Clinical Significance of ABCG2/BCRP Quantified by Fluorescent Nanoparticles in Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Fluorescence Immunohistochemistry Staining
2.3. IHC-PIDs
2.4. Statistical Analysis
3. Results
3.1. Quantitative Immunostaining of BCRP
3.2. Predictive Capability of BCRP IHC-PIDs for NAC Response
3.3. Correlation between Biological Factors and Survival Events
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gralow, J.R.; Burstein, H.J.; Wood, W.; Hortobagyi, G.N.; Gianni, L.; von Minckwitz, G.; Buzdar, A.U.; Smith, I.E.; Symmans, W.F.; Singh, B.; et al. Preoperative Therapy in Invasive Breast Cancer: Pathologic Assessment and Systemic Therapy Issues in Operable Disease. J. Clin. Oncol. 2008, 26, 814–819. [Google Scholar] [CrossRef] [PubMed]
- Hennessy, B.T.; Hortobagyi, G.N.; Rouzier, R.; Kuerer, H.; Sneige, N.; Buzdar, A.U.; Kau, S.W.; Fornage, B.; Sahin, A.; Broglio, K.; et al. Outcome After Pathologic Complete Eradication of Cytologically Proven Breast Cancer Axillary Node Metastases Following Primary Chemotherapy. J. Clin. Oncol. 2005, 23, 9304–9311. [Google Scholar] [CrossRef]
- Guarneri, V.; Broglio, K.; Kau, S.-W.; Cristofanilli, M.; Buzdar, A.U.; Valero, V.; Buchholz, T.; Meric, F.; Middleton, L.; Hortobagyi, G.N.; et al. Prognostic Value of Pathologic Complete Response after Primary Chemotherapy in Relation to Hormone Receptor Status and Other Factors. J. Clin. Oncol. 2006, 24, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- von Minckwitz, G.; Untch, M.; Blohmer, J.-U.; Costa, S.D.; Eidtmann, H.; Fasching, P.A.; Gerber, B.; Eiermann, W.; Hilfrich, J.; Huober, J.; et al. Definition and Impact of Pathologic Complete Response on Prognosis after Neoadjuvant Chemotherapy in Various Intrinsic Breast Cancer Subtypes. J. Clin. Oncol. 2012, 30, 1796–1804. [Google Scholar] [CrossRef] [PubMed]
- Conforti, F.; Pala, L.; Sala, I.; Oriecuia, C.; Pas, T.D.; Specchia, C.; Graffeo, R.; Pagan, E.; Queirolo, P.; Pennacchioli, E.; et al. Evaluation of Pathological Complete Response as Surrogate Endpoint in Neoadjuvant Randomised Clinical Trials of Early Stage Breast Cancer: Systematic Review and Meta-Analysis. BMJ 2021, 375, e066381. [Google Scholar] [CrossRef] [PubMed]
- Doyle, L.A.; Yang, W.; Abruzzo, L.V.; Krogmann, T.; Gao, Y.; Rishi, A.K.; Ross, D.D. A Multidrug Resistance Transporter from Human MCF-7 Breast Cancer Cells. Proc. Natl. Acad. Sci. USA 1998, 95, 15665–15670. [Google Scholar] [CrossRef] [PubMed]
- Miyake, K.; Mickley, L.; Litman, T.; Zhan, Z.; Robey, R.; Cristensen, B.; Brangi, M.; Greenberger, L.; Dean, M.; Fojo, T.; et al. Molecular Cloning of CDNAs Which Are Highly Overexpressed in Mitoxantrone-Resistant Cells: Demonstration of Homology to ABC Transport Genes. Cancer Res. 1999, 59, 8–13. [Google Scholar]
