Interaction between Human Papillomavirus-Encoded E6 Protein and AurB Induces Cell Immortalization and Proliferation—A Potential Target of Intervention
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plasmids
2.2. Cell Lines
2.3. Immunoprecipitation Assay
2.4. Downregulation of HPV Oncoproteins Using siRNA
2.5. Fusion Protein Purification and In Vitro Binding Assays
2.6. Immunofluorescence Assay
2.7. ADP-GloTM AurB Kinase Assay
2.8. Telomeric Repeat Amplification Protocol (TRAP) Assay
2.9. Quantitative Polymerase Chain Reaction (qPCR)
2.10. Western Blotting
2.11. Cell Proliferation Assay
2.12. Organotypic Raft Culture
2.13. In Vivo Xenograft Model
2.14. Statistical Analysis
3. Results
3.1. AurB Activity Was Increased in HPV-Positive Cells
3.2. The Level of AurB Protein Correlated Positively with HPVE6
- (i)
- Overexpression of HPV oncoproteins in HPV-null cells
- (ii)
- Depletion of HPV oncoproteins in HPV-positive cells
3.3. AurB Interacted Directly with HPVE6 at the C-Terminus of HPVE6, Independent of E6-PBM
- (i)
- AurB co-immunoprecipitated with HPVE6 but not HPVE7.
- (ii)
- E6-encoded by HPV16 and 18 bound directly to AurB.
- (iii)
- AurB bound to E6 at the C-terminus of E6, independent of E6-PBM.
3.4. HPVE6 Formed a Complex with AurB in the Nucleus
3.5. E6 Inhibited AurB Kinase Activity
3.6. E6 Did Not Perturb the Function of AurB in Regulating hTERT Protein
3.7. The Association of AurB and E6 Led to Increased Telomerase Activity
3.8. Inhibition of Aurora Kinase B Reduced Telomerase Activity
- Phosphor- and total AurB proteins
- b.
- HPV16E7 protein
- c.
- p53 protein
- d.
- Apoptosis activation
3.9. Treatment with AZD1152 Suppressed the Cell Proliferation and Tumour Formation in an HPV-Independent Manner
- (i)
- Three-dimensional organotypic raft culture
- (ii)
- HPV-athymic nude mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FeFerlay, J.; Steliarova-Foucher, E.; Lortet-Tieulent, J.; Rosso, S.; Coebergh, J.W.W.; Comber, H.; Forman, D.; Bray, F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur. J. Cancer 2013, 49, 1374–1403. [Google Scholar] [CrossRef] [PubMed]
- Hausen, H. Papillomavirus infections–A major cause of human cancers. Biochim. Biophys. Acta 1996, 1288, F55–F78. [Google Scholar] [CrossRef] [PubMed]
- Stein, A.P.; Saha, S.; Kraninger, J.L.; Swick, A.D.; Yu, M.; Lambertg, P.F.; Kimple, R. Prevalence of human papillomavirus in oropharyngeal cancer: A systematic review. Cancer J. 2015, 21, 138–146. [Google Scholar] [CrossRef]
- Viens, L.J.; Henley, S.J.; Watson, M.; Markowitz, L.E.; Thomas, C.C.; DThompson, T.; Saraiya, M. Human papillomavirus–associated cancers—United States, 2008–2012. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Doorbar, J.; Quint, W.; Banks, L.; Bravo, I.G.; Stoler, M.; Broker, T.R.; Stanley, M.A. The biology and life-cycle of human papillomaviruses. Vaccine 2012, 30 (Suppl. 5), F55–F70. [Google Scholar] [CrossRef]
- McBride, A.A.; Warburton, A. The role of integration in oncogenic progression of HPV-associated cancers. PLoS Pathog. 2017, 13, e1006211. [Google Scholar] [CrossRef]
- Werness, B.A.; Levine, A.J.; Howley, P.M. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 1990, 248, 76–79. [Google Scholar] [CrossRef]
- Scheffner, M.; Munger, K.; Byrne, J.C.; Howley, P.M. The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc. Natl. Acad. Sci. USA 1991, 88, 5523–5527. [Google Scholar] [CrossRef]
- Thomas, M.; Banks, L. Human papillomavirus (HPV) E6 interactions with Bak are conserved amongst E6 proteins from high and low risk HPV types. J. Gen. Virol. 1999, 80, 1513–1517. [Google Scholar] [CrossRef]
