of thymomas hints to medullary differentiation in type A thymoma. Virchows Arch. 2022, 480, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Simon-Keller, K.; Belharazem-Vitacolonnna, D.; Bohnenberger, H.; Kriegsmann, M.; Kriegsmann, K.; Hamilton, G.; Graeter, T.; Preissler, G.; Ott, G.; et al. Tuft Cell-Like Signature Is Highly Prevalent in Thymic Squamous Cell Carcinoma and Delineates New Molecular Subsets Among the Major Lung Cancer Histotypes. J. Thorac. Oncol. 2021, 16, 1003–1016. [Google Scholar] [CrossRef]
- WHO Classification of Tumours Editorial Board. Thoracic tumours. In WHO Classification of Tumours Series, 5th ed.; International Agency for Research on Cancer: Lyon, France, 2021; Volume 5. [Google Scholar]
- Amin, M.B.; Edge, S.; Greene, F.; Byrd, D.R.; Brookland, R.K.; Washington, M.K.; Gershenwald, J.E.; Compton, C.C.; Hess, K.R.; Sullivan, D.C.; et al. (Eds.) AJCC Cancer Staging Manual, 8th ed.; Springer International Publishing: New York, NY, USA, 2017. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Dinter, H.; Bohnenberger, H.; Beck, J.; Bornemann-Kolatzki, K.; Schütz, E.; Küffer, S.; Klein, L.; Franks, T.J.; Roden, A.; Emmert, A.; et al. Molecular Classification of Neuroendocrine Tumors of the Thymus. J. Thorac. Oncol. 2019, 14, 1472–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaleski, M.; Kalhor, N.; Moran, C.A. Typical and Atypical Carcinoid Tumors of the Mediastinum: A Biomarker Analysis of 27 Cases with Clinical Correlation. Int. J. Surg. Pathol. 2021, 29, 358–367. [Google Scholar] [CrossRef]
- Hakim, S.A.; Abou Gabal, H.H. Diagnostic Utility of BAP1, EZH2 and Survivin in Differentiating Pleural Epithelioid Mesothelioma and Reactive Mesothelial Hyperplasia: Immunohistochemical Study. Pathol. Oncol. Res. 2021, 27, 600073. [Google Scholar] [CrossRef]
- Shinozaki-Ushiku, A.; Ushiku, T.; Morita, S.; Anraku, M.; Nakajima, J.; Fukayama, M. Diagnostic utility of BAP1 and EZH2 expression in malignant mesothelioma. Histopathology 2017, 70, 722–733. [Google Scholar] [CrossRef]
- Genco, I.S.; Hackman, K.; Morrar, D.; Jin, C.; Santagada, E.; Hajiyeva, S. The significance of enhancer of zeste homolog 2 (EZH2) expression in spindle cell lesions of the breast. Pathol. Int. 2021, 71, 415–419. [Google Scholar] [CrossRef]
- Lobo, J.; Rodrigues, Â.; Antunes, L.; Graça, I.; Ramalho-Carvalho, J.; Vieira, F.Q.; Martins, A.T.; Oliveira, J.; Jerónimo, C.; Henrique, R. High immunoexpression of Ki67, EZH2, and SMYD3 in diagnostic prostate biopsies independently predicts outcome in patients with prostate cancer. Urol. Oncol. 2018, 36, 161.e7–161.e17. [Google Scholar] [CrossRef]
- Tone, K.; Ohno, S.; Honda, M.; Notsu, A.; Sasaki, K.; Sugino, T. Application of enhancer of zeste homolog 2 immunocytochemistry to bile cytology. Cancer Cytopathol. 2021, 129, 612–621. [Google Scholar] [CrossRef]
