Epigenetic Regulation in Primary CNS Tumors: An Opportunity to Bridge Old and New WHO Classifications
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. A Systematic Review of Primary CNS Tumors with SWI/SNF Defects and/or Endogenous Retroviral Activation
4. Illustrative CNS Tumors with Tumorigenesis Characterized by Both SWI/SNF Mutations and Endogenous Retroviral Expression
4.1. Gliomas, Glioneuronal Tumors, and Neuronal Tumors
4.2. Embryonal Tumors
4.3. Cranial and Paraspinal Nerve Tumors
4.4. Meningioma
5. Discussion
6. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scheithauer, B.W. Development of the WHO classification of tumors of the central nervous system: A historical perspective. Brain Pathol. 2009, 19, 551–564. [Google Scholar] [CrossRef] [PubMed]
- Villa, C.; Miquel, C.; Mosses, D.; Bernier, M.; Di Stefano, A.L. The 2016 World Health Organization classification of tumours of the central nervous system. Presse Med. 2018, 47, e187–e200. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- WHO Classification of Tumours Editorial Board. World Health Organization Classification of Tumours of the Central Nervous System, 5th ed.; International Agency for Research on Cancer: Lyon, France, 2021. [Google Scholar]
- Mittal, P.; Roberts, C.W.M. The SWI/SNF complex in cancer—Biology, biomarkers and therapy. Nat. Rev. Clin. Oncol. 2020, 17, 435–448. [Google Scholar] [CrossRef] [PubMed]
- Wanior, M.; Kramer, A.; Knapp, S.; Joerger, A.C. Exploiting vulnerabilities of SWI/SNF chromatin remodelling complexes for cancer therapy. Oncogene 2021, 40, 3637–3654. [Google Scholar] [CrossRef]
- Hamilton, J.P. Epigenetics: Principles and practice. Dig. Dis. 2011, 29, 130–135. [Google Scholar] [CrossRef]
- O’Neil, N.J.; Bailey, M.L.; Hieter, P. Synthetic lethality and cancer. Nat. Rev. Genet. 2017, 18, 613–623. [Google Scholar] [CrossRef]
- Doucet-O’Hare, T.T.; DiSanza, B.L.; DeMarino, C.; Atkinson, A.L.; Rosenblum, J.S.; Henderson, L.J.; Johnson, K.R.; Kowalak, J.; Garcia-Montojo, M.; Allen, S.J.; et al. SMARCB1 deletion in atypical teratoid rhabdoid tumors results in human endogenous retrovirus K (HML-2) expression. Sci. Rep. 2021, 11, 12893. [Google Scholar] [CrossRef]
- Garcia-Montojo, M.; Doucet-O’Hare, T.; Henderson, L.; Nath, A. Human endogenous retrovirus-K (HML-2): A comprehensive review. Crit. Rev. Microbiol. 2018, 44, 715–738. [Google Scholar] [CrossRef]
- Wang, T.; Medynets, M.; Johnson, K.R.; Doucet-O’Hare, T.T.; DiSanza, B.; Li, W.; Xu, Y.; Bagnell, A.; Tyagi, R.; Sampson, K.; et al. Regulation of stem cell function and neuronal differentiation by HERV-K via mTOR pathway. Proc. Natl. Acad. Sci. USA 2020, 117, 17842–17853. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Doucet-O’Hare, T.T.; Henderson, L.; Abrams, R.P.M.; Nath, A. Retroviral Elements in Human Evolution and Neural Development. J. Exp. Neurol. 2021, 2, 1–9. [Google Scholar] [PubMed]
- Doucet-O’Hare, T.T.; Rosenblum, J.S.; Shah, A.H.; Gilbert, M.R.; Zhuang, Z. Endogenous Retroviral Elements in Human Development and Central Nervous System Embryonal Tumors. J. Pers. Med. 2021, 11, 1332. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.H.; Govindarajan, V.; Doucet-O’Hare, T.T.; Rivas, S.; Ampie, L.; DeMarino, C.; Banasavadi-Siddegowda, Y.K.; Zhang, Y.; Johnson, K.R.; Almsned, F.; et al. Differential expression of an endogenous retroviral element [HERV-K(HML-6)] is associated with reduced survival in glioblastoma patients. Sci. Rep. 2022, 12, 6902. [Google Scholar] [CrossRef]
- Steiner, J.P.; Bachani, M.; Malik, N.; DeMarino, C.; Li, W.; Sampson, K.; Lee, M.H.; Kowalak, J.; Bhaskar, M.; Doucet-O’Hare, T.; et al. Human Endogenous Retrovirus K Envelope in Spinal Fluid of Amyotrophic Lateral Sclerosis Is Toxic. Ann. Neurol. 2022, 92, 545–561. [Google Scholar] [CrossRef]
- Rivas, S.R.; Valdez, M.J.M.; Govindarajan, V.; Seetharam, D.; Doucet-O’Hare, T.T.; Heiss, J.D.; Shah, A.H. The Role of HERV-K in Cancer Stemness. Viruses 2022, 14, 2019. [Google Scholar] [CrossRef]
- Lafay-Cousin, L.; Fay-McClymont, T.; Johnston, D.; Fryer, C.; Scheinemann, K.; Fleming, A.; Hukin, J.; Janzen, L.; Guger, S.; Strother, D.; et al. Neurocognitive evaluation of long term survivors of atypical teratoid rhabdoid tumors (ATRT): The Canadian registry experience. Pediatr. Blood Cancer 2015, 62, 1265–1269. [Google Scholar] [CrossRef]
- Li, M.; Radvanyi, L.; Yin, B.; Rycaj, K.; Li, J.; Chivukula, R.; Lin, K.; Lu, Y.; Shen, J.; Chang, D.Z.; et al. Downregulation of Human Endogenous Retrovirus Type K (HERV-K) Viral env RNA in Pancreatic Cancer Cells Decreases Cell Proliferation and Tumor Growth. Clin. Cancer Res. 2017, 23, 5892–5911. [Google Scholar] [CrossRef]
- Zhou, F.; Li, M.; Wei, Y.; Lin, K.; Lu, Y.; Shen, J.; Johanning, G.L.; Wang-Johanning, F. Activation of HERV-K Env protein is essential for tumorigenesis and metastasis of breast cancer cells. Oncotarget 2016, 7, 84093–84117. [Google Scholar] [CrossRef]
- Lin, B.; Kesserwan, C.; Quinn, E.A.; Einhaus, S.L.; Wright, K.D.; Azzato, E.M.; Orr, B.A.; Upadhyaya, S.A. Anaplastic Astrocytoma in a Child With Coffin-Siris Syndrome and a Germline SMARCE1 Mutation: A Case Report. J. Pediatr. Hematol. Oncol. 2020, 42, e177–e180. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research, N.; Brat, D.J.; Verhaak, R.G.; Aldape, K.D.; Yung, W.K.; Salama, S.R.; Cooper, L.A.; Rheinbay, E.; Miller, C.R.; Vitucci, M.; et al. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N. Engl. J. Med. 2015, 372, 2481–2498. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.E.; Mazor, T.; Hong, C.; Barnes, M.; Aihara, K.; McLean, C.Y.; Fouse, S.D.; Yamamoto, S.; Ueda, H.; Tatsuno, K.; et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 2014, 343, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Kannan, K.; Inagaki, A.; Silber, J.; Gorovets, D.; Zhang, J.; Kastenhuber, E.R.; Heguy, A.; Petrini, J.H.; Chan, T.A.; Huse, J.T. Whole-exome sequencing identifies ATRX mutation as a key molecular determinant in lower-grade glioma. Oncotarget 2012, 3, 1194–1203. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Gerges, N.; Korshunov, A.; Sabha, N.; Khuong-Quang, D.A.; Fontebasso, A.M.; Fleming, A.; Hadjadj, D.; Schwartzentruber, J.; Majewski, J.; et al. Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathol. 2012, 124, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Lovejoy, C.A.; Li, W.; Reisenweber, S.; Thongthip, S.; Bruno, J.; de Lange, T.; De, S.; Petrini, J.H.; Sung, P.A.; Jasin, M.; et al. Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLoS Genet. 2012, 8, e1002772. [Google Scholar] [CrossRef]
- Yang, P.; Kollmeyer, T.M.; Buckner, K.; Bamlet, W.; Ballman, K.V.; Jenkins, R.B. Polymorphisms in GLTSCR1 and ERCC2 are associated with the development of oligodendrogliomas. Cancer 2005, 103, 2363–2372. [Google Scholar] [CrossRef]
- Brennan, C.W.; Verhaak, R.G.; McKenna, A.; Campos, B.; Noushmehr, H.; Salama, S.R.; Zheng, S.; Chakravarty, D.; Sanborn, J.Z.; Berman, S.H.; et al. The somatic genomic landscape of glioblastoma. Cell 2013, 155, 462–477. [Google Scholar] [CrossRef]
- Chen, J.; Li, Z.; Jia, X.; Song, W.; Wu, H.; Zhu, H.; Xuan, Z.; Du, Y.; Zhu, X.; Song, G.; et al. Targeting anillin inhibits tumorigenesis and tumor growth in hepatocellular carcinoma via impairing cytokinesis fidelity. Oncogene 2022, 41, 3118–3130. [Google Scholar] [CrossRef]
- Panditharatna, E.; Marques, J.G.; Wang, T.; Trissal, M.C.; Liu, I.; Jiang, L.; Beck, A.; Groves, A.; Dharia, N.V.; Li, D.; et al. BAF Complex Maintains Glioma Stem Cells in Pediatric H3K27M Glioma. Cancer Discov. 2022, 12, 2880–2905. [Google Scholar] [CrossRef]
- Mo, Y.; Duan, S.; Zhang, X.; Hua, X.; Zhou, H.; Wei, H.J.; Watanabe, J.; McQuillan, N.; Su, Z.; Gu, W.; et al. Epigenome Programming by H3.3K27M Mutation Creates a Dependence of Pediatric Glioma on SMARCA4. Cancer Discov. 2022, 12, 2906–2929. [Google Scholar] [CrossRef]