- Lee, S.S.; Weiss, R.S.; Javier, R.T. Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. Proc. Natl. Acad. Sci. USA 1997, 94, 6670–6675. [Google Scholar] [CrossRef]
- Kranjec, C.; Banks, L. A systematic analysis of human papillomavirus (HPV) E6 PDZ substrates identifies MAGI-1 as a major target of HPV type 16 (HPV-16) and HPV-18 whose loss accompanies disruption of tight junctions. J. Virol. 2011, 85, 1757–1764. [Google Scholar] [CrossRef]
- Gonzalez, S.L.; Stremlau, M.; He, X.; Basile, J.R.; Munger, K. Degradation of the retinoblastoma tumor suppressor by the human papillomavirus type 16 E7 oncoprotein is important for functional inactivation and is separable from proteasomal degradation of E7. J. Virol. 2001, 75, 7583–7591. [Google Scholar] [CrossRef] [PubMed]
- Helt, A.M.; Galloway, D.A. Destabilization of the retinoblastoma tumor suppressor by human papillomavirus type 16 E7 is not sufficient to overcome cell cycle arrest in human keratinocytes. J. Virol. 2001, 75, 6737–6747. [Google Scholar] [CrossRef] [PubMed]
- Dyson, N.; Guida, P.; Münger, K.; Harlow, E. Homologous sequences in adenovirus E1A and human papillomavirus E7 proteins mediate interaction with the same set of cellular proteins. J. Virol. 1992, 66, 6893–6902. [Google Scholar] [CrossRef] [PubMed]
- DeGregori, J.; Kowalik, T.; Nevins, J.R. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Mol. Cell. Biol. 1995, 15, 4215–4224. [Google Scholar] [CrossRef]
- Martin, L.G.; Demers, G.W.; Galloway, D.A. Disruption of the G1/S transition in human papillomavirus type 16 E7-expressing human cells is associated with altered regulation of cyclin E. J. Virol. 1998, 72, 975–985. [Google Scholar] [CrossRef]
- Moody, C.A.; Laimins, L.A. Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLoS Pathog. 2009, 5, e1000605. [Google Scholar] [CrossRef]
- Duensing, S.; Münger, K. The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res. 2002, 62, 7075–7082. [Google Scholar]
- Melsheimer, P.; Vinokurova, S.; Wentzensen, N.; Bastert, G.; Doeberitz, M.V.K. DNA aneuploidy and integration of human papillomavirus type 16 E6/E7 oncogenes in intraepithelial neoplasia and invasive squamous cell carcinoma of the cervix uteri. Clin. Cancer Res. 2004, 10, 3059–3063. [Google Scholar] [CrossRef]
- Kimura, M.; Kotani, S.; Hattori, T.; Sumi, N.; Yoshioka, T.; Todokoro, K.; Okano, Y. Cell cycle-dependent expression and spindle pole localization of a novel human protein kinase, Aik, related to Aurora of Drosophila and yeast Ipl1. J. Biol. Chem. 1997, 272, 13766–13771. [Google Scholar] [CrossRef]
- Twu, N.F.; Yuan, C.C.; Yen, M.S.; Lai, C.R.; Chao, K.C.; Wang, P.H.; Wu, H.H.; Chen, Y.R. Expression of Aurora kinase A and B in normal and malignant cervical tissue: High Aurora A kinase expression in squamous cervical cancer. Eur. J. Obstet. Gynecol. Reprod. Biol. 2009, 142, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Gabrielli, B.; Bokhari, F.; Ranall, M.V.; Oo, Z.Y.; Stevenson, A.J.; Wang, W.; Murrell, M.; Shaikh, M.; Fallaha, S.; Clarke, D.; et al. Aurora A Is Critical for Survival in HPV-Transformed Cervical Cancer. Mol. Cancer Ther. 2015, 14, 2753–2761. [Google Scholar] [CrossRef] [PubMed]
