High BMI and Surgical Time Are Significant Predictors of Lymphocele after Robot-Assisted Radical Prostatectomy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Group
2.2. Surgical Technique
2.3. Data Acquisition and Follow-Up
2.3.1. Preoperative Data Set (Patient-Related Risk Factors)
2.3.2. Perioperative Data Set (Procedure- and Surgeon-Related Risk Factors)
2.3.3. Postoperative Follow-Up
2.4. Statistical Analysis
3. Results
3.1. Incidence of Lymphoceles (LCs)
3.2. Multivariate Analysis (LCs)
3.3. Incidence of Symptomatic Lymphoceles (sLCs)
3.4. Multivariate Analysis (sLC)
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thompson, I.; Thrasher, J.B.; Aus, G.; Burnett, A.L.; Canby-Hagino, E.D.; Cookson, M.S.; D’Amico, A.V.; Dmochowski, R.R.; Eton, D.T.; Forman, J.D.; et al. Guideline for the Management of Clinically Localized Prostate Cancer: 2007 Update. J. Urol. 2007, 177, 2106–2131. [Google Scholar] [CrossRef] [PubMed]
- Mottet, N.; Bellmunt, J.; Bolla, M.; Briers, E.; Cumberbatch, M.G.; de Santis, M.; Fossati, N.; Gross, T.; Henry, A.M.; Joniau, S.; et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2017, 71, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Orvieto, M.A.; Coelho, R.F.; Chauhan, S.; Palmer, K.J.; Rocco, B.; Patel, V.R. Incidence of Lymphoceles after Robot-Assisted Pelvic Lymph Node Dissection. BJU Int. 2011, 108, 1185–1190. [Google Scholar] [CrossRef] [PubMed]
- Keskin, M.S.; Argun, Ö.B.; Öbek, C.; Tufek, I.; Tuna, M.B.; Mourmouris, P.; Erdoğan, S.; Kural, A.R. The Incidence and Sequela of Lymphocele Formation after Robot-Assisted Extended Pelvic Lymph Node Dissection. BJU Int. 2016, 118, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Stolzenburg, J.-U.; Arthanareeswaran, V.K.A.; Dietel, A.; Franz, T.; Liatsikos, E.; Kyriazis, I.; Ganzer, R.; Yaney, K.; Do, H.M. Four-Point Peritoneal Flap Fixation in Preventing Lymphocele Formation Following Radical Prostatectomy. Eur. Urol. Oncol. 2018, 1, 443–448. [Google Scholar] [CrossRef]
- Lebeis, C.; Canes, D.; Sorcini, A.; Moinzadeh, A. Novel Technique Prevents Lymphoceles after Transperitoneal Robotic-Assisted Pelvic Lymph Node Dissection: Peritoneal Flap Interposition. Urology 2015, 85, 1505–1509. [Google Scholar] [CrossRef]
- Gloger, S.; Ubrig, B.; Boy, A.; Leyh-Bannurah, S.-R.; Siemer, S.; Arndt, M.; Stolzenburg, J.-U.; Franz, T.; Oelke, M.; Witt, J.H. Bilateral Peritoneal Flaps Reduce Incidence and Complications of Lymphoceles after Robotic Radical Prostatectomy with Pelvic Lymph Node Dissection—Results of the Prospective Randomized Multicenter Trial ProLy. J. Urol. 2022, 208, 333–340. [Google Scholar] [CrossRef]
