Therapies beyond Physiological Barriers and Drug Resistance: A Pilot Study and Review of the Literature Investigating If Intrathecal Trastuzumab and New Treatment Options Can Improve Oncologic Outcomes in Leptomeningeal Metastases from HER2-Positive Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Patient Characteristics
3.2. Surgical Treatment
3.3. Radiotherapy
3.4. Intrathecal Treatment
3.5. Systemic Treatment
3.6. Oncological Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grossman, S.A.; Krabak, M.J. Leptomeningeal Carcinomatosis. Cancer Treat. Rev. 1999, 25, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Kesari, S.; Batchelor, T.T. Leptomeningeal Metastases. Neurol. Clin. 2003, 21, 25–66. [Google Scholar] [CrossRef] [PubMed]
- Garg, R.; Jandial, K.; Chen, M. GM-CSF–An Oncogenic Driver of HER2+ Breast Leptomeningeal Metastasis. Oncoscience 2022, 9, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer Statistics for the Year 2020: An Overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef]
- Wang, T.; Chen, J.; Yang, J.; Fu, M.; Hua, W.; Jia, W.; Liu, Y.; Wang, B.; Yan, M.; Zhou, J.; et al. CSCO Expert Consensus on the Diagnosis and Treatment of Breast Cancer Brain Metastasis. Transl. Breast Cancer Res. 2022, 3, 1–18. [Google Scholar] [CrossRef]
- Lamba, N.; Cagney, D.N.; Catalano, P.J.; Elhalawani, H.; Haas-Kogan, D.A.; Wen, P.Y.; Wagle, N.; Lin, N.U.; Aizer, A.A.; Tanguturi, S. Incidence Proportion and Prognosis of Leptomeningeal Disease among Patients with Breast versus Non-Breast Primaries. Neuro-Oncology 2022, 11, noac249. [Google Scholar] [CrossRef]
- Le Rhun, E.; Weller, M.; Brandsma, D.; Van den Bent, M.; de Azambuja, E.; Henriksson, R.; Boulanger, T.; Peters, S.; Watts, C.; Wick, W.; et al. EANO-ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up of Patients with Leptomeningeal Metastasis from Solid Tumours. Ann. Oncol. 2017, 28, iv84–iv99. [Google Scholar] [CrossRef]
- Chamberlain, M.; Junck, L.; Brandsma, D.; Soffietti, R.; Rudà, R.; Raizer, J.; Boogerd, W.; Taillibert, S.; Groves, M.D.; Le Rhun, E.; et al. Leptomeningeal Metastases: A RANO Proposal for Response Criteria. Neuro-Oncology 2017, 19, 484–492. [Google Scholar] [CrossRef]
- Jeyapalan, S.A.; Batchelor, T.T. Diagnostic Evaluation of Neurologic Metastases. Cancer Investig. 2000, 18, 381–394. [Google Scholar] [CrossRef]
- Glass, J.P.; Wertlake, P.T. Malignant Cells in Cerebrospinal Fluid and Their Clinical Significance. In Neurobiology of Cerebrospinal Fluid 2; Wood, J.H., Ed.; Springer: Boston, MA, USA, 1983; pp. 411–425. ISBN 978-1-4615-9269-3. [Google Scholar]
- Le Rhun, E.; Devos, P.; Weller, J.; Seystahl, K.; Mo, F.; Compter, A.; Berghoff, A.S.; Jongen, J.L.M.; Wolpert, F.; Rudà, R.; et al. Prognostic Validation and Clinical Implications of the EANO ESMO Classification of Leptomeningeal Metastasis from Solid Tumors. Neuro-Oncology 2020, 23, 1100–1112. [Google Scholar] [CrossRef]
- Le Rhun, E.; Preusser, M.; van den Bent, M.; Andratschke, N.; Weller, M. How We Treat Patients with Leptomeningeal Metastases. ESMO Open 2019, 4, e000507. [Google Scholar] [CrossRef]