- Makk, E.; Bálint, L.; Cifra, J.; Tornóczky, T.; Oszter, A.; Tóth, A.; Kálmán, E.; Kovács, K. Robust expression of EZH2 in endocervical neoplastic lesions. Virchows Arch. 2019, 475, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Cai, M.Y.; Tong, Z.T.; Zheng, F.; Liao, Y.J.; Wang, Y.; Rao, H.L.; Chen, Y.C.; Wu, Q.L.; Liu, Y.H.; Guan, X.Y.; et al. EZH2 protein: A promising immunomarker for the detection of hepatocellular carcinomas in liver needle biopsies. Gut 2011, 60, 967–976. [Google Scholar] [CrossRef] [Green Version]
- Tateo, V.; Manuzzi, L.; Parisi, C.; De Giglio, A.; Campana, D.; Pantaleo, M.A.; Lamberti, G. An Overview on Molecular Characterization of Thymic Tumors: Old and New Targets for Clinical Advances. Pharmaceuticals 2021, 14, 316. [Google Scholar] [CrossRef]
- Eich, M.L.; Athar, M.; Ferguson, J.E., 3rd; Varambally, S. EZH2-Targeted Therapies in Cancer: Hype or a Reality. Cancer Res. 2020, 80, 5449–5458. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Rajan, A.; Szabo, E.; Tomita, Y.; Carter, C.A.; Scepura, B.; Lopez-Chavez, A.; Lee, M.J.; Redon, C.E.; Frosch, A.; et al. A phase I/II trial of belinostat in combination with cisplatin, doxorubicin, and cyclophosphamide in thymic epithelial tumors: A clinical and translational study. Clin. Cancer Res. 2014, 20, 5392–5402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Thomas, A.; Lau, C.; Rajan, A.; Zhu, Y.; Killian, J.K.; Petrini, I.; Pham, T.; Morrow, B.; Zhong, X.; et al. Mutations of epigenetic regulatory genes are common in thymic carcinomas. Sci. Rep. 2014, 4, 7336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radovich, M.; Pickering, C.R.; Felau, I.; Ha, G.; Zhang, H.; Jo, H.; Hoadley, K.A.; Anur, P.; Zhang, J.; McLellan, M.; et al. The Integrated Genomic Landscape of Thymic Epithelial Tumors. Cancer Cell 2018, 33, 244–258.e210. [Google Scholar] [CrossRef] [Green Version]
- LaFave, L.M.; Béguelin, W.; Koche, R.; Teater, M.; Spitzer, B.; Chramiec, A.; Papalexi, E.; Keller, M.D.; Hricik, T.; Konstantinoff, K.; et al. Loss of BAP1 function leads to EZH2-dependent transformation. Nat. Med. 2015, 21, 1344–1349. [Google Scholar] [CrossRef] [PubMed]
- Zauderer, M.G.; Szlosarek, P.W.; Le Moulec, S.; Popat, S.; Taylor, P.; Planchard, D.; Scherpereel, A.; Koczywas, M.; Forster, M.; Cameron, R.B.; et al. EZH2 inhibitor tazemetostat in patients with relapsed or refractory, BAP1-inactivated malignant pleural mesothelioma: A multicentre, open-label, phase 2 study. Lancet Oncol. 2022, 23, 758–767. [Google Scholar] [CrossRef]
- Chang, S.; Park, H.K.; Choi, Y.L.; Jang, S.J. Interobserver Reproducibility of PD-L1 Biomarker in Non-small Cell Lung Cancer: A Multi-Institutional Study by 27 Pathologists. J. Pathol. Transl. Med. 2019, 53, 347–353. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, T.O.; Leung, S.C.Y.; Rimm, D.L.; Dodson, A.; Acs, B.; Badve, S.; Denkert, C.; Ellis, M.J.; Fineberg, S.; Flowers, M.; et al. Assessment of Ki67 in Breast Cancer: Updated Recommendations from the International Ki67 in Breast Cancer Working Group. J. Natl. Cancer Inst. 2021, 113, 808–819. [Google Scholar] [CrossRef]