- Novara, G.; Ficarra, V.; Rosen, R.C.; Artibani, W.; Costello, A.; Eastham, J.A.; Graefen, M.; Guazzoni, G.; Shariat, S.F.; Stolzenburg, J.U.; et al. Systematic Review and Meta-Analysis of Perioperative Outcomes and Complications after Robot-Assisted Radical Prostatectomy. Eur. Urol. 2012, 62, 431–452. [Google Scholar] [CrossRef]
- Heers, H.; Laumeier, T.; Olbert, P.J.; Hofmann, R.; Hegele, A. Lymphoceles Post-Radical Retropubic Prostatectomy: A Retrospective Evaluation of Epidemiology, Risk Factors and Outcome. Urol. Int. 2015, 95, 400–405. [Google Scholar] [CrossRef]
- Magistro, G.; Tuong-Linh Le, D.; Westhofen, T.; Buchner, A.; Schlenker, B.; Becker, A.; Stief, C.G. Occurrence of Symptomatic Lymphocele after Open and Robot-Assisted Radical Prostatectomy. Cent. Eur. J. Urol. 2021, 74, 341–347. [Google Scholar]
- Tsaur, I.; Thomas, C. Risk Factors, Complications and Management of Lymphocele Formation after Radical Prostatectomy: A Mini-Review. Int. J. Urol. 2019, 26, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Ziewers, S.; Thomas, A.; Dotzauer, R.; Bartsch, G.; Haferkamp, A.; Tsaur, I. Development of Symptomatic Lymphoceles after Radical Prostatectomy and Pelvic Lymph Node Dissection Is Independent of Surgical Approach: A Single-Center Analysis. Int. Urol. Nephrol. 2019, 51, 633–640. [Google Scholar] [CrossRef]
- Khoder, W.Y.; Trottmann, M.; Buchner, A.; Stuber, A.; Hoffmann, S.; Stief, C.G.; Becker, A.J. Risk Factors for Pelvic Lymphoceles Post-Radical Prostatectomy. Int. J. Urol. 2011, 18, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Motterle, G.; Morlacco, A.; Zanovello, N.; Ahmed, M.E.; Zattoni, F.; Karnes, R.J.; Dal Moro, F. Surgical Strategies for Lymphocele Prevention in Minimally Invasive Radical Prostatectomy and Lymph Node Dissection: A Systematic Review. J. Endourol. 2020, 34, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.T.; Ham, W.S.; Koo, K.C.; Choi, Y.D. Efficacy of Octreotide for Management of Lymphorrhea after Pelvic Lymph Node Dissection in Radical Prostatectomy. Urology 2010, 76, 398–401. [Google Scholar] [CrossRef]
- Abaza, R.; Henderson, S.J.; Martinez, O. Robotic Vessel Sealer Device for Lymphocele Prevention after Pelvic Lymphadenectomy: Results of a Randomized Trial. J. Laparoendosc. Adv. Surg. Tech. A 2021, 32, 721–726. [Google Scholar] [CrossRef]
- Yuh, B.E.; Ruel, N.H.; Mejia, R.; Novara, G.; Wilson, T.G. Standardized Comparison of Robot-Assisted Limited and Extended Pelvic Lymphadenectomy for Prostate Cancer. BJU Int. 2013, 112, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Suardi, N.; Larcher, A.; Haese, A.; Ficarra, V.; Govorov, A.; Buffi, N.M.; Walz, J.; Rocco, B.; Borghesi, M.; Steuber, T.; et al. Indication for and Extension of Pelvic Lymph Node Dissection during Robot-Assisted Radical Prostatectomy: An Analysis of Five European Institutions. Eur. Urol. 2014, 66, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Lee, Z.; Eun, D.D. Utilization of a Peritoneal Interposition Flap to Prevent Symptomatic Lymphoceles after Robotic Radical Prostatectomy and Bilateral Pelvic Lymph Node Dissection. J. Endourol. 