- Lucas, C.G.; Mueller, S.; Reddy, A.; Taylor, J.W.; Oberheim Bush, N.A.; Clarke, J.L.; Chang, S.M.; Gupta, N.; Berger, M.S.; Perry, A.; et al. Diffuse hemispheric glioma, H3 G34-mutant: Genomic landscape of a new tumor entity and prospects for targeted therapy. Neuro Oncol. 2021, 23, 1974–1976. [Google Scholar] [CrossRef] [PubMed]
- Schwartzentruber, J.; Korshunov, A.; Liu, X.Y.; Jones, D.T.; Pfaff, E.; Jacob, K.; Sturm, D.; Fontebasso, A.M.; Quang, D.A.; Tonjes, M.; et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 2012, 482, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Korshunov, A.; Capper, D.; Reuss, D.; Schrimpf, D.; Ryzhova, M.; Hovestadt, V.; Sturm, D.; Meyer, J.; Jones, C.; Zheludkova, O.; et al. Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. Acta Neuropathol. 2016, 131, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Reinhardt, A.; Stichel, D.; Schrimpf, D.; Sahm, F.; Korshunov, A.; Reuss, D.E.; Koelsche, C.; Huang, K.; Wefers, A.K.; Hovestadt, V.; et al. Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations. Acta Neuropathol. 2018, 136, 273–291. [Google Scholar] [CrossRef] [PubMed]
- Vaubel, R.A.; Caron, A.A.; Yamada, S.; Decker, P.A.; Eckel Passow, J.E.; Rodriguez, F.J.; Nageswara Rao, A.A.; Lachance, D.; Parney, I.; Jenkins, R.; et al. Recurrent copy number alterations in low-grade and anaplastic pleomorphic xanthoastrocytoma with and without BRAF V600E mutation. Brain Pathol. 2018, 28, 172–182. [Google Scholar] [CrossRef]
- Phillips, J.J.; Gong, H.; Chen, K.; Joseph, N.M.; van Ziffle, J.; Bastian, B.C.; Grenert, J.P.; Kline, C.N.; Mueller, S.; Banerjee, A.; et al. The genetic landscape of anaplastic pleomorphic xanthoastrocytoma. Brain Pathol. 2019, 29, 85–96. [Google Scholar] [CrossRef]
- Vaubel, R.; Zschernack, V.; Tran, Q.T.; Jenkins, S.; Caron, A.; Milosevic, D.; Smadbeck, J.; Vasmatzis, G.; Kandels, D.; Gnekow, A.; et al. Biology and grading of pleomorphic xanthoastrocytoma-what have we learned about it? Brain Pathol. 2021, 31, 20–32. [Google Scholar] [CrossRef]
- Loh, J.K.; Lieu, A.S.; Chai, C.Y.; Howng, S.L. Malignant transformation of a desmoplastic infantile ganglioglioma. Pediatr. Neurol. 2011, 45, 135–137. [Google Scholar] [CrossRef]
- Phi, J.H.; Koh, E.J.; Kim, S.K.; Park, S.H.; Cho, B.K.; Wang, K.C. Desmoplastic infantile astrocytoma: Recurrence with malignant transformation into glioblastoma: A case report. Childs Nerv. Syst. 2011, 27, 2177–2181. [Google Scholar] [CrossRef]
- Wang, A.C.; Jones, D.T.W.; Abecassis, I.J.; Cole, B.L.; Leary, S.E.S.; Lockwood, C.M.; Chavez, L.; Capper, D.; Korshunov, A.; Fallah, A.; et al. Desmoplastic Infantile Ganglioglioma/Astrocytoma (DIG/DIA) Are Distinct Entities with Frequent BRAFV600 Mutations. Mol. Cancer Res. 2018, 16, 1491–1498. [Google Scholar] [CrossRef]
- Prakash, V.; Batanian, J.R.; Guzman, M.A.; Duncavage, E.J.; Geller, T.J. Malignant transformation of a desmoplastic infantile ganglioglioma in an infant carrier of a nonsynonymous TP53 mutation. Pediatr. Neurol. 2014, 51, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Northcott, P.A.; Buchhalter, I.; Morrissy, A.S.; Hovestadt, V.; Weischenfeldt, J.; Ehrenberger, T.; Grobner, S.; Segura-Wang, M.; Zichner, T.; Rudneva, V.A.; et al. The whole-genome landscape of medulloblastoma subtypes. Nature 2017, 547, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, D.P.; Coyle, B.; Walker, D.A.; Grabowska, A.M. In vitro models of medulloblastoma: Choosing the right tool for the job. J. Biotechnol. 2016, 236, 10–25. [Google Scholar] [CrossRef] [PubMed]
- Versteege, I.; Sevenet, N.; Lange, J.; Rousseau-Merck, M.F.; Ambros, P.; Handgretinger, R.; Aurias, A.; Delattre, O. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 1998, 394, 203–206. [Google Scholar] [CrossRef]
- Biegel, J.A.; Zhou, J.Y.; Rorke, L.B.; Stenstrom, C.; Wainwright, L.M.; Fogelgren, B. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res. 1999, 59, 74–79. [Google Scholar]
- Lee, R.S.; Stewart, C.; Carter, S.L.; Ambrogio, L.; Cibulskis, K.; Sougnez, C.; Lawrence, M.S.; Auclair, D.; Mora, J.; Golub, T.R.; et al. A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. J. Clin. Investig. 2012, 122, 2983–2988. [Google Scholar] [CrossRef]
- Hasselblatt, M.; Isken, S.; Linge, A.; Eikmeier, K.; Jeibmann, A.; Oyen, F.; Nagel, I.; Richter, J.; Bartelheim, K.; Kordes, U.; et al. High-resolution genomic analysis suggests the absence of recurrent genomic alterations other than SMARCB1 aberrations in atypical teratoid/rhabdoid tumors. Genes Chromoso. Cancer 2013, 52, 185–190. [Google Scholar] [CrossRef]
- Johann, P.D.; Erkek, S.; Zapatka, M.; Kerl, K.; Buchhalter, I.; Hovestadt, V.; Jones, D.T.W.; Sturm, D.; Hermann, C.; Segura Wang, M.; et al. Atypical Teratoid/Rhabdoid Tumors Are Comprised of Three Epigenetic Subgroups with Distinct Enhancer Landscapes. Cancer Cell 2016, 29, 379–393. [Google Scholar] [CrossRef]
- Schneppenheim, R.; Fruhwald, M.C.; Gesk, S.; Hasselblatt, M.; Jeibmann, A.; Kordes, U.; Kreuz, M.; Leuschner, I.; Martin Subero, J.I.; Obser, T.; et al. Germline nonsense mutation and somatic inactivation of SMARCA4/BRG1 in a family with rhabdoid tumor predisposition syndrome. Am. J. Hum. Genet. 2010, 86, 279–284. [Google Scholar] [CrossRef]
- Hasselblatt, M.; Oyen, F.; Gesk, S.; Kordes, U.; Wrede, B.; Bergmann, M.; Schmid, H.; Fruhwald, M.C.; Schneppenheim, R.; Siebert, R.; et al. Cribriform neuroepithelial tumor (CRINET): A nonrhabdoid ventricular tumor with INI1 loss and relatively favorable prognosis. J. Neuropathol. Exp. Neurol. 2009, 68, 1249–1255. [Google Scholar] [CrossRef]
- Ferris, S.P.; Velazquez Vega, J.; Aboian, M.; Lee, J.C.; Van Ziffle, J.; Onodera, C.; Grenert, J.P.; Saunders, T.; Chen, Y.Y.; Banerjee, A.; et al. High-grade neuroepithelial tumor with BCOR exon 15 internal tandem duplication-a comprehensive clinical, radiographic, pathologic, and genomic analysis. Brain Pathol. 2020, 30, 46–62. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Wefers, A.; Bens, S.; Nemes, K.; Agaimy, A.; Oyen, F.; Vogelgesang, S.; Rodriguez, F.J.; Brett, F.M.; McLendon, R.; et al. Desmoplastic myxoid tumor, SMARCB1-mutant: Clinical, histopathological and molecular characterization of a pineal region tumor encountered in adolescents and adults. Acta Neuropathol. 2020, 139, 277–286. [Google Scholar] [CrossRef]
- Agnihotri, S.; Jalali, S.; Wilson, M.R.; Danesh, A.; Li, M.; Klironomos, G.; Krieger, J.R.; Mansouri, A.; Khan, O.; Mamatjan, Y.; et al. The genomic landscape of schwannoma. Nat. Genet. 2016, 48, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- Piotrowski, A.; Xie, J.; Liu, Y.F.; Poplawski, A.B.; Gomes, A.R.; Madanecki, P.; Fu, C.; Crowley, M.R.; Crossman, D.K.; Armstrong, L.; et al. Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas. Nat. Genet. 2014, 46, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.J.; Isidor, B.; Beetz, C.; Williams, S.G.; Bhaskar, S.S.; Richer, W.; O’Sullivan, J.; Anderson, B.; Daly, S.B.; Urquhart, J.E.; et al. Mutations in LZTR1 add to the complex heterogeneity of schwannomatosis. Neurology 2015, 84, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Paganini, I.; Chang, V.Y.; Capone, G.L.; Vitte, J.; Benelli, M.; Barbetti, L.; Sestini, R.; Trevisson, E.; Hulsebos, T.J.; Giovannini, M.; et al. Expanding the mutational spectrum of LZTR1 in schwannomatosis. Eur. J. Hum. Genet. 2015, 23, 963–968. [Google Scholar] [CrossRef]
- Kehrer-Sawatzki, H.; Farschtschi, S.; Mautner, V.F.; Cooper, D.N. The molecular pathogenesis of schwannomatosis, a paradigm for the co-involvement of multiple tumour suppressor genes in tumorigenesis. Hum. Genet. 2017, 136, 129–148. [Google Scholar] [CrossRef]