- Aapro, M.S.; Chrápavá, M.; Curca, R.-O.D.; Gales, L.; Grigorescu, A.C.; Karlínová, B.; Kellnerová, R.; Petru, E.; Pluzanski, A.; Rubach, M.; et al. Assessing the Impact of Antiemetic Guideline Compliance on Prevention of Chemotherapy-Induced Nausea and Vomiting (CINV): Results of the Nausea/Emesis Registry in Oncology (NERO). JCO 2020, 38, 12083. [Google Scholar] [CrossRef]
- Lavaud, P.; Andre, F. Strategies to Overcome Trastuzumab Resistance in HER2-Overexpressing Breast Cancers: Focus on New Data from Clinical Trials. BMC Med. 2014, 12, 132. [Google Scholar] [CrossRef]
- Musolino, A.; Naldi, N.; Bortesi, B.; Pezzuolo, D.; Capelletti, M.; Missale, G.; Laccabue, D.; Zerbini, A.; Camisa, R.; Bisagni, G.; et al. Immunoglobulin G Fragment C Receptor Polymorphisms and Clinical Efficacy of Trastuzumab-Based Therapy in Patients With HER-2/Neu–Positive Metastatic Breast Cancer. JCO 2008, 26, 1789–1796. [Google Scholar] [CrossRef] [PubMed]
- Yakes, F.M.; Chinratanalab, W.; Ritter, C.A.; King, W.; Seelig, S.; Arteaga, C.L. Herceptin-Induced Inhibition of Phosphatidylinositol-3 Kinase and Akt Is Required for Antibody-Mediated Effects on P27, Cyclin D1, and Antitumor Action. Cancer Res. 2002, 62, 4132–4141. [Google Scholar] [PubMed]
- Lu, Y.; Zi, X.; Zhao, Y.; Pollak, M. Overexpression of ErbB2 Receptor Inhibits IGF-I-Induced Shc–MAPK Signaling Pathway in Breast Cancer Cells. Biochem. Biophys. Res. Commun. 2004, 313, 709–715. [Google Scholar] [CrossRef]
- Dubská, L.; Anděra, L.; Sheard, M.A. HER2 Signaling Downregulation by Trastuzumab and Suppression of the PI3K/Akt Pathway: An Unexpected Effect on TRAIL-Induced Apoptosis. FEBS Lett. 2005, 579, 4149–4158. [Google Scholar] [CrossRef]
- Pardridge, W.M. The Blood-Brain Barrier: Bottleneck in Brain Drug Development. NeuroRx 2005, 2, 3–14. [Google Scholar] [CrossRef]
- Selis, F.; Focà, G.; Sandomenico, A.; Marra, C.; Di Mauro, C.; Saccani Jotti, G.; Scaramuzza, S.; Politano, A.; Sanna, R.; Ruvo, M.; et al. Pegylated Trastuzumab Fragments Acquire an Increased in Vivo Stability but Show a Largely Reduced Affinity for the Target Antigen. Int. J. Mol. Sci. 2016, 17, 491. [Google Scholar] [CrossRef]
- Garrett, J.T.; Arteaga, C.L. Resistance to HER2-Directed Antibodies and Tyrosine Kinase Inhibitors: Mechanisms and Clinical Implications. Cancer Biol. Ther. 2011, 11, 793–800. [Google Scholar] [CrossRef]
- Molina, M.A.; Sáez, R.; Ramsey, E.E.; Garcia-Barchino, M.-J.; Rojo, F.; Evans, A.J.; Albanell, J.; Keenan, E.J.; Lluch, A.; García-Conde, J.; et al. NH(2)-Terminal Truncated HER-2 Protein but Not Full-Length Receptor Is Associated with Nodal Metastasis in Human Breast Cancer. Clin Cancer Res. 2002, 8, 347–353. [Google Scholar] [PubMed]
- Parra-Palau, J.L.; Morancho, B.; Peg, V.; Escorihuela, M.; Scaltriti, M.; Vicario, R.; Zacarias-Fluck, M.; Pedersen, K.; Pandiella, A.; Nuciforo, P.; et al. Effect of P95HER2/611CTF on the Response to Trastuzumab and Chemotherapy. JNCI J. Natl. Cancer Inst. 2014, 106, dju291. [Google Scholar] [CrossRef] [PubMed]
- Soria, J.-C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; et al. Osimertinib in Untreated EGFR-Mutated Advanced Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; De Angelis, C.; Burke, K.A.; Nardone, A.; Hu, H.; Qin, L.; Veeraraghavan, J.; Sethunath, V.; Heiser, L.M.; Wang, N.; et al. HER2 Reactivation through Acquisition of the HER2 L755S Mutation as a Mechanism of Acquired Resistance to HER2-Targeted Therapy in HER2+ Breast Cancer. Clin. Cancer Res. 2017, 23, 5123–5134. [Google Scholar] [CrossRef] [PubMed]