2020, 34, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Student, V.; Tudos, Z.; Studentova, Z.; Cesak, O.; Studentova, H.; Repa, V.; Purova, D. Effect of Peritoneal Fixation (PerFix) on Lymphocele Formation in Robot-Assisted Radical Prostatectomy with Pelvic Lymphadenectomy: Results of a Randomized Prospective Trial. Eur. Urol. 2023, 83, 154–162. [Google Scholar] [CrossRef]
- Deutsch, S.; Hadaschik, B.; Lebentrau, S.; Ubrig, B.; Burger, M.; May, M. Clinical Importance of a Peritoneal Interposition Flap to Prevent Symptomatic Lymphoceles after Robot-Assisted Radical Prostatectomy and Pelvic Lymph Node Dissection: A Systematic Review and Meta-Analysis. Urol. Int. 2022, 106, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Bründl, J.; Lenart, S.; Stojanoski, G.; Gilfrich, C.; Rosenhammer, B.; Stolzlechner, M.; Ponholzer, A.; Dreissig, C.; Weikert, S.; Burger, M.; et al. Peritoneal Flap in Robot-Assisted Radical Prostatectomy. Dtsch. Aerzteblatt Online 2020, 117, 243–250. [Google Scholar] [CrossRef]
- Capitanio, U.; Pellucchi, F.; Gallina, A.; Briganti, A.; Suardi, N.; Salonia, A.; Abdollah, F.; Di Trapani, E.; Jeldres, C.; Cestari, A.; et al. How Can We Predict Lymphorrhoea and Clinically Significant Lymphocoeles after Radical Prostatectomy and Pelvic Lymphadenectomy? Clinical Implications. BJU Int. 2011, 107, 1095–1101. [Google Scholar] [CrossRef] [PubMed]
- Naselli, A.; Andreatta, R.; Introini, C.; Fontana, V.; Puppo, P. Predictors of Symptomatic Lymphocele after Lymph Node Excision and Radical Prostatectomy. Urology 2010, 75, 630–635. [Google Scholar] [CrossRef]
- Goßler, C.; May, M.; Breyer, J.; Stojanoski, G.; Weikert, S.; Lenart, S.; Ponholzer, A.; Dreissig, C.; Burger, M.; Gilfrich, C.; et al. High BMI, Aggressive Tumours and Long Console Time Are Independent Predictive Factors for Symptomatic Lymphocele Formation after Robot-Assisted Radical Prostatectomy and Pelvic Lymph Node Dissection. Urol. Int. 2021, 105, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Sforza, S.; Tellini, R.; Grosso, A.A.; Zaccaro, C.; Viola, L.; Di Maida, F.; Mari, A.; Carini, M.; Minervini, A.; Masieri, L. Can We Predict the Development of Symptomatic Lymphocele Following Robot-Assisted Radical Prostatectomy and Lymph Node Dissection? Results from a Tertiary Referral Centre. Scand. J. Urol. 2020, 54, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Goßler, C.; May, M.; Rosenhammer, B.; Breyer, J.; Stojanoski, G.; Weikert, S.; Lenart, S.; Ponholzer, A.; Dreissig, C.; Burger, M.; et al. Obesity Leads to a Higher Rate of Positive Surgical Margins in the Context of Robot-Assisted Radical Prostatectomy. Results of a Prospective Multicenter Study. Cent. Eur. J. Urol. 2020, 73, 457. [Google Scholar] [CrossRef]