- Maze, E.A.; Agit, B.; Reeves, S.; Hilton, D.A.; Parkinson, D.B.; Laraba, L.; Ercolano, E.; Kurian, K.M.; Hanemann, C.O.; Belshaw, R.D.; et al. Human Endogenous Retrovirus Type K Promotes Proliferation and Confers Sensitivity to Antiretroviral Drugs in Merlin-Negative Schwannoma and Meningioma. Cancer Res. 2022, 82, 235–247. [Google Scholar] [CrossRef]
- Pemov, A.; Hansen, N.F.; Sindiri, S.; Patidar, R.; Higham, C.S.; Dombi, E.; Miettinen, M.M.; Fetsch, P.; Brems, H.; Chandrasekharappa, S.C.; et al. Low mutation burden and frequent loss of CDKN2A/B and SMARCA2, but not PRC2, define premalignant neurofibromatosis type 1-associated atypical neurofibromas. Neuro Oncol. 2019, 21, 981–992. [Google Scholar] [CrossRef]
- Lee, W.; Teckie, S.; Wiesner, T.; Ran, L.; Prieto Granada, C.N.; Lin, M.; Zhu, S.; Cao, Z.; Liang, Y.; Sboner, A.; et al. PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat. Genet. 2014, 46, 1227–1232. [Google Scholar] [CrossRef]
- Jo, V.Y.; Fletcher, C.D. Epithelioid malignant peripheral nerve sheath tumor: Clinicopathologic analysis of 63 cases. Am. J. Surg. Pathol. 2015, 39, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, I.M.; Dong, F.; Garcia, E.P.; Fletcher, C.D.M.; Jo, V.Y. Recurrent SMARCB1 Inactivation in Epithelioid Malignant Peripheral Nerve Sheath Tumors. Am. J. Surg. Pathol. 2019, 43, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, F.J.; Graham, M.K.; Brosnan-Cashman, J.A.; Barber, J.R.; Davis, C.; Vizcaino, M.A.; Palsgrove, D.N.; Giannini, C.; Pekmezci, M.; Dahiya, S.; et al. Telomere alterations in neurofibromatosis type 1-associated solid tumors. Acta Neuropathol. Commun. 2019, 7, 139. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.C.; Eulo, V.; Apicelli, A.J.; Pekmezci, M.; Tao, Y.; Luo, J.; Hirbe, A.C.; Dahiya, S. Aberrant ATRX protein expression is associated with poor overall survival in NF1-MPNST. Oncotarget 2018, 9, 23018–23028. [Google Scholar] [CrossRef] [PubMed]
- Ochi, A.; Ochiai, K.; Nakamura, S.; Kobara, A.; Sunden, Y.; Umemura, T. Molecular characteristics and pathogenicity of an avian leukosis virus isolated from avian neurofibrosarcoma. Avian Dis. 2012, 56, 35–43. [Google Scholar] [CrossRef]
- Williams, E.A.; Wakimoto, H.; Shankar, G.M.; Barker, F.G., 2nd; Brastianos, P.K.; Santagata, S.; Sokol, E.S.; Pavlick, D.C.; Shah, N.; Reddy, A.; et al. Frequent inactivating mutations of the PBAF complex gene PBRM1 in meningioma with papillary features. Acta Neuropathol. 2020, 140, 89–93. [Google Scholar] [CrossRef]
- Lee, J.C.; Villanueva-Meyer, J.E.; Ferris, S.P.; Sloan, E.A.; Hofmann, J.W.; Hattab, E.M.; Williams, B.J.; Guo, H.; Torkildson, J.; Florez, A.; et al. Primary intracranial sarcomas with DICER1 mutation often contain prominent eosinophilic cytoplasmic globules and can occur in the setting of neurofibromatosis type 1. Acta Neuropathol. 2019, 137, 521–525. [Google Scholar] [CrossRef]
- Hasselblatt, M.; Thomas, C.; Hovestadt, V.; Schrimpf, D.; Johann, P.; Bens, S.; Oyen, F.; Peetz-Dienhart, S.; Crede, Y.; Wefers, A.; et al. Poorly differentiated chordoma with SMARCB1/INI1 loss: A distinct molecular entity with dismal prognosis. Acta Neuropathol. 2016, 132, 149–151. [Google Scholar] [CrossRef]
- Shih, A.R.; Cote, G.M.; Chebib, I.; Choy, E.; DeLaney, T.; Deshpande, V.; Hornicek, F.J.; Miao, R.; Schwab, J.H.; Nielsen, G.P.; et al. Clinicopathologic characteristics of poorly differentiated chordoma. Mod. Pathol. 2018, 31, 1237–1245. [Google Scholar] [CrossRef]
- Kupryjanczyk, J.; Dansonka-Mieszkowska, A.; Moes-Sosnowska, J.; Plisiecka-Halasa, J.; Szafron, L.; Podgorska, A.; Rzepecka, I.K.; Konopka, B.; Budzilowska, A.; Rembiszewska, A.; et al. Ovarian small cell carcinoma of hypercalcemic type—Evidence of germline origin and SMARCA4 gene inactivation. a pilot study. Pol. J. Pathol. 2013, 64, 238–246. [Google Scholar] [CrossRef]
- Rabotti, G.F.; Raine, W.A.; Sellers, R.L. Brain Tumors (Gliomas) Induced in Hamsters by Bryan’s Strain of Rous Sarcoma Virus. Science 1965, 147, 504–506. [Google Scholar] [CrossRef] [PubMed]
- Ristevski, S.; Purcell, D.F.; Marshall, J.; Campagna, D.; Nouri, S.; Fenton, S.P.; McPhee, D.A.; Kannourakis, G. Novel endogenous type D retroviral particles expressed at high levels in a SCID mouse thymic lymphoma. J. Virol. 1999, 73, 4662–4669. [Google Scholar] [CrossRef]
- Bohm, B.; Bilic, I.; Bruggemann, J.; Nishiura, H.; Ochiai, K. Clinically Manifesting, Naturally Occurring Fowl Glioma in a Leghorn Chicken in Germany. Avian Dis. 2022, 66, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Chang, G.; Li, Z.; Bi, Y.; Liu, X.; Chen, G. Comprehensive Transcriptome Analysis Reveals Competing Endogenous RNA Networks During Avian Leukosis Virus, Subgroup J-Induced Tumorigenesis in Chickens. Front. Physiol. 2018, 9, 996. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Higashi, T.; Yamada, M.; Imai, K.; Yamamoto, Y. Basophilic intracytoplasmic viral matrix inclusions distributed widely in layer hens affected with avian-leukosis-virus-associated tumours. Avian Pathol. 2007, 36, 53–58. [Google Scholar] [CrossRef]
- Miyazawa, T.; Shimode, S.; Nakagawa, S. RD-114 virus story: From RNA rumor virus to a useful viral tool for elucidating the world cats’ journey. Uirusu 2016, 66, 21–30. [Google Scholar] [CrossRef]
- Yuan, Z.; Yang, Y.; Zhang, N.; Soto, C.; Jiang, X.; An, Z.; Zheng, W.J. Human Endogenous Retroviruses in Glioblastoma Multiforme. Microorganisms 2021, 9, 764. [Google Scholar] [CrossRef]
- Bonte, P.E.; Arribas, Y.A.; Merlotti, A.; Carrascal, M.; Zhang, J.V.; Zueva, E.; Binder, Z.A.; Alanio, C.; Goudot, C.; Amigorena, S. Single-cell RNA-seq-based proteogenomics identifies glioblastoma-specific transposable elements encoding HLA-I-presented peptides. Cell Rep. 2022, 39, 110916. [Google Scholar] [CrossRef]
- Jayabal, P.; Ma, X.; Shiio, Y. EZH2 suppresses endogenous retroviruses and an interferon response in cancers. Genes Cancer 2021, 12, 96–105. [Google Scholar] [CrossRef]
- Zhang, S.M.; Cai, W.L.; Liu, X.; Thakral, D.; Luo, J.; Chan, L.H.; McGeary, M.K.; Song, E.; Blenman, K.R.M.; Micevic, G.; et al. KDM5B promotes immune evasion by recruiting SETDB1 to silence retroelements. Nature 2021, 598, 682–687. [Google Scholar] [CrossRef]
- Tong, K.I.; Yoon, S.; Isaev, K.; Bakhtiari, M.; Lackraj, T.; He, M.Y.; Joynt, J.; Silva, A.; Xu, M.C.; Prive, G.G.; et al. Combined EZH2 Inhibition and IKAROS Degradation Leads to Enhanced Antitumor Activity in Diffuse Large B-cell Lymphoma. Clin. Cancer Res. 2021, 27, 5401–5414. [Google Scholar] [CrossRef] [PubMed]
- Mueller, T.; Hantsch, C.; Volkmer, I.; Staege, M.S. Differentiation-Dependent Regulation of Human Endogenous Retrovirus K Sequences and Neighboring Genes in Germ Cell Tumor Cells. Front. Microbiol. 2018, 9, 1253. [Google Scholar] [CrossRef] [PubMed]
- Brat, D.J.; Aldape, K.; Colman, H.; Figrarella-Branger, D.; Fuller, G.N.; Giannini, C.; Holland, E.C.; Jenkins, R.B.; Kleinschmidt-DeMasters, B.; Komori, T.; et al. cIMPACT-NOW update 5: Recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol. 2020, 139, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Kadoch, C.; Crabtree, G.R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics. Sci. Adv. 2015, 1, e1500447. [Google Scholar] [CrossRef]
- Kamoun, A.; Idbaih, A.; Dehais, C.; Elarouci, N.; Carpentier, C.; Letouze, E.; Colin, C.; Mokhtari, K.; Jouvet, A.; Uro-Coste, E.; et al. Integrated multi-omics analysis of oligodendroglial tumours identifies three subgroups of 1p/19q co-deleted gliomas. Nat. Commun. 2016, 7, 11263. [Google Scholar] [CrossRef]
- Riemenschneider, M.J.; Reifenberger, G. Molecular neuropathology of gliomas. Int. J. Mol. Sci. 2009, 10, 184–212. [Google Scholar] [CrossRef]
- Swartling, F.J.; Savov, V.; Persson, A.I.; Chen, J.; Hackett, C.S.; Northcott, P.A.; Grimmer, M.R.; Lau, J.; Chesler, L.; Perry, A.; et al. Distinct neural stem cell populations give rise to disparate brain tumors in response to N-MYC. Cancer Cell 2012, 21, 601–613. [Google Scholar] [CrossRef]