- Veeraraghavan, J.; Mistry, R.; Nanda, S.; Sethunath, V.; Shea, M.; Mitchell, T.; Anurag, M.; Mancini, M.A.; Stossi, F.; Osborne, C.K.; et al. Abstract 1911: HER2 L755S Mutation Is Associated with Acquired Resistance to Lapatinib and Neratinib, and Confers Cross-Resistance to Tucatinib in HER2-Positive Breast Cancer Models. Cancer Res. 2020, 80, 1911. [Google Scholar] [CrossRef]
- Jhaveri, K.; Saura, C.; Guerrero-Zotano, A.; Spanggaard, I.; Bidard, F.-C.; Goldman, J.W.; García-Sáenz, J.A.; Cervantes, A.; Boni, V.; Crown, J.; et al. Abstract PD1-05: Latest Findings from the Breast Cancer Cohort in SUMMIT–A Phase 2 ‘Basket’ Trial of Neratinib + Trastuzumab + Fulvestrant for HER2-Mutant, Hormone Receptor-Positive, Metastatic Breast Cancer. Cancer Res. 2021, 81, PD1-05. [Google Scholar] [CrossRef]
- Filho, O.M.; Viale, G.; Stein, S.; Trippa, L.; Yardley, D.A.; Mayer, I.A.; Abramson, V.G.; Arteaga, C.L.; Spring, L.M.; Waks, A.G.; et al. Impact of HER2 Heterogeneity on Treatment Response of Early-Stage HER2-Positive Breast Cancer: Phase II Neoadjuvant Clinical Trial of T-DM1 Combined with Pertuzumab. Cancer Discov. 2021, 11, 2474–2487. [Google Scholar] [CrossRef]
- Marine, J.-C.; Dawson, S.-J.; Dawson, M.A. Non-Genetic Mechanisms of Therapeutic Resistance in Cancer. Nat. Rev. Cancer 2020, 20, 743–756. [Google Scholar] [CrossRef]
- Schlam, I.; Tarantino, P.; Tolaney, S.M. Overcoming Resistance to HER2-Directed Therapies in Breast Cancer. Cancers 2022, 14, 3996. [Google Scholar] [CrossRef]
- Loganzo, F.; Tan, X.; Sung, M.; Jin, G.; Myers, J.S.; Melamud, E.; Wang, F.; Diesl, V.; Follettie, M.T.; Musto, S.; et al. Tumor Cells Chronically Treated with a Trastuzumab–Maytansinoid Antibody–Drug Conjugate Develop Varied Resistance Mechanisms but Respond to Alternate Treatments. Mol. Cancer Ther. 2015, 14, 952–963. [Google Scholar] [CrossRef]
- Li, G.; Guo, J.; Shen, B.-Q.; Yadav, D.B.; Sliwkowski, M.X.; Crocker, L.M.; Lacap, J.A.; Phillips, G.D.L. Mechanisms of Acquired Resistance to Trastuzumab Emtansine in Breast Cancer Cells. Mol. Cancer Ther. 2018, 17, 1441–1453. [Google Scholar] [CrossRef]
- Mills, M.N.; King, W.; Soyano, A.; Pina, Y.; Czerniecki, B.J.; Forsyth, P.A.; Soliman, H.; Han, H.S.; Ahmed, K.A. Evolving Management of HER2+ Breast Cancer Brain Metastases and Leptomeningeal Disease. J. Neurooncol. 2022, 157, 249–269. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, J.A.; Li, M.J.; Boire, A.A. Leptomeningeal Metastases: New Opportunities in the Modern Era. Neurotherapeutics 2022, 19, 1782–1798. [Google Scholar] [CrossRef]
- Bendell, J.C.; Domchek, S.M.; Burstein, H.J.; Harris, L.; Younger, J.; Kuter, I.; Bunnell, C.; Rue, M.; Gelman, R.; Winer, E. Central Nervous System Metastases in Women Who Receive Trastuzumab-Based Therapy for Metastatic Breast Carcinoma. Cancer 2003, 97, 2972–2977. [Google Scholar] [CrossRef]
- García, F.J.V.; Carrión, N.P.; de la Cruz-Merino, L. Long-Term Complete Response to Intrathecal Trastuzumab in a Patient with Leptomeningeal Carcinomatosis Due to Her2- Overexpressing Breast Cancer: Case Report. Medicine 2020, 99, e18298. [Google Scholar] [CrossRef] [PubMed]