- Austin Doyle, L.; Ross, D.D. Multidrug Resistance Mediated by the Breast Cancer Resistance Protein BCRP (ABCG2). Oncogene 2003, 22, 7340–7358. [Google Scholar] [CrossRef]
- Nakatomi, K.; Yoshikawa, M.; Oka, M.; Ikegami, Y.; Hayasaka, S.; Sano, K.; Shiozawa, K.; Kawabata, S.; Soda, H.; Ishikawa, T.; et al. Transport of 7-Ethyl-10-Hydroxycamptothecin (SN-38) by Breast Cancer Resistance Protein ABCG2 in Human Lung Cancer Cells. Biochem. Biophys. Res. Commun. 2001, 288, 827–832. [Google Scholar] [CrossRef]
- Visvader, J.E.; Lindeman, G.J. Cancer Stem Cells in Solid Tumours: Accumulating Evidence and Unresolved Questions. Nat. Rev. Cancer 2008, 8, 755–768. [Google Scholar] [CrossRef]
- Ferrari, P.; Scatena, C.; Ghilli, M.; Bargagna, I.; Lorenzini, G.; Nicolini, A. Molecular Mechanisms, Biomarkers and Emerging Therapies for Chemotherapy Resistant TNBC. Int. J. Mol. Sci. 2022, 23, 1665. [Google Scholar] [CrossRef] [PubMed]
- Britton, K.M.; Eyre, R.; Harvey, I.J.; Stemke-Hale, K.; Browell, D.; Lennard, T.W.J.; Meeson, A.P. Breast Cancer, Side Population Cells and ABCG2 Expression. Cancer Lett. 2012, 323, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Gonda, K.; Watanabe, M.; Tada, H.; Miyashita, M.; Takahashi-Aoyama, Y.; Kamei, T.; Ishida, T.; Usami, S.; Hirakawa, H.; Kakugawa, Y.; et al. Quantitative Diagnostic Imaging of Cancer Tissues by Using Phosphor-Integrated Dots with Ultra-High Brightness. Sci. Rep. 2017, 7, 7509. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Tada, H.; Kitamura, N.; Hamada, Y.; Miyashita, M.; Harada-Shoji, N.; Sato, A.; Hamanaka, Y.; Tsuboi, K.; Harada, N.; et al. Automated Quantification of Extranuclear ERα Using Phosphor-Integrated Dots for Predicting Endocrine Therapy Resistance in HR+/HER2− Breast Cancer. Cancers 2019, 11, 526. [Google Scholar] [CrossRef]
- Kurosumi, M.; Akashi-Tanaka, S.; Akiyama, F.; Komoike, Y.; Mukai, H.; Nakamura, S.; Tsuda, H.; Committee for Production of Histopathological Criteria for Assessment of Therapeutic Response of Japanese Breast Cancer Society. Histopathological Criteria for Assessment of Therapeutic Response in Breast Cancer (2007 Version). Breast Cancer Tokyo Jpn. 2008, 15, 5–7. [Google Scholar] [CrossRef]
- Wallden, B.; Storhoff, J.; Nielsen, T.; Dowidar, N.; Schaper, C.; Ferree, S.; Liu, S.; Leung, S.; Geiss, G.; Snider, J.; et al. Development and Verification of the PAM50-Based Prosigna Breast Cancer Gene Signature Assay. BMC Med. Genom. 2015, 8, 54. [Google Scholar] [CrossRef]
- Piccart, M.; van ’t Veer, L.J.; Poncet, C.; Cardozo, J.M.N.L.; Delaloge, S.; Pierga, J.-Y.; Vuylsteke, P.; Brain, E.; Vrijaldenhoven, S.; Neijenhuis, P.A.; et al. 70-Gene Signature as an Aid for Treatment Decisions in Early Breast Cancer: Updated Results of the Phase 3 Randomised MINDACT Trial with an Exploratory Analysis by Age. Lancet Oncol. 2021, 22, 476–488. [Google Scholar] [CrossRef]