- Bale, T.A.; Sait, S.F.; Benhamida, J.; Ptashkin, R.; Haque, S.; Villafania, L.; Sill, M.; Sadowska, J.; Akhtar, R.B.; Liechty, B.; et al. Malignant transformation of a polymorphous low grade neuroepithelial tumor of the young (PLNTY). Acta Neuropathol. 2021, 141, 123–125. [Google Scholar] [CrossRef]
- Buczkowicz, P.; Hoeman, C.; Rakopoulos, P.; Pajovic, S.; Letourneau, L.; Dzamba, M.; Morrison, A.; Lewis, P.; Bouffet, E.; Bartels, U.; et al. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat. Genet. 2014, 46, 451–456. [Google Scholar] [CrossRef]
- Castel, D.; Philippe, C.; Calmon, R.; Le Dret, L.; Truffaux, N.; Boddaert, N.; Pages, M.; Taylor, K.R.; Saulnier, P.; Lacroix, L.; et al. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol. 2015, 130, 815–827. [Google Scholar] [CrossRef]
- Bjerke, L.; Mackay, A.; Nandhabalan, M.; Burford, A.; Jury, A.; Popov, S.; Bax, D.A.; Carvalho, D.; Taylor, K.R.; Vinci, M.; et al. Histone H3.3. mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discov. 2013, 3, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Sturm, D.; Orr, B.A.; Toprak, U.H.; Hovestadt, V.; Jones, D.T.W.; Capper, D.; Sill, M.; Buchhalter, I.; Northcott, P.A.; Leis, I.; et al. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell 2016, 164, 1060–1072. [Google Scholar] [CrossRef] [PubMed]
- Riedel, S.S.; Lu, C.; Xie, H.M.; Nestler, K.; Vermunt, M.W.; Lenard, A.; Bennett, L.; Speck, N.A.; Hanamura, I.; Lessard, J.A.; et al. Intrinsically disordered Meningioma-1 stabilizes the BAF complex to cause AML. Mol. Cell 2021, 81, 2332–2348 e2339. [Google Scholar] [CrossRef] [PubMed]
- Korshunov, A.; Sycheva, R.; Golanov, A. Recurrent cytogenetic aberrations in central neurocytomas and their biological relevance. Acta Neuropathol. 2007, 113, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Horstmann, S.; Perry, A.; Reifenberger, G.; Giangaspero, F.; Huang, H.; Hara, A.; Masuoka, J.; Rainov, N.G.; Bergmann, M.; Heppner, F.L.; et al. Genetic and expression profiles of cerebellar liponeurocytomas. Brain Pathol. 2004, 14, 281–289. [Google Scholar] [CrossRef]
- Kupp, R.; Ruff, L.; Terranova, S.; Nathan, E.; Ballereau, S.; Stark, R.; Sekhar Reddy Chilamakuri, C.; Hoffmann, N.; Wickham-Rahrmann, K.; Widdess, M.; et al. ZFTA Translocations Constitute Ependymoma Chromatin Remodeling and Transcription Factors. Cancer Discov. 2021, 11, 2216–2229. [Google Scholar] [CrossRef]
- Chang, L.; Azzolin, L.; Di Biagio, D.; Zanconato, F.; Battilana, G.; Lucon Xiccato, R.; Aragona, M.; Giulitti, S.; Panciera, T.; Gandin, A.; et al. The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ. Nature 2018, 563, 265–269. [Google Scholar] [CrossRef]
- Pajtler, K.W.; Wen, J.; Sill, M.; Lin, T.; Orisme, W.; Tang, B.; Hubner, J.M.; Ramaswamy, V.; Jia, S.; Dalton, J.D.; et al. Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. Acta Neuropathol. 2018, 136, 211–226. [Google Scholar] [CrossRef]
- Scheil, S.; Bruderlein, S.; Eicker, M.; Herms, J.; Herold-Mende, C.; Steiner, H.H.; Barth, T.F.; Moller, P. Low frequency of chromosomal imbalances in anaplastic ependymomas as detected by comparative genomic hybridization. Brain Pathol. 2001, 11, 133–143. [Google Scholar] [CrossRef]
- Swanson, A.A.; Raghunathan, A.; Jenkins, R.B.; Messing-Junger, M.; Pietsch, T.; Clarke, M.J.; Kaufmann, T.J.; Giannini, C. Spinal Cord Ependymomas with MYCN Amplification Show Aggressive Clinical Behavior. J. Neuropathol. Exp. Neurol. 2019, 78, 791–797. [Google Scholar] [CrossRef]
- Ghasemi, D.R.; Sill, M.; Okonechnikov, K.; Korshunov, A.; Yip, S.; Schutz, P.W.; Scheie, D.; Kruse, A.; Harter, P.N.; Kastelan, M.; et al. MYCN amplification drives an aggressive form of spinal ependymoma. Acta Neuropathol. 2019, 138, 1075–1089. [Google Scholar] [CrossRef] [PubMed]
- Raffeld, M.; Abdullaev, Z.; Pack, S.D.; Xi, L.; Nagaraj, S.; Briceno, N.; Vera, E.; Pittaluga, S.; Lopes Abath Neto, O.; Quezado, M.; et al. High level MYCN amplification and distinct methylation signature define an aggressive subtype of spinal cord ependymoma. Acta Neuropathol. Commun. 2020, 8, 101. [Google Scholar] [CrossRef] [PubMed]
- Tabori, U.; Shlien, A.; Baskin, B.; Levitt, S.; Ray, P.; Alon, N.; Hawkins, C.; Bouffet, E.; Pienkowska, M.; Lafay-Cousin, L.; et al. TP53 alterations determine clinical subgroups and survival of patients with choroid plexus tumors. J. Clin. Oncol. 2010, 28, 1995–2001. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, K.D.; Noltner, K.A.; Buzin, C.H.; Gu, D.; Wen-Fong, C.Y.; Nguyen, V.Q.; Han, J.H.; Lowstuter, K.; Longmate, J.; Sommer, S.S.; et al. Beyond Li Fraumeni Syndrome: Clinical characteristics of families with p53 germline mutations. J. Clin. Oncol. 2009, 27, 1250–1256. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Grausam, K.B.; Wang, J.; Lun, M.P.; Ohli, J.; Lidov, H.G.; Calicchio, M.L.; Zeng, E.; Salisbury, J.L.; Wechsler-Reya, R.J.; et al. Sonic Hedgehog promotes proliferation of Notch-dependent monociliated choroid plexus tumour cells. Nat. Cell Biol. 2016, 18, 418–430. [Google Scholar] [CrossRef]
- Cancer, M.; Hutter, S.; Holmberg, K.O.; Rosen, G.; Sundstrom, A.; Tailor, J.; Bergstrom, T.; Garancher, A.; Essand, M.; Wechsler-Reya, R.J.; et al. Humanized Stem Cell Models of Pediatric Medulloblastoma Reveal an Oct4/mTOR Axis that Promotes Malignancy. Cell Stem Cell 2019, 25, 855–870 e811. [Google Scholar] [CrossRef]
- Jeon, S.; Seong, R.H. Anteroposterior Limb Skeletal Patterning Requires the Bifunctional Action of SWI/SNF Chromatin Remodeling Complex in Hedgehog Pathway. PLoS Genet. 2016, 12, e1005915. [Google Scholar] [CrossRef]
- Kool, M.; Jones, D.T.; Jager, N.; Northcott, P.A.; Pugh, T.J.; Hovestadt, V.; Piro, R.M.; Esparza, L.A.; Markant, S.L.; Remke, M.; et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell 2014, 25, 393–405. [Google Scholar] [CrossRef]
- Ellison, D.W.; Kocak, M.; Dalton, J.; Megahed, H.; Lusher, M.E.; Ryan, S.L.; Zhao, W.; Nicholson, S.L.; Taylor, R.E.; Bailey, S.; et al. Definition of disease-risk stratification groups in childhood medulloblastoma using combined clinical, pathologic, and molecular variables. J. Clin. Oncol. 2011, 29, 1400–1407. [Google Scholar] [CrossRef]
- Lambo, S.; Grobner, S.N.; Rausch, T.; Waszak, S.M.; Schmidt, C.; Gorthi, A.; Romero, J.C.; Mauermann, M.; Brabetz, S.; Krausert, S.; et al. The molecular landscape of ETMR at diagnosis and relapse. Nature 2019, 576, 274–280. [Google Scholar] [CrossRef]
- Chitale, S.; Richly, H. Shaping chromatin with DICER. Oncotarget 2017, 8, 39937–39938. [Google Scholar] [CrossRef] [PubMed]
- Li, B.K.; Vasiljevic, A.; Dufour, C.; Yao, F.; Ho, B.L.B.; Lu, M.; Hwang, E.I.; Gururangan, S.; Hansford, J.R.; Fouladi, M.; et al. Pineoblastoma segregates into molecular sub-groups with distinct clinico-pathologic features: A Rare Brain Tumor Consortium registry study. Acta Neuropathol. 2020, 139, 223–241. [Google Scholar] [CrossRef] [PubMed]
- Pfaff, E.; Aichmuller, C.; Sill, M.; Stichel, D.; Snuderl, M.; Karajannis, M.A.; Schuhmann, M.U.; Schittenhelm, J.; Hasselblatt, M.; Thomas, C.; et al. Molecular subgrouping of primary pineal parenchymal tumors reveals distinct subtypes correlated with clinical parameters and genetic alterations. Acta Neuropathol. 2020, 139, 243–257. [Google Scholar] [CrossRef] [PubMed]
- Verdijk, R.M.; den Bakker, M.A.; Dubbink, H.J.; Hop, W.C.; Dinjens, W.N.; Kros, J.M. TP53 mutation analysis of malignant peripheral nerve sheath tumors. J. Neuropathol. Exp. Neurol. 2010, 69, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Brohl, A.S.; Kahen, E.; Yoder, S.J.; Teer, J.K.; Reed, D.R. The genomic landscape of malignant peripheral nerve sheath tumors: Diverse drivers of Ras pathway activation. Sci. Rep. 2017, 7, 14992. [Google Scholar] [CrossRef]