- Dutertre, S.; Prigent, C. Aurora-A overexpression leads to override of the microtubule-kinetochore attachment checkpoint. Mol. Interv. 2003, 3, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Marampon, F.; Gravina, G.L.; Popov, V.M.; Scarsella, L.; Festuccia, C.; Verghetta, M.E.; Parente, S.; Cerasani, M.; Bruera, G.; Ficorella, C.; et al. Close correlation between MEK/ERK and Aurora-B signaling pathways in sustaining tumorigenic potential and radioresistance of gynecological cancer cell lines. Int. J. Oncol. 2014, 44, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Furuya, M.; Tsuji, N.; Kobayashi, D.; Watanabe, N. Interaction between survivin and aurora-B kinase plays an important role in survivin-mediated up-regulation of human telomerase reverse transcriptase expression. Int. J. Oncol. 2009, 34, 1061–1068. [Google Scholar]
- Mallm, J.P.; Rippe, K. Aurora Kinase B regulates telomerase activity via a centromeric RNA in stem cells. Cell Rep. 2015, 11, 1667–1678. [Google Scholar] [CrossRef]
- Guo, Y.; Ma, J.; Zheng, Y.; Li, L.; Gui, X.; Wang, Q.; Meng, X.; Shang, H. HPV16 E6 upregulates Aurora A expression. Oncol. Lett. 2016, 12, 1387–1393. [Google Scholar] [CrossRef]
- Li, S.; Yim, M.K.; Yip, K.L.; Xiao, C.; Luk, H.Y.; Xiao, S.; Chen, Z.; Chan, P.K.S.; Boon, S.S. E6-Encoded by Cancer-Causing Human Papillomavirus Interacts with Aurora Kinase A To Promote HPV-Mediated Carcinogenesis. J. Virol. 2023, 97, e0187222. [Google Scholar] [CrossRef]
- Ehrenberger, T.; Cantley, L.C.; Yaffe, M.B. Computational prediction of protein-protein interactions. Methods Mol. Biol. 2015, 1278, 57–75. [Google Scholar]
- Boon, S.S.; Chen, Z.; Li, J.; Lee, K.Y.; Cai, L.; Zhong, R.; Chan, P.K. Human papillomavirus type 18 oncoproteins exert their oncogenicity in esophageal and tongue squamous cell carcinoma cell lines distinctly. BMC Cancer 2019, 19, 1211. [Google Scholar]
- Bordigoni, A.; Motte, A.; Tissot-Dupont, H.; Colson, P.; Desnues, C. Development and validation of a multiplex qPCR assay for detection and relative quantification of HPV16 and HPV18 E6 and E7 oncogenes. Sci. Rep. 2021, 11, 4039. [Google Scholar] [CrossRef] [PubMed]
- Failes, T.W.; Mitic, G.; Abdel-Halim, H.; Po’Uha, S.T.; Liu, M.; Hibbs, D.E.; Kavallaris, M. Evolution of Resistance to Aurora Kinase B Inhibitors in Leukaemia Cells. PLoS ONE 2012, 7, e30734. [Google Scholar] [CrossRef] [PubMed]
- Wolf, I.; O’Kelly, J.; Rubinek, T.; Tong, M.; Nguyen, A.; Lin, B.T.; Tai, H.-H.; Karlan, B.Y.; Koeffler, H.P. 15-Hydroxyprostaglandin dehydrogenase is a tumor suppressor of human breast cancer. Cancer Res. 2006, 66, 7818–7823. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Feng, H.; Huang, X.Q.; Xiang, H.; Mao, Y.W.; Liu, J.P.; Yan, Q.; Liu, W.B.; Liu, Y.; Deng, M.; et al. Human telomerase reverse transcriptase immortalizes bovine lens epithelial cells and suppresses differentiation through regulation of the ERK signaling pathway. J. Biol. Chem. 2005, 280, 22776–22787. [Google Scholar] [CrossRef] [PubMed]
- Aasen, T.; Hodgins, M.B.; Edward, M.; Graham, S.V. The relationship between connexins, gap junctions, tissue architecture and tumour invasion, as studied in a novel in vitro model of HPV-16-associated cervical cancer progression. Oncogene 2003, 2239, 7969–7980. [Google Scholar] [CrossRef]
- Boon, S.S.; Xia, C.; Lim, J.Y.; Chen, Z.; Law, P.T.; Yeung, A.C.; Chan, P.K. Human papillomavirus 58 E7 T20I/G63S variant isolated from an East Asian population possesses high oncogenicity. J. Virol. 2020, 94, e00090-20. [Google Scholar] [CrossRef]
- Erpolat, O.; Gocun, P.; Akmansu, M.; Karakus, E.; Akyol, G. High expression of nuclear survivin and Aurora B predicts poor overall survival in patients with head and neck squamous cell cancer. Strahlenther. Onkol. 2012, 188, 248–254. [Google Scholar] [CrossRef]
- Spriggs, C.C.; Laimins, L.A. Human papillomavirus and the DNA damage response: Exploiting host repair pathways for viral replication. Viruses 2017, 9, 232. [Google Scholar] [CrossRef]