- Buza, N.; Euscher, E.D.; Matias-Guiu, X.; McHenry, A.; Oliva, E.; Ordulu, Z.; Parra-Herran, C.; Rottmann, D.; Turner, B.M.; Wong, S.; et al. Reproducibility of scoring criteria for HER2 immunohistochemistry in endometrial serous carcinoma: A multi-institutional interobserver agreement study. Mod. Pathol. 2021, 34, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Matsui, S.; Haruki, T.; Oshima, Y.; Kidokoro, Y.; Sakabe, T.; Umekita, Y.; Nakamura, H. High mRNA expression of POU2F3 in small cell lung cancer cell lines predicts the effect of lurbinectedin. Thorac. Cancer 2022, 13, 1184–1192. [Google Scholar] [CrossRef] [PubMed]
Diagnosis | Total Number of Cases | Resections n (%) | Biopsies n (%) | Male n (%) | Patient Age at Time of Specimen Collection, Years, Median (Range) | Tissue Block Age at Time of Immunostaining, Years, Median (Range) |
---|---|---|---|---|---|---|
Carcinoma overall | 37 | 36 (97) | 1 (3) | 21 (57) | 53 (19–79) | 11 (0.2–59) |
Squamous cell carcinoma | 24 | 23 (96) | 1 (4) | 12 (50) | 57.5 (48–79) | 10 (2–27) |
Undifferentiated carcinoma | 3 | 3 (100) | 0 (0) | 2 (67) | 72 (38–75) | 1 (0.2–13) |
Small cell carcinoma | 2 | 2 (100) | 0 (0) | 0 (0) | 48.5 (41–56) | 2.5 (2–3) |
Adenocarcinoma | 2 | 2 (100) | 0 (0) | 2 (100) | 56.5 (42–71) | 18.5 (15–22) |
Mucoepidermoid carcinoma | 2 | 2 (100) | 0 (0) | 2 (100) | 54 (39–69) | 9.5 (3–16) |
Lymphoepithelial carcinoma | 2 | 2 (100) | 0 (0) | 1 (50) | 25 (19–31) | 19 (11–27) |
Sarcomatoid carcinoma | 1 | 1 (100) | 0 (0) | 1 (100) | 45 | 2 |
Adenosquamous carcinoma | 1 | 1 (100) | 0 (0) | 1 (100) | 52 | 15 |
Thymoma overall | 44 | 44 (100) | 0 (0) | 16 (36) | 63.5 (28–87) | 8 (0.4–25) |
Type A | 23 | 23 (100) | 0 (0) | 10 (43) | 64 (38–83) | 11 (1–20) |
Type B3 | 13 | 13 (100) | 0 (0) | 4 (31) | 53 (28–85) | 6 (2–25) |
Micronodular thymoma with lymphoid stroma | 8 | 8 (100) | 0 (0) | 2 (25) | 77 (61–87) | 7 (0.4–11) |
Diagnosis | Total Number of Cases | EZH2 | POU2F3 | ||
---|---|---|---|---|---|
Overall, ≥80% Threshold n (%) | Overall, >10% Threshold n (%) | Overall, ≥10% Threshold n (%) | Hotspot, ≥10% Threshold n (%) | ||
Carcinoma overall | 37 | 30 (81) | 37 (100) | 11 (30) | 19 (51) |
Squamous cell carcinoma | 24 | 22 (92) | 24 (100) | 11 (46) | 14 (58) |
Undifferentiated carcinoma | 3 | 2 (67) | 3 (100) | 0 (0) | 2 (67) |
Small cell carcinoma | 2 | 2 (100) | 2 (100) | 0 (0) | 0 (0) |
Adenocarcinoma | 2 | 0 (0) | 2 (100) | 0 (0) | 0 (0) |
Mucoepidermoid carcinoma | 2 | 0 (0) | 2 (100) | 0 (0) | 1 (50) |
Lymphoepithelial carcinoma | 2 | 2 (100) | 2 (100) | 0 (0) | 2 (100) |
Sarcomatoid carcinoma | 1 | 1 (100) | 1 (100) | 0 (0) | 0 (0) |
Adenosquamous carcinoma | 1 | 1 (100) | 1 (100) | 0 (0) | 0 (0) |
Thymoma overall | 44 | 10 (23) | 23 (52) | 0 (0) | 0 (0) |
Type A | 23 | 0 (0) | 10 (43) | 0 (0) | 0 (0) |