- Sohier, P.; Luscan, A.; Lloyd, A.; Ashelford, K.; Laurendeau, I.; Briand-Suleau, A.; Vidaud, D.; Ortonne, N.; Pasmant, E.; Upadhyaya, M. Confirmation of mutation landscape of NF1-associated malignant peripheral nerve sheath tumors. Genes Chromosom. Cancer 2017, 56, 421–426. [Google Scholar] [CrossRef]
- Moonen, J.R.; Chappell, J.; Shi, M.; Shinohara, T.; Li, D.; Mumbach, M.R.; Zhang, F.; Nair, R.V.; Nasser, J.; Mai, D.H.; et al. KLF4 recruits SWI/SNF to increase chromatin accessibility and reprogram the endothelial enhancer landscape under laminar shear stress. Nat. Commun. 2022, 13, 4941. [Google Scholar] [CrossRef]
- Wang, J.L.; Zhang, Z.J.; Hartman, M.; Smits, A.; Westermark, B.; Muhr, C.; Nister, M. Detection of TP53 gene mutation in human meningiomas: A study using immunohistochemistry, polymerase chain reaction/single-strand conformation polymorphism and DNA sequencing techniques on paraffin-embedded samples. Int. J. Cancer 1995, 64, 223–228. [Google Scholar] [CrossRef]
- McDonald, C.; Reich, N.C. Cooperation of the transcriptional coactivators CBP and p300 with Stat6. J. Interferon. Cytokine Res. 1999, 19, 711–722. [Google Scholar] [CrossRef]
- Park, H.K.; Yu, D.B.; Sung, M.; Oh, E.; Kim, M.; Song, J.Y.; Lee, M.S.; Jung, K.; Noh, K.W.; An, S.; et al. Molecular changes in solitary fibrous tumor progression. J. Mol. Med. 2019, 97, 1413–1425. [Google Scholar] [CrossRef]
- Liang, Y.; Heller, R.S.; Wu, J.K.; Heilman, C.B.; Tischler, A.S.; Arkun, K. High p16 Expression Is Associated with Malignancy and Shorter Disease-Free Survival Time in Solitary Fibrous Tumor/Hemangiopericytoma. J. Neurol. Surg. B Skull Base 2019, 80, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Linden, M.; Thomsen, C.; Grundevik, P.; Jonasson, E.; Andersson, D.; Runnberg, R.; Dolatabadi, S.; Vannas, C.; Luna Santamariotaa, M.; Fagman, H.; et al. FET family fusion oncoproteins target the SWI/SNF chromatin remodeling complex. EMBO Rep. 2019, 20, e45766. [Google Scholar] [CrossRef] [PubMed]
- Brohl, A.S.; Solomon, D.A.; Chang, W.; Wang, J.; Song, Y.; Sindiri, S.; Patidar, R.; Hurd, L.; Chen, L.; Shern, J.F.; et al. The genomic landscape of the Ewing Sarcoma family of tumors reveals recurrent STAG2 mutation. PLoS Genet. 2014, 10, e1004475. [Google Scholar] [CrossRef] [PubMed]
- Tirode, F.; Surdez, D.; Ma, X.; Parker, M.; Le Deley, M.C.; Bahrami, A.; Zhang, Z.; Lapouble, E.; Grossetete-Lalami, S.; Rusch, M.; et al. Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer Discov. 2014, 4, 1342–1353. [Google Scholar] [CrossRef] [PubMed]
- Grunewald, T.G.P.; Cidre-Aranaz, F.; Surdez, D.; Tomazou, E.M.; de Alava, E.; Kovar, H.; Sorensen, P.H.; Delattre, O.; Dirksen, U. Ewing sarcoma. Nat. Rev. Dis. Primers 2018, 4, 5. [Google Scholar] [CrossRef]
- Xi, Q.; He, W.; Zhang, X.H.; Le, H.V.; Massague, J. Genome-wide impact of the BRG1 SWI/SNF chromatin remodeler on the transforming growth factor beta transcriptional program. J. Biol. Chem. 2008, 283, 1146–1155. [Google Scholar] [CrossRef]
- Meijer, D.; de Jong, D.; Pansuriya, T.C.; van den Akker, B.E.; Picci, P.; Szuhai, K.; Bovee, J.V. Genetic characterization of mesenchymal, clear cell, and dedifferentiated chondrosarcoma. Genes Chromosom. Cancer 2012, 51, 899–909. [Google Scholar] [CrossRef]
- Behjati, S.; Tarpey, P.S.; Presneau, N.; Scheipl, S.; Pillay, N.; Van Loo, P.; Wedge, D.C.; Cooke, S.L.; Gundem, G.; Davies, H.; et al. Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat. Genet. 2013, 45, 1479–1482. [Google Scholar] [CrossRef]
- Hollmann, T.J.; Hornick, J.L. INI1-deficient tumors: Diagnostic features and molecular genetics. Am. J. Surg. Pathol. 2011, 35, e47–e63. [Google Scholar] [CrossRef]
- Kusters-Vandevelde, H.V.; Kusters, B.; van Engen-van Grunsven, A.C.; Groenen, P.J.; Wesseling, P.; Blokx, W.A. Primary melanocytic tumors of the central nervous system: A review with focus on molecular aspects. Brain Pathol. 2015, 25, 209–226. [Google Scholar] [CrossRef]
- Brunn, A.; Nagel, I.; Montesinos-Rongen, M.; Klapper, W.; Vater, I.; Paulus, W.; Hans, V.; Blumcke, I.; Weis, J.; Siebert, R.; et al. Frequent triple-hit expression of MYC, BCL2, and BCL6 in primary lymphoma of the central nervous system and absence of a favorable MYC(low)BCL2 (low) subgroup may underlie the inferior prognosis as compared to systemic diffuse large B cell lymphomas. Acta Neuropathol. 2013, 126, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Emile, J.F.; Diamond, E.L.; Helias-Rodzewicz, Z.; Cohen-Aubart, F.; Charlotte, F.; Hyman, D.M.; Kim, E.; Rampal, R.; Patel, M.; Ganzel, C.; et al. Recurrent RAS and PIK3CA mutations in Erdheim-Chester disease. Blood 2014, 124, 3016–3019. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yamaguchi, S.; Burstein, M.D.; Terashima, K.; Chang, K.; Ng, H.K.; Nakamura, H.; He, Z.; Doddapaneni, H.; Lewis, L.; et al. Novel somatic and germline mutations in intracranial germ cell tumours. Nature 2014, 511, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Terashima, K.; Yu, A.; Chow, W.Y.; Hsu, W.C.; Chen, P.; Wong, S.; Hung, Y.S.; Suzuki, T.; Nishikawa, R.; Matsutani, M.; et al. Genome-wide analysis of DNA copy number alterations and loss of heterozygosity in intracranial germ cell tumors. Pediatr. Blood Cancer 2014, 61, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Zhang, S.; Ichikawa, T.; Koga, H.; Washiyama, K.; Motoyama, T.; Kumanishi, T. Intracranial germ cell tumors: Detection of p53 gene mutations by single-strand conformation polymorphism analysis. Jpn. J. Cancer Res. 1995, 86, 555–561. [Google Scholar] [CrossRef]
- Sekine, S.; Shibata, T.; Kokubu, A.; Morishita, Y.; Noguchi, M.; Nakanishi, Y.; Sakamoto, M.; Hirohashi, S. Craniopharyngiomas of adamantinomatous type harbor beta-catenin gene mutations. Am. J. Pathol. 2002, 161, 1997–2001. [Google Scholar] [CrossRef]
- O’Neill, D.W.; Schoetz, S.S.; Lopez, R.A.; Castle, M.; Rabinowitz, L.; Shor, E.; Krawchuk, D.; Goll, M.G.; Renz, M.; Seelig, H.P.; et al. An ikaros-containing chromatin-remodeling complex in adult-type erythroid cells. Mol. Cell Biol. 2000, 20, 7572–7582. [Google Scholar] [CrossRef]
- Tanizaki, Y.; Jin, L.; Scheithauer, B.W.; Kovacs, K.; Roncaroli, F.; Lloyd, R.V. P53 gene mutations in pituitary carcinomas. Endocr. Pathol. 2007, 18, 217–222. [Google Scholar] [CrossRef]
- Scheithauer, B.W.; Kovacs, K.; Horvath, E.; Kim, D.S.; Osamura, R.Y.; Ketterling, R.P.; Lloyd, R.V.; Kim, O.L. Pituitary blastoma. Acta Neuropathol. 2008, 116, 657–666. [Google Scholar] [CrossRef]
- Scheithauer, B.W.; Horvath, E.; Abel, T.W.; Robital, Y.; Park, S.H.; Osamura, R.Y.; Deal, C.; Lloyd, R.V.; Kovacs, K. Pituitary blastoma: A unique embryonal tumor. Pituitary 2012, 15, 365–373. [Google Scholar] [CrossRef]
- de Kock, L.; Sabbaghian, N.; Plourde, F.; Srivastava, A.; Weber, E.; Bouron-Dal Soglio, D.; Hamel, N.; Choi, J.H.; Park, S.H.; Deal, C.L.; et al. Pituitary blastoma: A pathognomonic feature of germ-line DICER1 mutations. Acta Neuropathol. 2014, 128, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Lee, H.K.; Khang, S.K.; Kim, D.W.; Jeong, A.K.; Ahn, K.J.; Choi, C.G.; Suh, D.C. Neuronal tumors of the central nervous system: Radiologic findings and pathologic correlation. Radiographics 2002, 22, 1177–1189. [Google Scholar] [CrossRef] [PubMed]
- Perry, A.; Wesseling, P. Histologic classification of gliomas. Handb. Clin. Neurol. 2016, 134, 71–95. [Google Scholar] [CrossRef] [PubMed]
- Halfpenny, A.M.; Wood, M.D. Review of the Recent Changes in the WHO Classification for Pediatric Brain and Spinal Cord Tumors. Pediatr. Neurosurg. 2023; Online Ahead of Print. [Google Scholar] [CrossRef]
- Wang, Z.; Hao, Y.; Zhang, C.; Wang, Z.; Liu, X.; Li, G.; Sun, L.; Liang, J.; Luo, J.; Zhou, D.; et al. The Landscape of Viral Expression Reveals Clinically Relevant Viruses with Potential Capability of Promoting Malignancy in Lower-Grade Glioma. Clin. Cancer Res. 2017, 23, 2177–2185. [Google Scholar] [CrossRef]