- Zachos, G.; Black, E.J.; Walker, M.; Scott, M.T.; Vagnarelli, P.; Earnshaw, W.C.; Gillespie, D.A. Chk1 Is Required for Spindle Checkpoint Function. Dev. Cell 2007, 12, 247–260. [Google Scholar] [CrossRef]
- Petsalaki, E.; Akoumianaki, T.; Black, E.J.; Gillespie, D.; Zachos, G. Phosphorylation at serine 331 is required for Aurora B activation. J. Cell Biol. 2011, 195, 449–466. [Google Scholar] [CrossRef]
- Gully, C.P.; Velazquez-Torres, G.; Shin, J.H.; Fuentes-Mattei, E.; Wang, E.; Carlock, C.; Chen, J.; Rothenberg, D.; Adams, H.P.; Choi, H.H.; et al. Aurora B kinase phosphorylates and instigates degradation of p53. Proc. Natl. Acad. Sci. USA 2012, 109, E1513–E1522. [Google Scholar] [CrossRef] [PubMed]
- González-Loyola, A.; Fernández-Miranda, G.; Trakala, M.; Partida, D.; Samejima, K.; Ogawa, H.; Cañamero, M.; de Martino, A.; Martínez-Ramírez; de Cárcer, G.; et al. Aurora B Overexpression Causes Aneuploidy and p21Cip1 Repression during Tumor Development. Mol. Cell. Biol. 2015, 35, 3566–3578. [Google Scholar] [CrossRef] [PubMed]
- Thatte, J.; Massimi, P.; Thomas, M.; Boon, S.S.; Banks, L. The Human Papillomavirus E6 PDZ Binding Motif Links DNA Damage Response Signaling to E6 Inhibition of p53 Transcriptional Activity. J. Virol. 2018, 92, e00465-18. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cheng, H.S.; Chng, W.J.; Tergaonkar, V. Activation of mutant TERT promoter by RAS-ERK signaling is a key step in malignant progression of BRAF-mutant human melanomas. Proc. Natl. Acad. Sci. USA 2016, 113, 14402–14407. [Google Scholar] [CrossRef] [PubMed]
- Bonet, C.; Giuliano, S.; Ohanna, M.; Bille, K.; Allegra, M.; Lacour, J.P.; Bertolotto, C. Aurora B is regulated by the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway and is a valuable potential target in melanoma cells. J. Biol. Chem. 2012, 287, 29887–29898. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, O.; Veeraraghavalu, K.; Tergaonkar, V.; Liu, Y.; Androphy, E.; Stanley, M.A.; Krishna, S. Human papillomavirus type 16 E6 amino acid 83 variants enhance E6-mediated MAPK signaling and differentially regulate tumorigenesis by notch signaling and oncogenic Ras. J. Virol. 2004, 78, 5934–5945. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boon, S.S.; Lee, Y.C.; Yip, K.L.; Luk, H.Y.; Xiao, C.; Yim, M.K.; Chen, Z.; Chan, P.K.S. Interaction between Human Papillomavirus-Encoded E6 Protein and AurB Induces Cell Immortalization and Proliferation—A Potential Target of Intervention. Cancers 2023, 15, 2465. https://doi.org/10.3390/cancers15092465
Boon SS, Lee YC, Yip KL, Luk HY, Xiao C, Yim MK, Chen Z, Chan PKS. Interaction between Human Papillomavirus-Encoded E6 Protein and AurB Induces Cell Immortalization and Proliferation—A Potential Target of Intervention. Cancers. 2023; 15(9):2465. https://doi.org/10.3390/cancers15092465
Chicago/Turabian StyleBoon, Siaw Shi, Yin Ching Lee, Ka Lai Yip, Ho Yin Luk, Chuanyun Xiao, Man Kin Yim, Zigui Chen, and Paul Kay Sheung Chan. 2023. "Interaction between Human Papillomavirus-Encoded E6 Protein and AurB Induces Cell Immortalization and Proliferation—A Potential Target of Intervention" Cancers 15, no. 9: 2465. https://doi.org/10.3390/cancers15092465
APA StyleBoon, S. S., Lee, Y. C., Yip, K. L., Luk, H. Y., Xiao, C., Yim, M. K., Chen, Z., & Chan, P. K. S. (2023). Interaction between Human Papillomavirus-Encoded E6 Protein and AurB Induces Cell Immortalization and Proliferation—A Potential Target of Intervention. Cancers, 15(9), 2465. https://doi.org/10.3390/cancers15092465