Type B3 | 13 | 7 (54) | 12 (92) | 0 (0) | 0 (0) |
Micronodular thymoma with lymphoid stroma | 8 | 0 (0) | 1 (13) | 0 (0) | 0 (0) |
Thymic Carcinomas | Thymomas | ||||
---|---|---|---|---|---|
Immunostain | Of Any Histologic Type (n = 37) n (%) | Squamous Cell Carcinoma (n = 24) n (%) | Type A (n = 23) n (%) | Type B3 (n = 13) n (%) | MNTLS (n = 8) n (%) |
POU2F3 1 | 19 (51) | 14 (58) | 0 (0) | 0 (0) | 0 (0) |
EZH2 2 | 30 (81) | 22 (92) | 0 (0) | 7 (54) | 0 (0) |
CD117 | 32 (86) | 22 (92) | 0 (0) | 0 (0) | 0 (0) |
CD5 | 13 (35) | 11 (46) | 0 (0) | 0 (0) | 0 (0) |
BAP1 loss | 4 (11) | 1 (4) | 0 (0) | 0 (0) | 0 (0) |
MTAP loss | 5 (14) | 2 (8) | 0 (0) | 0 (0) | 0 (0) |
TdT-positive thymocytes | 1 (3) | 0 (0) | 17 (74) | 9 (69) | 8 (100) |
CD117 or CD5 | 32 (86) | 22 (92) | 0 (0) | 0 (0) | 0 (0) |
CD117 or POU2F3 1 | 32 (86) | 22 (92) | 0 (0) | 0 (0) | 0 (0) |
CD117 or EZH2 2 | 34 (92) | 24 (100) | 0 (0) | 7 (54) | 0 (0) |
CD117, MTAP loss, or BAP1 loss | 33 (89) | 22 (92) | 0 (0) | 0 (0) | 0 (0) |
CD117, EZH2 2, MTAP loss, or BAP1 loss | 35 (95) | 24 (100) | 0 (0) | 7 (54) | 0 (0) |
Marker | Result | Suggested Interpretation 1 | Evidence |
---|---|---|---|
EZH2 | ≤10% tumor cell staining | Thymoma | 100% specificity for thymoma versus thymic carcinoma |
EZH2 | ≥80% tumor cell staining | Thymic carcinoma or Type B3 thymoma | 100% specificity for thymic carcinoma or Type B3 thymoma versus Type A thymoma or MNTLS |
CD117 | ≥10% tumor cell staining | Thymic carcinoma | 100% specificity for thymic carcinoma versus thymoma |
BAP1 | Complete loss of nuclear staining in tumor cells | Thymic carcinoma | 100% specificity for thymic carcinoma versus thymoma |
MTAP | Complete loss of cytoplasmic and nuclear staining in tumor cells | Thymic carcinoma | 100% specificity for thymic carcinoma versus thymoma |
TdT | More than rare scattered thymocytes with positive staining | Probable thymoma | 97% specificity for thymoma versus thymic carcinoma |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naso, J.R.; Vrana, J.A.; Koepplin, J.W.; Molina, J.R.; Roden, A.C. EZH2 and POU2F3 Can Aid in the Distinction of Thymic Carcinoma from Thymoma. Cancers 2023, 15, 2274. https://doi.org/10.3390/cancers15082274
Naso JR, Vrana JA, Koepplin JW, Molina JR, Roden AC. EZH2 and POU2F3 Can Aid in the Distinction of Thymic Carcinoma from Thymoma. Cancers. 2023; 15(8):2274. https://doi.org/10.3390/cancers15082274
Chicago/Turabian StyleNaso, Julia R., Julie A. Vrana, Justin W. Koepplin, Julian R. Molina, and Anja C. Roden. 2023. "EZH2 and POU2F3 Can Aid in the Distinction of Thymic Carcinoma from Thymoma" Cancers 15, no. 8: 2274. https://doi.org/10.3390/cancers15082274
APA StyleNaso, J. R., Vrana, J. A., Koepplin, J. W., Molina, J. R., & Roden, A. C. (2023). EZH2 and POU2F3 Can Aid in the Distinction of Thymic Carcinoma from Thymoma. Cancers, 15(8), 2274. https://doi.org/10.3390/cancers15082274