- Nishimura, S.; Manabe, I.; Nagai, R. Adipose Tissue Inflammation in Obesity and Metabolic Syndrome. Discov. Med. 2009, 8, 55–60. [Google Scholar]
- Porcaro, A.B.; Sebben, M.; Tafuri, A.; de Luyk, N.; Corsi, P.; Processali, T.; Pirozzi, M.; Rizzetto, R.; Amigoni, N.; Mattevi, D.; et al. Body Mass Index Is an Independent Predictor of Clavien-Dindo Grade 3 Complications in Patients Undergoing Robot Assisted Radical Prostatectomy with Extensive Pelvic Lymph Node Dissection. J. Robot. Surg. 2019, 13, 83–89. [Google Scholar] [CrossRef]
- Mundhenk, J.; Hennenlotter, J.; Alloussi, S.; Selbherr, D.; Martzog, J.C.; Todenhöfer, T.; Kruck, S.; Schwentner, C.; Stenzl, A.; Schilling, D. Influence of Body Mass Index, Surgical Approach and Lymphadenectomy on the Development of Symptomatic Lymphoceles after Radical Prostatectomy. Urol. Int. 2013, 90, 270–276. [Google Scholar] [CrossRef]
- Lee, J.Y.; Diaz, R.R.; Cho, K.S.; Yu, H.S.; Chung, J.S.; Ham, W.S.; Choi, Y.D. Lymphocele after Extraperitoneal Robot-Assisted Radical Prostatectomy: A Propensity Score-Matching Study. Int. J. Urol. 2013, 20, 1169–1176. [Google Scholar] [CrossRef]
- Porcaro, A.B.; Rizzetto, R.; Bianchi, A.; Gallina, S.; Serafin, E.; Panunzio, A.; Tafuri, A.; Cerrato, C.; Migliorini, F.; Zecchini Antoniolli, S.; et al. American Society of Anesthesiologists (ASA) Physical Status System Predicts the Risk of Postoperative Clavien–Dindo Complications Greater than One at 90 Days after Robot-Assisted Radical Prostatectomy: Final Results of a Tertiary Referral Center. J. Robot. Surg. 2022, 1–7. [Google Scholar] [CrossRef]
- Touijer, K.A.; Sjoberg, D.D.; Benfante, N.; Laudone, V.P.; Ehdaie, B.; Eastham, J.A.; Scardino, P.T.; Vickers, A. Limited versus Extended Pelvic Lymph Node Dissection for Prostate Cancer: A Randomized Clinical Trial. Eur. Urol. Oncol. 2021, 4, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Lestingi, J.F.P.; Guglielmetti, G.B.; Trinh, Q.D.; Coelho, R.F.; Pontes, J.; Bastos, D.A.; Cordeiro, M.D.; Sarkis, A.S.; Faraj, S.F.; Mitre, A.I.; et al. Extended Versus Limited Pelvic Lymph Node Dissection During Radical Prostatectomy for Intermediate- and High-Risk Prostate Cancer: Early Oncological Outcomes from a Randomized Phase 3 Trial. Eur. Urol. 2021, 79, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Cacciamani, G.E.; Maas, M.; Nassiri, N.; Ortega, D.; Gill, K.; Dell’Oglio, P.; Thalmann, G.N.; Heidenreich, A.; Eastham, J.A.; Evans, C.P.; et al. Impact of Pelvic Lymph Node Dissection and Its Extent on Perioperative Morbidity in Patients Undergoing Radical Prostatectomy for Prostate Cancer: A Comprehensive Systematic Review and Meta-Analysis. Eur. Urol. Oncol. 2021, 4, 134–149. [Google Scholar] [CrossRef] [PubMed]