- Nayar, G.; Ejikeme, T.; Chongsathidkiet, P.; Elsamadicy, A.A.; Blackwell, K.L.; Clarke, J.M.; Lad, S.P.; Fecci, P.E. Leptomeningeal Disease: Current Diagnostic and Therapeutic Strategies. Oncotarget 2017, 8, 73312–73328. [Google Scholar] [CrossRef] [PubMed]
- Le Rhun, E.; Wallet, J.; Mailliez, A.; Le Deley, M.C.; Rodrigues, I.; Boulanger, T.; Lorgis, V.; Barrière, J.; Robin, Y.M.; Weller, M.; et al. Intrathecal Liposomal Cytarabine plus Systemic Therapy versus Systemic Chemotherapy Alone for Newly Diagnosed Leptomeningeal Metastasis from Breast Cancer. Neuro-Oncology 2020, 22, 524–538. [Google Scholar] [CrossRef]
- Zagouri, F.; Zoumpourlis, P.; Le Rhun, E.; Bartsch, R.; Zografos, E.; Apostolidou, K.; Dimopoulos, M.-A.; Preusser, M. Intrathecal Administration of Anti-HER2 Treatment for the Treatment of Meningeal Carcinomatosis in Breast Cancer: A Metanalysis with Meta-Regression. Cancer Treat. Rev. 2020, 88, 102046. [Google Scholar] [CrossRef]
- Ferrario, C.; Davidson, A.; Bouganim, N.; Aloyz, R.; Panasci, L.C. Intrathecal Trastuzumab and Thiotepa for Leptomeningeal Spread of Breast Cancer. Ann. Oncol. 2009, 20, 792–795. [Google Scholar] [CrossRef]
- Mir, O.; Ropert, S.; Alexandre, J.; Lemare, F.; Goldwasser, F. High-Dose Intrathecal Trastuzumab for Leptomeningeal Metastases Secondary to HER-2 Overexpressing Breast Cancer. Ann. Oncol. 2008, 19, 1978–1980. [Google Scholar] [CrossRef]
- Figura, N.B.; Long, W.; Yu, M.; Robinson, T.J.; Mokhtari, S.; Etame, A.B.; Tran, N.D.; Diaz, R.; Soliman, H.; Han, H.S.; et al. Intrathecal Trastuzumab in the Management of HER2+ Breast Leptomeningeal Disease: A Single Institution Experience. Breast Cancer Res. Treat. 2018, 169, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Kumthekar, P.U.; Avram, M.J.; Lassman, A.B.; Lin, N.U.; Lee, E.; Grimm, S.A.; Schwartz, M.; Bell Burdett, K.L.; Lukas, R.V.; Dixit, K.; et al. A Phase I/II Study of Intrathecal Trastuzumab in Human Epidermal Growth Factor Receptor 2-Positive (HER2-Positive) Cancer with Leptomeningeal Metastases: Safety, Efficacy, and Cerebrospinal Fluid Pharmacokinetics. Neuro-Oncology 2022, 25, 557–565. [Google Scholar] [CrossRef] [PubMed]
- H. Lee Moffitt Cancer Center and Research Institute. Phase I/II Study of Radiation Therapy Followed by Intrathecal Trastuzumab/Pertuzumab in the Management of HER2+ Breast Leptomeningeal Disease. 2022. Available online: www.clinicaltrials.gov (accessed on 25 March 2023).
- Bruna, J.; Simó, M.; Velasco, R. Leptomeningeal Metastases. Curr. Treat. Options Neurol. 2012, 14, 402–415. [Google Scholar] [CrossRef] [PubMed]
- Aapro, M.; Cardoso, F.; Curigliano, G.; Eniu, A.; Gligorov, J.; Harbeck, N.; Mueller, A.; Pagani, O.; Paluch-Shimon, S.; Senkus, E.; et al. Current Challenges and Unmet Needs in Treating Patients with Human Epidermal Growth Factor Receptor 2-Positive Advanced Breast Cancer. Breast 2022, 66, 145–156. [Google Scholar] [CrossRef]
- Barok, M.; Tanner, M.; Köninki, K.; Isola, J. Trastuzumab-DM1 Causes Tumour Growth Inhibition by Mitotic Catastrophe in Trastuzumab-Resistant Breast Cancer Cells in Vivo. Breast Cancer Res. 2011, 13, R46. [Google Scholar] [CrossRef]
- Barok, M.; Joensuu, H.; Isola, J. Trastuzumab Emtansine: Mechanisms of Action and Drug Resistance. Breast Cancer Res. 2014, 16, 209. [Google Scholar] [CrossRef]