- Mukai, H.; Arihiro, K.; Shimizu, C.; Masuda, N.; Miyagi, Y.; Yamaguchi, T.; Yoshida, T. Stratifying the Outcome after Neoadjuvant Treatment Using Pathological Response Classification by the Japanese Breast Cancer Society. Breast Cancer 2016, 23, 73–77. [Google Scholar] [CrossRef]
- Zardavas, D.; Irrthum, A.; Swanton, C.; Piccart, M. Clinical Management of Breast Cancer Heterogeneity. Nat. Rev. Clin. Oncol. 2015, 12, 381–394. [Google Scholar] [CrossRef]
- Borovski, T.; De Sousa, E.; Melo, F.; Vermeulen, L.; Medema, J.P. Cancer Stem Cell Niche: The Place to Be. Cancer Res. 2011, 71, 634–639. [Google Scholar] [CrossRef]
- Torres, L.; Ribeiro, F.R.; Pandis, N.; Andersen, J.A.; Heim, S.; Teixeira, M.R. Intratumor Genomic Heterogeneity in Breast Cancer with Clonal Divergence between Primary Carcinomas and Lymph Node Metastases. Breast Cancer Res. Treat. 2007, 102, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Nemoto, N.; Shibahara, Y.; Tada, H.; Uchida, K.; McNamara, K.M.; Chan, M.S.M.; Watanabe, M.; Tamaki, K.; Miyashita, M.; Miki, Y.; et al. Clinical Significance of Subtype Classification in Metastatic Lymph Nodes of Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy. Int. J. Biol. Markers 2015, 30, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Modi, A.; Roy, D.; Sharma, S.; Vishnoi, J.R.; Pareek, P.; Elhence, P.; Sharma, P.; Purohit, P. ABC Transporters in Breast Cancer: Their Roles in Multidrug Resistance and beyond. J. Drug Target. 2022, 30, 927–947. [Google Scholar] [CrossRef] [PubMed]
- Zattoni, I.F.; Delabio, L.C.; de Paula Dutra, J.; Kita, D.H.; Scheiffer, G.; Hembecker, M.; da Silva Pereira, G.; Moure, V.R.; Valdameri, G. Targeting Breast Cancer Resistance Protein (BCRP/ABCG2): Functional Inhibitors and Expression Modulators. Eur. J. Med. Chem. 2022, 237, 114346. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.S.; Yang, C.; Han, L.; Liu, L.; Liu, Y.J. Expression of BCRP/ABCG2 Protein in Invasive Breast Cancer and Response to Neoadjuvant Chemotherapy. Oncol. Res. Treat. 2022, 45, 94–101. [Google Scholar] [CrossRef]
- Adams, E.; Wildiers, H.; Neven, P.; Punie, K. Sacituzumab Govitecan and Trastuzumab Deruxtecan: Two New Antibody–Drug Conjugates in the Breast Cancer Treatment Landscape. ESMO Open 2021, 6, 100204. [Google Scholar] [CrossRef]
- Modi, S.; Saura, C.; Yamashita, T.; Park, Y.H.; Kim, S.-B.; Tamura, K.; Andre, F.; Iwata, H.; Ito, Y.; Tsurutani, J.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Breast Cancer. N. Engl. J. Med. 2020, 382, 610–621. [Google Scholar] [CrossRef]
- Inamura, K.; Shigematsu, Y.; Ninomiya, H.; Nakashima, Y.; Kobayashi, M.; Saito, H.; Takahashi, K.; Futaya, E.; Okumura, S.; Ishikawa, Y.; et al. CSF1R-Expressing Tumor-Associated Macrophages, Smoking and Survival in Lung Adenocarcinoma: Analyses Using Quantitative Phosphor-Integrated Dot Staining. Cancers 2018, 10, 252. [Google Scholar] [CrossRef]