- Shah, A.H.; Gilbert, M.; Ivan, M.E.; Komotar, R.J.; Heiss, J.; Nath, A. The role of human endogenous retroviruses in gliomas: From etiological perspectives and therapeutic implications. Neuro Oncol. 2021, 23, 1647–1655. [Google Scholar] [CrossRef]
- Kleinerman, R.A.; Tucker, M.A.; Tarone, R.E.; Abramson, D.H.; Seddon, J.M.; Stovall, M.; Li, F.P.; Fraumeni, J.F., Jr. Risk of new cancers after radiotherapy in long-term survivors of retinoblastoma: An extended follow-up. J. Clin. Oncol. 2005, 23, 2272–2279. [Google Scholar] [CrossRef]
- Butler, E.; Ludwig, K.; Pacenta, H.L.; Klesse, L.J.; Watt, T.C.; Laetsch, T.W. Recent progress in the treatment of cancer in children. CA Cancer J. Clin. 2021, 71, 315–332. [Google Scholar] [CrossRef]
- Berube, N.G.; Mangelsdorf, M.; Jagla, M.; Vanderluit, J.; Garrick, D.; Gibbons, R.J.; Higgs, D.R.; Slack, R.S.; Picketts, D.J. The chromatin-remodeling protein ATRX is critical for neuronal survival during corticogenesis. J. Clin. Investig. 2005, 115, 258–267. [Google Scholar] [CrossRef]
- Dyer, M.A.; Qadeer, Z.A.; Valle-Garcia, D.; Bernstein, E. ATRX and DAXX: Mechanisms and Mutations. Cold Spring Harb. Perspect. Med. 2017, 7, a026567. [Google Scholar] [CrossRef]
- Lewis, P.W.; Elsaesser, S.J.; Noh, K.M.; Stadler, S.C.; Allis, C.D. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc. Natl. Acad. Sci. USA 2010, 107, 14075–14080. [Google Scholar] [CrossRef]
- Voon, H.P.; Hughes, J.R.; Rode, C.; De La Rosa-Velazquez, I.A.; Jenuwein, T.; Feil, R.; Higgs, D.R.; Gibbons, R.J. ATRX Plays a Key Role in Maintaining Silencing at Interstitial Heterochromatic Loci and Imprinted Genes. Cell Rep. 2015, 11, 405–418. [Google Scholar] [CrossRef] [PubMed]
- Valle-Garcia, D.; Qadeer, Z.A.; McHugh, D.S.; Ghiraldini, F.G.; Chowdhury, A.H.; Hasson, D.; Dyer, M.A.; Recillas-Targa, F.; Bernstein, E. ATRX binds to atypical chromatin domains at the 3’ exons of zinc finger genes to preserve H3K9me3 enrichment. Epigenetics 2016, 11, 398–414. [Google Scholar] [CrossRef] [PubMed]
- Boller, K.; Schonfeld, K.; Lischer, S.; Fischer, N.; Hoffmann, A.; Kurth, R.; Tonjes, R.R. Human endogenous retrovirus HERV-K113 is capable of producing intact viral particles. J. Gen. Virol. 2008, 89, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Heslin, D.J.; Murcia, P.; Arnaud, F.; Van Doorslaer, K.; Palmarini, M.; Lenz, J. A single amino acid substitution in a segment of the CA protein within Gag that has similarity to human immunodeficiency virus type 1 blocks infectivity of a human endogenous retrovirus K provirus in the human genome. J. Virol. 2009, 83, 1105–1114. [Google Scholar] [CrossRef]
- Gianno, F.; Miele, E.; Antonelli, M.; Giangaspero, F. Embryonal tumors in the WHO CNS5 classification: A Review. Indian J. Pathol. Microbiol. 2022, 65, S73–S82. [Google Scholar] [CrossRef]
- MacDonald, T.J. Aggressive infantile embryonal tumors. J. Child Neurol. 2008, 23, 1195–1204. [Google Scholar] [CrossRef]
- Selvadurai, H.J.; Luis, E.; Desai, K.; Lan, X.; Vladoiu, M.C.; Whitley, O.; Galvin, C.; Vanner, R.J.; Lee, L.; Whetstone, H.; et al. Medulloblastoma Arises from the Persistence of a Rare and Transient Sox2(+) Granule Neuron Precursor. Cell Rep. 2020, 31, 107511. [Google Scholar] [CrossRef]
- Johann, P.D.; Hovestadt, V.; Thomas, C.; Jeibmann, A.; Hess, K.; Bens, S.; Oyen, F.; Hawkins, C.; Pierson, C.R.; Aldape, K.; et al. Cribriform neuroepithelial tumor: Molecular characterization of a SMARCB1-deficient non-rhabdoid tumor with favorable long-term outcome. Brain Pathol. 2017, 27, 411–418. [Google Scholar] [CrossRef]
- Cai, C. SWI/SNF deficient central nervous system neoplasms. Semin. Diagn. Pathol. 2021, 38, 167–174. [Google Scholar] [CrossRef]
- Robinson, G.; Parker, M.; Kranenburg, T.A.; Lu, C.; Chen, X.; Ding, L.; Phoenix, T.N.; Hedlund, E.; Wei, L.; Zhu, X.; et al. Novel mutations target distinct subgroups of medulloblastoma. Nature 2012, 488, 43–48. [Google Scholar] [CrossRef]
- Woodley, C.M.; Romer, A.S.; Wang, J.; Guarnaccia, A.D.; Elion, D.L.; Maxwell, J.N.; Guerrazzi, K.; McCann, T.S.; Popay, T.M.; Matlock, B.K.; et al. Multiple interactions of the oncoprotein transcription factor MYC with the SWI/SNF chromatin remodeler. Oncogene 2021, 40, 3593–3609. [Google Scholar] [CrossRef] [PubMed]
- Sammak, S.; Allen, M.D.; Hamdani, N.; Bycroft, M.; Zinzalla, G. The structure of INI1/hSNF5 RPT1 and its interactions with the c-MYC:MAX heterodimer provide insights into the interplay between MYC and the SWI/SNF chromatin remodeling complex. FEBS J. 2018, 285, 4165–4180. [Google Scholar] [CrossRef] [PubMed]
- Chougule, M. Neuropathology of Brain Tumors with Radiologic Correlates; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Mankin, H.J.; Mankin, K.P. Schwannoma: A rare benign tumor of soft tissues. Musculoskelet. Surg. 2014, 98, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Somatilaka, B.N.; Sadek, A.; McKay, R.M.; Le, L.Q. Malignant peripheral nerve sheath tumor: Models, biology, and translation. Oncogene 2022, 41, 2405–2421. [Google Scholar] [CrossRef]
- Vitte, J.; Gao, F.; Coppola, G.; Judkins, A.R.; Giovannini, M. Timing of Smarcb1 and Nf2 inactivation determines schwannoma versus rhabdoid tumor development. Nat. Commun. 2017, 8, 300. [Google Scholar] [CrossRef]
- Kerr, K.; Qualmann, K.; Esquenazi, Y.; Hagan, J.; Kim, D.H. Familial Syndromes Involving Meningiomas Provide Mechanistic Insight Into Sporadic Disease. Neurosurgery 2018, 83, 1107–1118. [Google Scholar] [CrossRef]
- Torchia, J.; Golbourn, B.; Feng, S.; Ho, K.C.; Sin-Chan, P.; Vasiljevic, A.; Norman, J.D.; Guilhamon, P.; Garzia, L.; Agamez, N.R.; et al. Integrated (epi)-Genomic Analyses Identify Subgroup-Specific Therapeutic Targets in CNS Rhabdoid Tumors. Cancer Cell 2016, 30, 891–908. [Google Scholar] [CrossRef]
- Golovnina, K.; Blinov, A.; Akhmametyeva, E.M.; Omelyanchuk, L.V.; Chang, L.S. Evolution and origin of merlin, the product of the Neurofibromatosis type 2 (NF2) tumor-suppressor gene. BMC Evol. Biol. 2005, 5, 69. [Google Scholar] [CrossRef]
- Ogasawara, C.; Philbrick, B.D.; Adamson, D.C. Meningioma: A Review of Epidemiology, Pathology, Diagnosis, Treatment, and Future Directions. Biomedicines 2021, 9, 319. [Google Scholar] [CrossRef]
- Abedalthagafi, M.S.; Bi, W.L.; Merrill, P.H.; Gibson, W.J.; Rose, M.F.; Du, Z.; Francis, J.M.; Du, R.; Dunn, I.F.; Ligon, A.H.; et al. ARID1A and TERT promoter mutations in dedifferentiated meningioma. Cancer Genet. 2015, 208, 345–350. [Google Scholar] [CrossRef]
- Wilson, B.G.; Roberts, C.W. SWI/SNF nucleosome remodellers and cancer. Nat. Rev. Cancer 2011, 11, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.N.; Roberts, C.W. ARID1A mutations in cancer: Another epigenetic tumor suppressor? Cancer Discov. 2013, 3, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.C.; Wang, T.L.; Shih Ie, M. The emerging roles of ARID1A in tumor suppression. Cancer Biol. Ther. 2014, 15, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Gill, C.M.; Loewenstern, J.; Rutland, J.W.; Arib, H.; Pain, M.; Umphlett, M.; Kinoshita, Y.; McBride, R.B.; Bederson, J.; Donovan, M.; et al. SWI/SNF chromatin remodeling complex alterations in meningioma. J. Cancer Res. Clin. Oncol. 2021, 147, 3431–3440. [Google Scholar] [CrossRef] [PubMed]
- Varela, I.; Tarpey, P.; Raine, K.; Huang, D.; Ong, C.K.; Stephens, P.; Davies, H.; Jones, D.; Lin, M.L.; Teague, J.; et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 2011, 469, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Behling, F.; Bersali, I.; Santacroce, A.; Hempel, J.; Kandilaris, K.; Schittenhelm, J.; Tatagiba, M. Transition of a vestibular schwannoma to a malignant peripheral nerve sheath tumor with loss of H3K27 trimethylation after radiosurgery—A case report and review of the literature. Neurosurg. Rev. 2022, 45, 915–922. [Google Scholar] [CrossRef]
- Dreier, M.R.; de la Serna, I.L. SWI/SNF Chromatin Remodeling Enzymes in Melanoma. Epigenomes 2022, 6, 10. [Google Scholar] [CrossRef]