- Montemurro, F.; Delaloge, S.; Barrios, C.H.; Wuerstlein, R.; Anton, A.; Brain, E.; Hatschek, T.; Kelly, C.M.; Peña-Murillo, C.; Yilmaz, M.; et al. Trastuzumab Emtansine (T-DM1) in Patients with HER2-Positive Metastatic Breast Cancer and Brain Metastases: Exploratory Final Analysis of Cohort 1 from KAMILLA, a Single-Arm Phase IIIb Clinical Trial. Ann. Oncol. 2020, 31, 1350–1358. [Google Scholar] [CrossRef]
- Ricciardi, G.R.R.; Russo, A.; Franchina, T.; Schifano, S.; Mastroeni, G.; Santacaterina, A.; Adamo, V. Efficacy of T-DM1 for Leptomeningeal and Brain Metastases in a HER2 Positive Metastatic Breast Cancer Patient: New Directions for Systemic Therapy–A Case Report and Literature Review. BMC Cancer 2018, 18, 97. [Google Scholar] [CrossRef]
- Bartsch, R.; Berghoff, A.S.; Furtner, J.; Marhold, M.; Bergen, E.S.; Roider-Schur, S.; Starzer, A.M.; Forstner, H.; Rottenmanner, B.; Dieckmann, K.; et al. Trastuzumab Deruxtecan in HER2-Positive Breast Cancer with Brain Metastases: A Single-Arm, Phase 2 Trial. Nat. Med. 2022, 28, 1840–1847. [Google Scholar] [CrossRef]
- MedSIR. Multicenter, Open-Label, Single-Arm, Multicohort Phase II Clinical Trial of Trastuzumab Deruxtecan(DS-8201a) in Human Epidermal Growth Factor Receptor 2 HER2+ Advanced Breast Cancer With Brain Metastases and/or Leptomeningeal Carcinomatosis. 2022. Available online: www.clinicaltrials.gov (accessed on 26 March 2023).
- Pérez-García, J.M.; Vaz Batista, M.; Cortez, P.; Ruiz-Borrego, M.; Cejalvo, J.M.; de la Haba-Rodriguez, J.; Garrigós, L.; Racca, F.; Servitja, S.; Blanch, S.; et al. Trastuzumab Deruxtecan in Patients with Central Nervous System Involvement from HER2-Positive Breast Cancer: The DEBBRAH Trial. Neuro-Oncology 2022, 25, 157–166. [Google Scholar] [CrossRef]
- AstraZeneca. An Open-Label, Multinational, Multicenter, Phase 3b/4 Study of Trastuzumab Deruxtecan in Patients With or Without Baseline Brain Metastasis With Previously Treated Advanced/Metastatic HER2-Positive Breast Cancer (DESTINY-Breast12). 2022. Available online: Clinicaltrials.gov (accessed on 26 March 2023).
- Ekenel, M.; Hormigo, A.M.; Peak, S.; Deangelis, L.M.; Abrey, L.E. Capecitabine Therapy of Central Nervous System Metastases from Breast Cancer. J. Neurooncol. 2007, 85, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Krop, I.E.; Lin, N.U.; Blackwell, K.; Guardino, E.; Huober, J.; Lu, M.; Miles, D.; Samant, M.; Welslau, M.; Diéras, V. Trastuzumab Emtansine (T-DM1) versus Lapatinib plus Capecitabine in Patients with HER2-Positive Metastatic Breast Cancer and Central Nervous System Metastases: A Retrospective, Exploratory Analysis in EMILIA. Ann. Oncol. 2015, 26, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, A.; de Stanchina, E.; Pentsova, E.; Kemeny, M.M.; Li, B.T.; Tang, K.; Patil, S.; Fleisher, M.; Van Poznak, C.; Norton, L.; et al. Phase I Study of Intermittent High-Dose Lapatinib Alternating with Capecitabine for HER2-Positive Breast Cancer Patients with Central Nervous System Metastases. Clin. Cancer Res. 2019, 25, 3784–3792. [Google Scholar] [CrossRef]
- Pellerino, A.; Soffietti, R.; Bruno, F.; Manna, R.; Muscolino, E.; Botta, P.; Palmiero, R.; Rudà, R. Neratinib and Capecitabine for the Treatment of Leptomeningeal Metastases from HER2-Positive Breast Cancer: A Series in the Setting of a Compassionate Program. Cancers 2022, 14, 1192. [Google Scholar] [CrossRef]