- Yamaki, S.; Yanagimoto, H.; Tsuta, K.; Ryota, H.; Kon, M. PD-L1 Expression in Pancreatic Ductal Adenocarcinoma Is a Poor Prognostic Factor in Patients with High CD8+ Tumor-Infiltrating Lymphocytes: Highly Sensitive Detection Using Phosphor-Integrated Dot Staining. Int. J. Clin. Oncol. 2017, 22, 726–733. [Google Scholar] [CrossRef]
Patient Characteristics | N (n = 37) | % | |
---|---|---|---|
Age (years) | <50 | 15 | 40.5 |
(Median: 54 (31–76)) | ≥50 | 22 | 59.5 |
pTNM | Stage I | 0 | 0.0 |
Stage II | 22 | 59.5 | |
Stage III | 15 | 40.5 | |
Stage IV | 0 | 0.0 | |
Number of | 1–3 (pN1) | 17 | 45.9 |
metastatic lymph nodes | 4–9 (pN2) | 13 | 35.1 |
≥10 (pN3) | 7 | 18.9 | |
Ki67 LI (%) | <20 | 28 | 75.7 |
≥20 | 9 | 24.3 | |
Histological Grade | 1 | 4 | 10.8 |
(Primary tumor) | 2 | 20 | 54.1 |
3 | 4 | 10.8 | |
Subtype | Luminal A | 19 | 51.4 |
(Primary tumor) | Luminal B—HER2− | 11 | 29.7 |
Luminal B—HER2+ | 5 | 13.5 | |
HER2 | 0 | 0.0 | |
Triple negative | 2 | 5.4 | |
Regimen | Anthracycline | 5 | 13.5 |
Anthracycline + Taxane | 27 | 73.0 | |
Anthracycline + Taxane + Trastuzumab | 5 | 13.5 | |
Pathological response | 0 | 0 | 0.0 |
1a | 17 | 45.9 | |
1b | 12 | 32.4 | |
2 | 8 | 21.6 | |
3 | 0 | 0.0 |
n (%) | n (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Characteristics | No Recurrence | Recurrence | p-Value | Survival | Death | p-Value | |||||
(n = 16) | (n = 21) | (n = 22) | (n = 15) | ||||||||
Age (years) | <50 | 6 | (16.2) | 9 | (24.3) | 0.742 | 10 | (27.0) | 5 | (13.5) | 0.461 |
≥50 | 10 | (27.0) | 12 | (32.4) | 12 | (32.4) | 10 | (27.0) | |||
Histological grade | Grade 1–2 | 14 | (37.8) | 16 | (43.2) | 0.384 | 20 | (54.1) | 10 | (27.0) | 0.065 |
(Primary tumor) | Grade 3 | 2 | (5.4) | 5 | (13.5) | 2 | (5.4) | 5 | (13.5) | ||
Ki-67 | <20 | 14 | (37.8) | 14 | (37.8) | 0.143 | 20 | (54.1) | 8 | (21.6) | 0.009 |
(Primary tumor) | ≥20 | 2 | (5.4) | 7 | (18.9) | 2 | (5.4) | 7 | (18.9) | ||
No. of LN metastasis | <4 | 9 | (24.3) | 8 | (21.6) | 0.272 | 12 | (32.4) | 5 | (13.5) | 0.204 |
≥4 | 7 | (18.9) | 13 | (35.1) | 10 | (27.0) | 10 | (27.0) | |||
pStage | 2 | 8 | (21.6) | 7 | (18.9) | 0.306 | 10 | (27.0) | 5 | (13.5) | 0.461 |
3 | 8 | (21.6) | 14 | (37.8) | 12 | (32.4) | 10 | (27.0) | |||
Pathological response | 1a | 9 | (24.3) | 8 | (21.6) | 0.417 | 10 | (27.0) | 7 | (18.9) | 0.756 |
1b | 5 | (13.5) | 7 | (18.9) | 8 | (21.6) | 4 | (10.8) | |||
2 | 2 | (5.4) | 6 | (16.2) | 4 | (10.8) | 4 | (10.8) | |||
CNB | BCRP low | 7 | (18.9) | 7 | (18.9) | 0.445 | 10 | (27.0) | 4 | (10.8) | 0.430 |
BCRP high | 5 | (13.5) | 9 | (24.3) | 8 | (21.6) | 6 | (16.2) | |||
Primary tumor | BCRP low | 9 | (24.3) | 9 | (24.3) | 0.419 | 12 | (32.4) | 6 | (16.2) | 0.385 |
BCRP high | 7 | (18.9) | 12 | (32.4) | 10 | (27.0) | 9 | (24.3) | |||
Lymph node metastasis | BCRP low | 7 | (18.9) | 11 | (29.7) | 0.603 | 11 | (29.7) | 7 | (18.9) | 0.842 |