Potential Risk Factor | Patients w/o Lymphocele (n = 338) | Patients with Lymphocele (n = 129) | p |
---|---|---|---|
Preoperative variables | |||
Age (Years, IQR) | 66 (60–70) | 65 (60–70) | 0.8 a |
BMI (kg/m2, IQR) | 26.3 (24.4–28.7) | 27.8 (25.8–30.4) | <0.001 a |
BMI ≥ 30 kg/m2 (n, %) | 58 (17) | 39 (30) | 0.002 b |
Prostate volume (mL, IQR) | 40 (30–50) | 41 (30–60) | 0.08 a |
PSA (ng/mL, IQR) | 7.2 (5.2–11) | 7.2 (5.3–10.3) | 0.8 a |
Median CCI (SD) | 2.2 (0.5) | 2.3 (0.5) | 0.4 a |
ASA Score >1 (n, %) | 284 (86) | 113 (88) | 0.6 b |
ASA Score 3 (n, %) | 42 (13) | 18 (14) | 0.7 b |
Intra- and perioperative variables | |||
Surgery time (minutes, IQR) | 160 (140–182) | 180 (150–200) | 0.001 a |
Blood loss (mL, IQR) | 150 (100–250) | 150 (100–250) | 0.2 a |
Inpatient length of stay (days, SD) | 7.2 (5.3) | 7.5 (4.4) | 0.02 a |
Drainage (n, %) | 65 (20) | 21 (16) | 0.5 b |
Pathological variables | |||
Total lymph nodes (n, %) | 14 (11–19) | 14 (11–18) | 0.5 b |
ISUP-GGG ≥3 (n, %) | 132 (40) | 60 (47) | 0.15 b |
T-stage >pT2 (n, %) | 141 (43) | 47 (38) | 0.3 b |
Nodal status pN1 (n, %) | 25 (8) | 10 (8) | 0.9 b |
R1status (n, %) | 35 (11) | 11 (9) | 0.5 b |
Univariate | Multivariate | |||||||
---|---|---|---|---|---|---|---|---|
95% CI | 95% CI | |||||||
Potential Risk Factor | OR | Lower Bound | Upper Bound | p | OR | Lower Bound | Upper Bound | p |
Preoperative variables | ||||||||
Age (Years, continuous) | 0.99 | 0.97 | 1.03 | 0.9 | ||||
BMI (metric) | 1.1 | 1.04 | 1.15 | <0.001 | 1.07 | 1.01 | 1.13 | 0.03 |
BMI (≥30kg/m2 vs. <30kg/m2) | 2.12 | 1.32 | 3.39 | 0.002 | ||||
Prostate volume (mL, continuous) | 1.01 | 1 | 1.02 | 0.049 | ||||
PSA (ng/mL, continuous) | 0.99 | 0.98 | 1.01 | 0.7 | ||||
CCI (≥1 vs. 0) | 1.12 | 0.78 | 1.63 | 0.5 | ||||
ASA Score (>1 vs. 1) | 1.17 | 0.64 | 2.15 | 0.6 | ||||
ASA Score (3 vs. <3) | 1.12 | 0.62 | 2.02 | 0.7 | ||||
Intra- and perioperative variables | ||||||||
Surgery time (minutes, continuous) | 1.01 | 1.004 | 1.01 | <0.001 | 1.01 | 1.002 | 1.01 | 0.007 |
Blood loss (mL, continuous) | 1 | 1 | 1.002 | 0.1 | ||||
Length of stay (days, continuous) | 1.01 | 0.97 | 1.05 | 0.5 | ||||
Study group (Control vs. peritoneal flap) | 1.75 | 1.16 | 2.64 | 0.008 | 1.99 | 1.26 | 3.15 | 0.003 |
Drainage (yes vs. no) | 0.82 | 0.48 | 1.4 | 0.5 | ||||
Pathological variables | ||||||||
Total lymph nodes (continuous) | 0.99 | 0.96 | 1.03 | 0.6 | ||||
ISUP-GGG (3–5 vs. 1–2) | 1.02 | 0.85 | 1.23 | 0.8 | ||||
T-stage (>pT2 vs. pT2) | 0.82 | 0.54 | 1.25 | 0.4 | ||||
Nodal status (pN1 vs. pN0) | 1.06 | 0.49 | 2.27 | 0.9 | ||||
R-status (R1 vs. R0) | 0.9 | 0.52 | 1.58 | 0.7 |