- Kulukian, A.; Lee, P.; Taylor, J.; Rosler, R.; de Vries, P.; Watson, D.; Forero-Torres, A.; Peterson, S. Preclinical Activity of HER2-Selective Tyrosine Kinase Inhibitor Tucatinib as a Single Agent or in Combination with Trastuzumab or Docetaxel in Solid Tumor Models. Mol. Cancer Ther. 2020, 19, 976–987. [Google Scholar] [CrossRef]
- Lee, A. Tucatinib: First Approval. Drugs 2020, 80, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Murthy, R.K.; O’Brien, B.; Berry, D.A.; Singareeka-Raghavendra, A.; Monroe, M.G.; Johnson, J.; White, J.; Childress, J.; Sanford, J.; Schwartz-Gomez, J.; et al. Abstract PD4-02: Safety and Efficacy of a Tucatinib-Trastuzumab-Capecitabine Regimen for Treatment of Leptomeningeal Metastasis (LM) in HER2-Positive Breast Cancer: Results from TBCRC049, a Phase 2 Non-Randomized Study. Cancer Res. 2022, 82, PD4-02. [Google Scholar] [CrossRef]
- Curigliano, G.; Mueller, V.; Borges, V.; Hamilton, E.; Hurvitz, S.; Loi, S.; Murthy, R.; Okines, A.; Paplomata, E.; Cameron, D.; et al. Tucatinib versus Placebo Added to Trastuzumab and Capecitabine for Patients with Pretreated HER2+ Metastatic Breast Cancer with and without Brain Metastases (HER2CLIMB): Final Overall Survival Analysis. Ann. Oncol. 2022, 33, 321–329. [Google Scholar] [CrossRef]
- Modi, S.; Saura, C.; Yamashita, T.; Park, Y.H.; Kim, S.-B.; Tamura, K.; Andre, F.; Iwata, H.; Ito, Y.; Tsurutani, J.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Breast Cancer. N. Engl. J. Med. 2020, 382, 610–621. [Google Scholar] [CrossRef]
- Saura, C.; Oliveira, M.; Feng, Y.-H.; Dai, M.-S.; Chen, S.-W.; Hurvitz, S.A.; Kim, S.-B.; Moy, B.; Delaloge, S.; Gradishar, W.; et al. Neratinib Plus Capecitabine Versus Lapatinib Plus Capecitabine in HER2-Positive Metastatic Breast Cancer Previously Treated with ≥ 2 HER2-Directed Regimens: Phase III NALA Trial. J. Clin. Oncol. 2020, 38, 3138–3149. [Google Scholar] [CrossRef]
- Murthy, R.K.; Loi, S.; Okines, A.; Paplomata, E.; Hamilton, E.; Hurvitz, S.A.; Lin, N.U.; Borges, V.; Abramson, V.; Anders, C.; et al. Tucatinib, Trastuzumab, and Capecitabine for HER2-Positive Metastatic Breast Cancer. N. Engl. J. Med. 2020, 382, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.A.; Kim, Y.; DeJesus, M.; Kumthekar, P.; Williams, N.O.; Palmer, J.D.; Giglio, P.; Boire, A.A.; Arrington, J.; Sahebjam, S.; et al. Trial in Progress: Phase I/II Study of Radiation Therapy Followed by Intrathecal Trastuzumab/Pertuzumab in the Management of HER2+ Breast Leptomeningeal Disease. JCO 2021, 39, TPS1099. [Google Scholar] [CrossRef]
- Stringer-Reasor, E.M.; O’Brien, B.J.; Topletz-Erickson, A.; White, J.B.; Lobbous, M.; Riley, K.; Childress, J.; LaMaster, K.; Melisko, M.E.; Morikawa, A.; et al. Pharmacokinetic (PK) Analyses in CSF and Plasma from TBCRC049, an Ongoing Trial to Assess the Safety and Efficacy of the Combination of Tucatinib, Trastuzumab and Capecitabine for the Treatment of Leptomeningeal Metastasis (LM) in HER2 Positive Breast Cancer. JCO 2021, 39, 1044. [Google Scholar] [CrossRef]