- Park, S.W.; Huq, M.D.; Loh, H.H.; Wei, L.N. Retinoic acid-induced chromatin remodeling of mouse kappa opioid receptor gene. J. Neurosci. 2005, 25, 3350–3357. [Google Scholar] [CrossRef]
Primary CNS Tumors by WHO Classification Diagnosis | WHO Grade(s) | SWI/SNF Mutation(s) | References |
---|---|---|---|
Gliomas, glioneuronal tumors, and neuronal tumors | |||
Adult-type diffuse gliomas | |||
Astrocytoma, IDH-mutant | 2–4 | SMARCE1, SMARCA4, ATRX | [21,22,23,24,25,26] |
Oligodendroglioma, IDH-mutant and 1p/19q-codeleted | 2–3 | BICRA (GLTSCR1); ARID1A | [22,27] |
Glioblastoma, IDH-wildtype | 4 | ATRX | [28,29] |
Pediatric-type diffuse high-grade gliomas | |||
Diffuse midline glioma, H3 K27-altered | 4 | SMARCA4; ATRX | [30,31] |
Diffuse hemispheric glioma, H3 G34-mutant | 4 | ATRX | [32,33,34] |
Circumscribed astrocytic gliomas | |||
Pilocytic astrocytoma | 1 | ATRX 1 | [35] |
High-grade astrocytoma with piloid features | 3–4 | ATRX | [35] |
Pleomorphic xanthroastrocytoma | 2–3 | SMARCB1, ARID1A, ATRX | [36,37,38] |
Glioneuronal and neuronal tumors | |||
Desmoplastic infantile ganglioglioma/desmoplastic infantile astrocytoma | 1 | ATRX 1 | [39,40,41,42] |
Embryonal tumors | |||
Medulloblastoma | |||
Medulloblastoma, WNT-activated | 4 | SMARCA4, SMARCB1, ARID1A, ARID2 | [43] |
Medulloblastoma, non-WNT/non-SHH (Group 3/4) | 4 | SMARCA4 | [43,44] |
Other CNS embryonal tumors | |||
Atypical teratoid/rhabdoid tumor | 4 | SMARCB1, SMARCA4 | [45,46,47,48,49,50] |
Cribriform neuroepithelial tumor | NR | SMARCB1 | [51] |
CNS tumor with BCOR internal tandem duplication | NR | SMARCA2 | [52] |
Pineal tumors | |||
Desmoplastic myxoid tumor of the pineal region, SMARCB1-mutant | NR | SMARCB1 | [53] |
Cranial and paraspinal nerve tumors | |||
Schwannoma | 1 | ARID1A, ARID1B; SMARCB1 | [54,55,56,57,58,59] |
Neurofibroma | 1 | SMARCA2 | [60] |
Malignant peripheral nerve sheath tumor | NR | SMARCB1; ATRX | [61,62,63,64,65,66] |
Meningioma | |||
Clear cell meningioma | 2 | SMARCE1 | [4,5] |
Papillary meningioma | 2–3 | PBRM1 | [59,67] |
Rhabdoid meningioma | 2–3 | PBRM1 | [67] |
Mesenchymal, non-meningothelial tumors involving the CNS | |||
Soft tissue tumors: tumors of uncertain differentiation | |||
Primary intracranial sarcoma, DICER1-mutant | NR | ATRX | [68] |
Notochordal tumors | |||
Chordoma | NR | SMARCB1 | [69,70] |
Germ cell tumors | |||
Immature teratoma | NR | SMARCA4 | [71] |
Primary CNS Tumors by WHO Classification Diagnosis | WHO Grade(s) | HERV(s) Expressed | Non-Human ERV(s) Expressed | References |
---|---|---|---|---|
Gliomas, glioneuronal tumors, and neuronal tumors | ||||
Adult-type diffuse gliomas | ||||
Glioblastoma, IDH-wildtype | 4 | HERV1, HERVK, HERVL, ERV3, HML-6 (ERVK3-1) | - | [78,79] |
Choroid plexus tumors | ||||
Choroid plexus papilloma | 1 | - | Rous sarcoma virus | [72] |
Embryonal tumors | ||||
Other CNS embryonal tumors | ||||
Atypical teratoid/rhabdoid tumor | 4 | HERV-K | - | [10] |
Cranial and paraspinal nerve tumors | ||||
Schwannoma | 1 | HERV-K | - | [59] |
Perineuroma | 1 | - | ALV | [74,76] |
Malignant peripheral nerve sheath tumor | NR | - | ALV | [66] |
Meningioma | ||||
Meningothelial meningioma | 1–3 | HERV-K 1 | - | [59] |
Fibrous meningioma | 1–3 | HERV-K 1 | - | [59] |
Transitional meningioma | 1–3 | HERV-K 1 | - | [59] |
Psammomatous meningioma | 1–3 | HERV-K 1 | - | [59] |
Angiomatous meningioma | 1–3 | HERV-K 1 | - | [59] |
Microcystic meningioma | 1–3 | HERV-K 1 | - | [59] |
Secretory meningioma | 1–3 | HERV-K 1 | - | [59] |
Lymphoplasmacyte-rich meningioma | 1–3 | HERV-K 1 | - | [59] |
Metaplastic meningioma | 1–3 | HERV-K 1 | - | [59] |
Chordoid meningioma | 2 | HERV-K 1 | - | [59] |
Clear cell meningioma | 2 | HERV-K 1 | - | [59] |
Papillary meningioma | 2–3 | HERV-K 1 | - | [59,67] |
Rhabdoid meningioma | 2–3 | HERV-K 1 | - | [59,67] |
Atypical meningioma | 2–3 | HERV-K 1 | - | [59] |
Anaplastic (malignant) meningioma | 3 | HERV-K 1 | - | [59] |
Mesenchymal, non-meningothelial tumors involving the CNS | ||||
Soft tissue tumors: vascular tumors | ||||
Hemangiomas and vascular malformations | NR | - | ALV | [75] |
Soft tissue tumors: skeletal muscle tumors | ||||
Rhabdomyosarcoma | N/A | ERV-9 | Feline endogenous retrovirus | [77] |
Soft tissue tumors: tumors of uncertain differentiation | ||||
Ewing sarcoma | 4 | Syncytin-1, ERV-L | - | [80] |
Melanocytic tumors | ||||
Circumscribed meningeal melanocytic neoplasms | ||||
Melanocytoma and melanoma | NR | - | MMVL30 | [81] |
Hematolymphoid tumors involving the CNS | ||||
Lymphomas: CNS lymphomas | ||||
Primary diffuse large B-cell lymphoma of the CNS | NR | Variety— Unspecified | - | [82] |
Histiocytic tumors | ||||
Langerhans cell histiocytosis | NR | - | Primate type D retroviruses, murine intracisternal A particles, Jaagsiekte sheep retrovirus, and murine long interspersed nuclear elements | [73] |
Germ cell tumors | ||||
Mature teratoma | NR | ERVK24 | - | [83] |
Germinoma | NR | ERVK24 | - | [83] |
Embryonal carcinoma | NR | ERVK24 | - | [83] |
Yolk sac tumor | NR | ERVK24 | - | [83] |
Choriocarcinoma | NR | ERVK24 | - | [83] |
Primary CNS Tumors by WHO Classification Diagnosis | WHO Grade(s) | SWI/SNF Mutation(s) | ERV(s) Expressed | References |
---|---|---|---|---|
Gliomas, glioneuronal tumors, and neuronal tumors | ||||
Adult-type diffuse gliomas | ||||
Glioblastoma, IDH-wildtype | 4 | ATRX | HERV1, HERVK, HERVL, ERV3, HML-6 (ERVK3-1) | [28,29,78,79] |
Embryonal tumors | ||||
Other CNS embryonal tumors | ||||
Atypical teratoid/rhabdoid tumor | 4 | SMARCB1, SMARCA4 | HERV-K, Syncytin-1, Syncytin-2 | [45,46,47,48,49,50] |
Cranial and paraspinal nerve tumors | ||||
Schwannoma | 1 | ARID1A, ARID1B; SMARCB1 | HERV-K | [54,55,56,57,58,59] |
Malignant peripheral nerve sheath tumor | NR | SMARCB1; ATRX | ALV | [61,62,63,64,65,66] |
Meningioma (Merlin(-)) | ||||
Papillary meningioma | 2–3 | PBRM1 | HERV-K 1 | [59,67] |
Rhabdoid meningioma | 2–3 | PBRM1 | HERV-K 1 | [59,67] |
Primary CNS Tumors by WHO Classification Diagnosis | WHO Grade(s) | Pathways Interacting with SWI/SNF | References |
---|---|---|---|
Gliomas, glioneuronal tumors, and neuronal tumors | |||
Adult-type diffuse gliomas | |||
Astrocytoma, IDH-mutant | 2–4 | TP53, MYC, RB1 | [84] |
Oligodendroglioma, IDH-mutant and 1p/19q-codeleted | 2–3 | SETD2, MYC, RB1 | [85,86,87] |
Glioblastoma, IDH-wildtype | 4 | EZHIP, SETD2, TP53, MYC, RB1 | [28,88] |
Pediatric-type diffuse low-grade gliomas | |||
Polymorphous low-grade neuroepithelial tumor of the young | 1 | TP53 1, RB1 1 | [89] |
Pediatric-type diffuse high-grade gliomas | |||
Diffuse midline glioma, H3 K27-altered | 4 | EZHIP, H3K27, TP53 | [4,5,90,91] |
Diffuse hemispheric glioma, H3 G34-mutant | 4 | H3G34, TP53, MYCN | [4,5,92] |
Diffuse pediatric-type high-grade glioma, H3-wildtype, and IDH-wildtype | 4 | TP53, MYCN | [93] |
Circumscribed astrocytic gliomas | |||
Pleomorphic xanthroastrocytoma | 2–3 | TP53 2, NOTCH 2 | [37] |
Astroblastoma, MN1-altered | NR | MN1 | [94] |
Glioneuronal and neuronal tumors | |||
Desmoplastic infantile ganglioglioma/desmoplastic infantile astrocytoma | 1 | TP53 | [39,40,41,42] |
Central neurocytoma | 2 | MYCN | [95] |
Cerebellar liponeurocytoma | 2 | TP53 | [96] |
Ependymal tumors | |||
Supratentorial ependymoma, ZFTA fusion-positive | 2–3 | ZFTA-RELA | [97] |
Supratentorial ependymoma, YAP1 fusion-positive | 2–3 | YAP1 | [98] |
Posterior fossa ependymoma | 2–3 | EZHIP | [99] |
Posterior fossa ependymoma (Group A) | 2–3 | EZHIP | [99] |
Spinal ependymoma, MYCN-amplified | 2–3 | MYCN | [100,101,102,103] |
Choroid plexus tumors | |||
Choroid plexus papilloma | 1 | TP53 2 | [104] |
Choroid plexus carcinoma | 3 | TP53, SHH, NOTCH | [104,105,106] |
Embryonal tumors | |||
Medulloblastoma | |||
Medulloblastoma, WNT-activated | 4 | WNT/CTNNB1, TP53, OCT4 | [4,5,107] |