BCRP high | 9 | (24.3) | 10 | (27.0) | 11 | (29.7) | 8 | (21.6) | |||
Primary tumor + | BCRP low | 8 | (21.6) | 10 | (27.0) | 0.886 | 13 | (35.1) | 5 | (13.5) | 0.124 |
Lymph node metastasis | BCRP high | 8 | (21.6) | 11 | (29.7) | 9 | (24.3) | 10 | (27.0) |
n | BCRP-PID Score (Mean ± S.E.) | 95% CI | p-Value * | ||
---|---|---|---|---|---|
CNB (n = 28) | No Recurrence | 12 | 14.3 ± 1.2 | 11.9–16.6 | 0.30 |
Recurrence | 16 | 15.9 ± 1.0 | 13.8–17.9 | ||
PT (n = 37) | No recurrence | 16 | 13.7 ± 1.8 | 1.8–10.1 | 0.61 |
Recurrence | 21 | 14.9 ± 1.5 | 1.5–11.8 | ||
LN (n = 37) | No recurrence | 16 | 10.3 ± 1.2 | 7.8–12.8 | 0.61 |
Recurrence | 21 | 11.1 ± 1.1 | 9.0–13.3 | ||
PT + LN (n = 37) | No recurrence | 16 | 24.0 ± 2.0 | 19.9–28.1 | 0.45 |
Recurrence | 21 | 26.0 ± 1.8 | 22.5–29.6 | ||
CNB (n = 28) | Survival | 18 | 14.2 ± 0.9 | 12.3–16.0 | 0.07 |
Death | 10 | 17.0 ± 1.2 | 14.5–19.5 | ||
PT (n = 37) | Survival | 22 | 13.4 ± 1.5 | 10.4–16.5 | 0.32 |
Death | 15 | 15.8 ± 1.8 | 12.1–19.4 | ||
LN (n = 37) | Survival | 22 | 10.3 ± 1.0 | 8.2–12.4 | 0.45 |
Death | 15 | 11.5 ± 1.2 | 9.0–14.1 | ||
PT + LN (n = 37) | Survival | 22 | 23.7 ± 1.7 | 20.3–27.1 | 0.19 |
Death | 15 | 27.3 ± 2.1 | 23.1–31.5 |
Univariate | Multivariate | |||||
---|---|---|---|---|---|---|
Hazard Ratio | 95% CI | p-Value | Hazard Ratio | 95% CI | p-Value | |
Histological grade (PT) | ||||||
3/1–2 | 2.90 | 0.98–8.54 | 0.05 | 2.20 | 0.51–7.25 | 0.19 |
Ki67 (PT) | ||||||
≥20/<20 | 5.19 | 1.82–14.80 | 0.002 | 3.21 | 0.93–11.01 | 0.06 |
Lymph node metastasis | ||||||
pN2 + pN3/pN1 | 1.74 | 0.59–5.14 | 0.32 | |||
pStage | ||||||
3/2 | 1.74 | 0.58–5.22 | 0.32 | |||
Pathological response | ||||||
1/2 | 0.70 | 0.22–2.22 | 0.55 | |||
BCRP (PT + LN, by cut-off) | ||||||
High/low | 3.78 | 1.32–10.80 | 0.03 | 2.67 | 0.81–8.79 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tada, H.; Gonda, K.; Kitamura, N.; Ishida, T. Clinical Significance of ABCG2/BCRP Quantified by Fluorescent Nanoparticles in Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy. Cancers 2023, 15, 2365. https://doi.org/10.3390/cancers15082365
Tada H, Gonda K, Kitamura N, Ishida T. Clinical Significance of ABCG2/BCRP Quantified by Fluorescent Nanoparticles in Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy. Cancers. 2023; 15(8):2365. https://doi.org/10.3390/cancers15082365
Chicago/Turabian StyleTada, Hiroshi, Kohsuke Gonda, Narufumi Kitamura, and Takanori Ishida. 2023. "Clinical Significance of ABCG2/BCRP Quantified by Fluorescent Nanoparticles in Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy" Cancers 15, no. 8: 2365. https://doi.org/10.3390/cancers15082365
APA StyleTada, H., Gonda, K., Kitamura, N., & Ishida, T. (2023). Clinical Significance of ABCG2/BCRP Quantified by Fluorescent Nanoparticles in Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy. Cancers, 15(8), 2365. https://doi.org/10.3390/cancers15082365