- Freedman, R.A.; Gelman, R.S.; Anders, C.K.; Melisko, M.E.; Parsons, H.A.; Cropp, A.M.; Silvestri, K.; Cotter, C.M.; Componeschi, K.P.; Marte, J.M.; et al. TBCRC 022: A Phase II Trial of Neratinib and Capecitabine for Patients With Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer and Brain Metastases. J. Clin. Oncol. 2019, 37, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.D.; Avkshtol, V.; Baschnagel, A.M.; Meyer, K.; Ye, H.; Grills, I.S.; Chen, P.Y.; Maitz, A.; Olson, R.E.; Pieper, D.R.; et al. Surgical Resection of Brain Metastases and the Risk of Leptomeningeal Recurrence in Patients Treated With Stereotactic Radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 537–543. [Google Scholar] [CrossRef]
Pts | Age | KPS | Diagnosis—BM Time (mo.) | Surgery for BM | WBRT for BM | SBRT for BM | Diagnosis–LM Time (mo.) | LM Type | IT Cycles | Craniospinal RT | Systemic Therapy | PFS LM (mo) | OS LM (mo) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 54 | 100 | 13 | Yes | Yes | Yes | 41 | C | 12 | No | Tucatinib-Capecitabine-Trastuzumab | 18 | 19 |
2. | 38 | 100 | No BM | No | No | Yes | 0 | B | 35 | No | Tucatinib-Capecitabine-Trastuzumab | 24 | 24 |
3. | 61 | 60 | 24 | Yes | Yes | No | 24 | C | 4 | Yes | Pertuzumab-Trastuzumab | 4 | 10 |
4. | 58 | 70 | 60 | Yes | Yes | Yes | 60 | C | 9 | Yes | TDM-1 | 6 | 9 |
5. | 67 | 90 | 110 | Yes | Yes | Yes | 110 | A | 9 | Yes | Pertuzumab-Trastuzumab | 15 | 22 |
6. | 47 | 60 | 25 | Yes | No | Yes | 25 | C | 12 | No | Lapatinib-Capecitabine | 4 | 6 |
7. | 48 | 90 | 48 | Yes | Yes | No | 48 | C | 4 | No | TDM-1 | 3 | 6 |
8. | 49 | 80 | 22 | No | Yes | No | 22 | A | 0 | No | Lapatinib-Capecitabine | 8 | 6 |
9. | 43 | 70 | 122 | No | Yes | No | 120 | C | 0 | Yes | Lapatinib-Capecitabine | 13 | 20 |
10. | 54 | 70 | 40 | No | Yes | No | 48 | A | 0 | No | Lapatinib-Capecitabine | 4 | 5 |
11. | 72 | 70 | 12 | No | Yes | No | 12 | B | 0 | No | Pertuzumab-Trastuzumab | 6 | 8 |
12. | 62 | 80 | 12 | No | Yes | Yes | 12 | C | 0 | No | TDM-1 | 6 | 9 |
13. | 45 | 70 | 30 | No | No | Yes | 40 | C | 0 | No | Lapatinib-Capecitabine | 5 | 6 |
14. | 59 | 90 | 37 | No | Yes | No | 49 | A | 0 | No | TDM-1 | 4 | 7 |
Characteristics | Intrathecal Group | Control Group |
---|---|---|
No of patients | 7 (100%) | 7 (100%) |
Median age at LM | 54 | 52 |
KPS at diagnostic (median) | 90 | 70 |
KPS 60 (%) | 2 (28.6%) | 0 |
KPS 70 (%) | 1 (14.3%) | 4 (57.1%) |
KPS 80 (%) | 0 | 2 (28.6%) |
KPS 90 (%) | 2 (28.6%) | 1 (14.3%) |
KPS 100 (%) | 2 (28.6%) | 0 |
Mean no of IT cycles | 12.14 ± 4.00 | 0 |
Median time from BC diagnostic cu BM (mo.) | 44 | 40 |
Median time from BC diagnostic to LM (mo.) | 32 | 30 |
Brain metastasis (%) | 6 (85.7%) | 7 (100%) |
Previous surgery for BM (%) | 3 (42.8%) | 1 (14.3%) |
Previous WBRT (%) | 5 (71.4%) | 6 (85.7%) |
Previous SBRT (%) | 5 (71.4%) | 2 (28.6%) |
Systemic Therapy | ||
Trastuzumab + Pertuzumab + CHT (%) | 2 (28.6%) | 1 (14.3%) |
TDM-1 (%) | 2 (28.6%) | 2 (28.6%) |
Lapatinib + Capecitabine (%) | 1 (14.3%) | 4 (57.1%) |
Tucatinib + Trastuzumab + Capecitabine (%) | 2 (28.6%) | 0 |
CSF+ (%) | 4 (57.1%) | 1 (14.3%) |
MRI type A (linear) (%) | 1 (14.3%) | 3 (42.8%) |
MRI type B (nodular) (%) | 1 (14.3%) | 1 (14.3%) |
MRI Type C (both) (%) | 5 (71.4%) | 3 (42.8%) |
PFS since initial BC diagnostic (months) | 24 | 20 |
OS since initial BC diagnostic (months) | 106 | 30 |
Median PFS since LM (months) | 15 | 6 |
Median OS since LM (months) | 22 | 8 |
Study | No Patients | Treatment | Primary End-Point |