Medulloblastoma, SHH-activated and TP53-wildtype | 4 | SHH, CREBBP, MYCN, MYCL, YAP1, OCT4 | [4,5,43,107,108,109] |
Medulloblastoma, SHH-activated and TP53-mutant | 4 | TP53, SHH, CREBBP, OCT4 | [4,5,107,108,109] |
Medulloblastoma, non-WNT/non-SHH (Group 3/4) | 4 | MYC | [110] |
Other CNS embryonal tumors | |||
Atypical teratoid/rhabdoid tumor | 4 | SHH, NRAS, MYC | [4,5] |
Embryonal tumor with multilayered rosettes | 4 | LIN28A; TP53 | [4,5,111] |
Pineal tumors | |||
Pineoblastoma | 4 | DICER1; RB1, MYC | [112,113,114] |
Cranial and paraspinal nerve tumors | |||
Malignant peripheral nerve sheath tumor | NR | SUZ12, EED, H3K27, TP53 | [4,5,115,116,117] |
Meningioma | |||
Secretory meningioma | 1–3 | KLF4 | [118] |
Atypical meningioma | 2–3 | TP53 | [5,119] |
Anaplastic (malignant) meningioma | 3 | H3K27, TP53 | [4,5,119] |
Mesenchymal, non-meningothelial tumors involving the CNS | |||
Soft tissue tumors: fibroblastic and myofibroblastic tumors | |||
Solitary fibrous tumor | 1–3 | EP300, TP53 | [5,120,121,122] |
Soft tissue tumors: tumors of uncertain differentiation | |||
Intracranial mesenchymal tumor, FET::CREB fusion-positive | N/A | FET/CREBBP | [123] |
CIC-rearranged sarcoma | 4 | NUTM1 | [4,5] |
Primary intracranial sarcoma, DICER1-mutant | NR | DICER1; TP53 | [5,112] |
Ewing sarcoma | 4 | FET; TP53 | [5,123,124,125,126] |
Chondro-osseous tumors: chondrogenic tumors | |||
Mesenchymal chondrosarcoma | NR | NOTCH, NCoA-2 | [127] |
Chondrosarcoma | 1–3 | RB1, H3K36 | [128,129,130] |
Melanocytic tumors | |||
Diffuse meningeal melanocytic neoplasms | |||
Melanocytosis and melanomatosis | NR | YAP1 | [131] |
Circumscribed meningeal melanocytic neoplasms | |||
Melanocytoma and melanoma | NR | YAP1 | [131] |
Hematolymphoid tumors involving the CNS | |||
Lymphomas: CNS lymphomas | |||
Primary diffuse large B-cell lymphoma of the CNS | NR | MYC | [132] |
Lymphomas: miscellaneous rare lymphomas in the CNS | |||
MALT lymphoma of the dura | NR | NOTCH | [4,5] |
Histiocytic tumors | |||
Erdheim–Chester disease | NR | NRAS | [133] |
Germ cell tumors | |||
Mature teratoma | NR | JMJD1C, RB1 | [4,5,134,135] |
Immature teratoma | NR | JMJD1C, RB1 | [4,5,134,135] |
Teratoma with somatic-type malignancy | NR | JMJD1C | [4,5,134] |
Germinoma | NR | JMJD1C, LIN28A, TP53, RB1 | [4,5,134,135,136] |
Embryonal carcinoma | NR | JMJD1C, LIN28A, RB1 | [4,5,134,135] |
Yolk sac tumor | NR | JMJD1C, LIN28A, RB1; TP53 | [4,5,134,135,136] |
Choriocarcinoma | NR | JMJD1C, RB1 | [4,5,134,135] |
Mixed germ cell tumor | NR | JMJD1C, RB1 | [4,5,134,135] |
Tumors of the sellar region | |||
Adamantinomatous craniopharyngioma | 1 | SHH, CTNNB1 | [137] |
Pituitary adenoma/pituitary neuroendocrine tumor | NR | Ik1, Ik2, TP53 | [138,139] |
Pituitary blastoma | NR | DICER1, TP53 | [4,5,140,141,142] |
Primary CNS Tumors by WHO Classification Diagnosis | WHO Grade(s) | SWI/SNF Mutation(s) | Other Epigenetic Pathways Implicated | Human ERV(s) | Non-Human ERV(s) |
---|---|---|---|---|---|
Gliomas, glioneuronal tumors, and neuronal tumors | |||||
Pediatric-type diffuse low-grade gliomas | |||||
Diffuse astrocytoma, MYB-or MYBL1-altered | 1 | N/A | N/A | N/A | N/A |
Angiocentric glioma | 1 | N/A | N/A | N/A | N/A |
Polymorphous low-grade neuroepithelial tumor of the young | 1 | N/A | TP53 1; RB1 1 | N/A | N/A |
Diffuse low-grade glioma, MAPK pathway-altered | 1 | N/A | N/A | N/A | N/A |
Pediatric-type diffuse high-grade gliomas | |||||
Infant-type hemispheric glioma | NR | N/A | N/A | N/A | N/A |
Circumscribed astrocytic gliomas | |||||
Pilocytic astrocytoma | 1 | ATRX 2 | N/A | N/A | N/A |
Subependymal giant cell astrocytoma | 1 | N/A | N/A | N/A | N/A |
Chordoid glioma | 2 | N/A | N/A | N/A | N/A |
Glioneuronal and neuronal tumors | |||||
Ganglioglioma | 1 | N/A | N/A | N/A | N/A |
Gangliocytoma | 1 | N/A | N/A | N/A | N/A |
Desmoplastic infantile ganglioglioma/desmoplastic infantile astrocytoma | 1 | ATRX 2 | TP53 2 | N/A | N/A |
Dysembryoplastic neuroepithelial tumor | 1 | N/A | N/A | N/A | N/A |
Diffuse glioneuronal tumor with oligodendroglioma-like features and nuclear clusters | NR | N/A | N/A | N/A | N/A |
Papillary glioneuronal tumor | 1 | N/A | N/A | N/A | N/A |
Rosette-forming glioneuronal tumor | 1 | N/A | N/A | N/A | N/A |
Myxoid glioneuronal tumor | 1 | N/A | N/A | N/A | N/A |
Diffuse leptomeningeal glio- neuronal tumor | NR | N/A | N/A | N/A | N/A |
Multinodular and vacuolating neuronal tumor | 1 | N/A | N/A | N/A | N/A |
Dysplastic cerebellar gangliocytoma (Lhermitte-Duclos disease) | 1 | N/A | N/A | N/A | N/A |
Extraventricular neurocytoma | 2 | N/A | N/A | N/A | N/A |
Ependymal tumors | |||||
Supratentorial ependymoma (fusion-negative) | 2–3 | N/A | N/A | N/A | N/A |
Posterior fossa group B (PFB) ependymoma | 2–3 | N/A | N/A | N/A | N/A |
Spinal ependymoma | 2–3 | N/A | N/A | N/A | N/A |
Myxopapillary ependymoma | 2 | N/A | N/A | N/A | N/A |
Subependymoma | 1 | N/A | N/A | N/A | N/A |
Choroid plexus tumors | |||||
Atypical choroid plexus papilloma | 2 | N/A | N/A | N/A | N/A |
Embryonal tumors | |||||
Other CNS embryonal tumors | |||||
CNS neuroblastoma, FOXR2- activated | 4 | N/A | N/A | N/A | N/A |
CNS embryonal tumor NEC/NOS | 3–4 | N/A | N/A | N/A | N/A |
Pineal tumors | |||||
Pineocytoma | 1 | N/A | N/A | N/A | N/A |
Pineal parenchymal tumor of intermediate differentiation | 2–3 | N/A | N/A | N/A | N/A |
Papillary tumor of the pineal region | 2–3 | N/A | N/A | N/A | N/A |
Cranial and paraspinal nerve tumors | |||||
Hybrid nerve sheath tumors 3 | NR | N/A | N/A | N/A | N/A |
Malignant melanocytic nerve sheath tumor | NR | N/A | N/A | N/A | N/A |
Cauda equina neuroendocrine tumor (previously paraganglioma) | 1 | N/A | N/A | N/A | N/A |
Mesenchymal, non-meningothelial tumors involving the CNS | |||||
Soft tissue tumors: vascular tumors | |||||
Hemangioblastoma | 1 | N/A | N/A | N/A | N/A |
Hematolymphoid tumors involving the CNS | |||||
Lymphomas: CNS lymphomas | |||||
Immunodeficiency-associated CNS lymphomas | NR | N/A | N/A | N/A | N/A |
Lymphomatoid granulomatosis | 1–3 | N/A | N/A | N/A | N/A |
Intravascular large B-cell lymphoma | NR | N/A | N/A | N/A | N/A |
Lymphomas: miscellaneous rare lymphomas in the CNS | |||||
Other low-grade B-cell lymphomas of the CNS | NR | N/A | N/A | N/A | N/A |
Anaplastic large cell lymphoma (ALK+/ALK−) | NR | N/A | N/A | N/A | N/A |
T-cell and NK/T-cell lymphomas | NR | N/A | N/A | N/A | N/A |
Histiocytic tumors | |||||
Rosai–Dorfman disease | NR | N/A | N/A | N/A | N/A |
Juvenile xanthogranuloma | NR | N/A | N/A | N/A | N/A |
Histiocytic sarcoma | NR | N/A | N/A | N/A | N/A |
Tumors of the sellar region | |||||
Papillary craniopharyngioma | 1 | N/A | N/A | N/A | N/A |
Pituicytoma, granular cell tumor of the sellar region, spindle cell oncocytoma | NR | N/A | N/A | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dang, D.D.; Rosenblum, J.S.; Shah, A.H.; Zhuang, Z.; Doucet-O’Hare, T.T. Epigenetic Regulation in Primary CNS Tumors: An Opportunity to Bridge Old and New WHO Classifications. Cancers 2023, 15, 2511. https://doi.org/10.3390/cancers15092511
Dang DD, Rosenblum JS, Shah AH, Zhuang Z, Doucet-O’Hare TT. Epigenetic Regulation in Primary CNS Tumors: An Opportunity to Bridge Old and New WHO Classifications. Cancers. 2023; 15(9):2511. https://doi.org/10.3390/cancers15092511
Chicago/Turabian StyleDang, Danielle D., Jared S. Rosenblum, Ashish H. Shah, Zhengping Zhuang, and Tara T. Doucet-O’Hare. 2023. "Epigenetic Regulation in Primary CNS Tumors: An Opportunity to Bridge Old and New WHO Classifications" Cancers 15, no. 9: 2511. https://doi.org/10.3390/cancers15092511
APA StyleDang, D. D., Rosenblum, J. S., Shah, A. H., Zhuang, Z., & Doucet-O’Hare, T. T. (2023). Epigenetic Regulation in Primary CNS Tumors: An Opportunity to Bridge Old and New WHO Classifications. Cancers, 15(9), 2511. https://doi.org/10.3390/cancers15092511