---|---|---|---|
EMILIA [56] | 95 | Trastuzumab emtansine (T-DM1) versus Lapatinib plus Capecitabine | OS (26.8 vs. 12.9 mo) |
KAMILLA (IIIb) [49] | 126 | Trastuzumab emtansine (T-DM1) | RR (21.4%) |
DESTINY-Breast01 [63] | 184 | Trastuzumab deruxtecan (T-DXd) | RR (60.9%) |
NALA [64] | 101 | Neratinib Plus Capecitabine | PFS |
TUXEDO-1 [51] | 15 | Trastuzumab deruxtecan (T-DXd) | The intracranial RR of 73.3% |
HER2CLIMB [65] | 612 | Tucatinib versus placebo in combination with capecitabine and Trastuzumab | PFS 9.9 vs. 4.2 mo OS 18 mo vs. 12 mo |
NCT02650752 [57] | 11 | Intermittent High-Dose Lapatinib in Tandem with Capecitabine | Efficacy and toxicity |
NCT01325207 | 15 | Intrathecal Trastuzumab for Leptomeningeal Metastases | Dose Limiting Toxicities AEs |
NCT03696030 Phase 1 | 39 | Intraventricular administration of autologous HER2CAR T Cells | Dose Limiting Toxicities AEs |
NCT04588545 [66] Phase 1/2 | 39 | Focal RT or WBRT + Intrathecal Trastuzumab/Pertuzumab | MTD OS |
NCT03501979 Phase 2 [67] | 30 | Tucatinib + Trastuzumab + Capecitabine | OS |
NCT04420598 Phase 2 (DEBBRAH) [53] | 41 | Trastuzumab deruxtecan in LM | OS |
NCT01494662 [68] | 140 | Phase 2 study of HKI-272 (neratinib) in Brain metastases | RR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trifănescu, O.G.; Mitrea, D.; Galeș, L.N.; Ciornei, A.; Păun, M.-A.; Butnariu, I.; Trifănescu, R.A.; Motaș, N.; Toma, R.V.; Bîlteanu, L.; et al. Therapies beyond Physiological Barriers and Drug Resistance: A Pilot Study and Review of the Literature Investigating If Intrathecal Trastuzumab and New Treatment Options Can Improve Oncologic Outcomes in Leptomeningeal Metastases from HER2-Positive Breast Cancer. Cancers 2023, 15, 2508. https://doi.org/10.3390/cancers15092508
Trifănescu OG, Mitrea D, Galeș LN, Ciornei A, Păun M-A, Butnariu I, Trifănescu RA, Motaș N, Toma RV, Bîlteanu L, et al. Therapies beyond Physiological Barriers and Drug Resistance: A Pilot Study and Review of the Literature Investigating If Intrathecal Trastuzumab and New Treatment Options Can Improve Oncologic Outcomes in Leptomeningeal Metastases from HER2-Positive Breast Cancer. Cancers. 2023; 15(9):2508. https://doi.org/10.3390/cancers15092508
Chicago/Turabian StyleTrifănescu, Oana Gabriela, Dan Mitrea, Laurenția Nicoleta Galeș, Ana Ciornei, Mihai-Andrei Păun, Ioana Butnariu, Raluca Alexandra Trifănescu, Natalia Motaș, Radu Valeriu Toma, Liviu Bîlteanu, and et al. 2023. "Therapies beyond Physiological Barriers and Drug Resistance: A Pilot Study and Review of the Literature Investigating If Intrathecal Trastuzumab and New Treatment Options Can Improve Oncologic Outcomes in Leptomeningeal Metastases from HER2-Positive Breast Cancer" Cancers 15, no. 9: 2508. https://doi.org/10.3390/cancers15092508
APA StyleTrifănescu, O. G., Mitrea, D., Galeș, L. N., Ciornei, A., Păun, M. -A., Butnariu, I., Trifănescu, R. A., Motaș, N., Toma, R. V., Bîlteanu, L., Gherghe, M., & Anghel, R. M. (2023). Therapies beyond Physiological Barriers and Drug Resistance: A Pilot Study and Review of the Literature Investigating If Intrathecal Trastuzumab and New Treatment Options Can Improve Oncologic Outcomes in Leptomeningeal Metastases from HER2-Positive Breast Cancer. Cancers, 15(9), 2508. https://doi.org/10.3390/cancers15092508