Potential Risk Factor | Pat. w/o Sympt. Lymphocele (n = 448) | Pat. with Sympt. Lymphocele (n = 27) | p |
---|---|---|---|
Preoperative variables | |||
Age (years, IQR) | 66 (60–70) | 66 (63–72) | 0.3 a |
BMI (kg/m2, IQR) | 26.6 (24.5–29.2) | 29 (26.2–32) | 0.007 a |
BMI ≥ 30 kg/m2 (n, %) | 88 (20) | 10 (39) | 0.023 b |
Prostate volume (mL, IQR) | 40 (30–53) | 41 (30–55) | 0.7 a |
PSA (ng/mL, IQR) | 7.2 (5.3–10.6) | 7.3 (4.8–14.4) | 0.9 a |
Median CCI (SD) | 2.3 (0.5) | 2.3 (0.5) | 0.3 a |
ASA Score >1 (n, %) | 381 (86) | 22 (85) | 0.8 c |
ASA Score 3 (n, %) | 59 (13) | 2 (7.7) | 0.4 c |
Intra- and perioperative variables | |||
Surgery time (min, IQR) | 160 (140–190) | 151 (150–182) | 0.6 a |
Blood loss (mL, IQR) | 150 (100–250) | 200 (150–300) | 0.032 a |
Length of stay (days, SD) | 7.3 (5.2) | 7 (2.3) | 0.3 a |
Drainage (n, %) | 81 (18) | 5 (19) | >0.9 c |
Pathological variables | |||
Total lymph nodes (n, %) | 14 (11–18) | 13 (11–20) | 0.8 b |
ISUP-GGG ≥ 3 (n, %) | 181 (41) | 13 (50) | 0.4 b |
T-stage >pT2 (n, %) | 181 (41) | 10 (44) | 0.8 b |
Nodal status pN1 (n, %) | 33 (10) | 2 (8) | >0.9 c |
R1-Status (n, %) | 46 (14) | 2 (8) | >0.9 c |
Univariate | Multivariate | |||||||
---|---|---|---|---|---|---|---|---|
95% CI | 95% CI | |||||||
Potential Risk Factor | OR | Lower Bound | Upper Bound | p | OR | Lower Bound | Upper Bound | p |
Preoperative variables | ||||||||
Age (years, continuous) | 1.02 | 0.97 | 1.08 | 0.4 | ||||
BMI (metric) | 1.08 | 0.99 | 1.18 | 0.054 | ||||
BMI (≥30 kg/m2 vs. <30 kg/m2) | 2.53 | 1.11 | 5.76 | 0.027 | 2.86 | 1.18 | 6.9 | 0.02 |
Prostate volume (mL, continuous) | 1.002 | 0.98 | 1.02 | 0.9 | ||||
PSA (ng/mL, continuous) | 1.01 | 0.99 | 1.03 | 0.3 | ||||
CCI (≥1 vs. 0) | 1.19 | 0.61 | 2.35 | 0.6 | ||||
ASA Score (>1 vs. 1) | 0.87 | 0.29 | 2.6 | 0.8 | ||||
ASA Score (3 vs. <3) | 0.54 | 0.12 | 2.34 | 0.4 | ||||
Intra- and perioperative variables | ||||||||
Surgery time (min, continuous) | 1 | 0.99 | 1.01 | 0.7 | ||||
Blood loss (mL, continuous) | 1 | 0.99 | 1.002 | 0.3 | ||||
Length of stay (days, continuous) | 0.98 | 0.88 | 1.09 | 0.7 | ||||
Study group (control vs. peritoneal flap) | 2.53 | 1.08 | 5.9 | 0.032 | ||||
Drainage (yes vs. no) | 1.03 | 0.38 | 2.8 | 0.9 | ||||
Pathological variables | ||||||||
Total lymph nodes (continuous) | 1.01 | 0.94 | 1.08 | 0.9 | ||||
ISUP-GGG (3–5 vs. 1–2) | 0.98 | 0.68 | 1.4 | 0.9 | ||||
T-stage (>pT2 vs. pT2) | 1.11 | 0.48 | 2.59 | 0.8 | ||||
Nodal status (pN1 vs. pN0) | 1.03 | 0.23 | 4.53 | 0.9 | ||||
R-Status (R1 vs. R0) | 0.65 | 0.17 | 2.55 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gloger, S.; Wagner, C.; Leyh-Bannurah, S.-R.; Siemer, S.; Arndt, M.; Stolzenburg, J.-U.; Franz, T.; Ubrig, B. High BMI and Surgical Time Are Significant Predictors of Lymphocele after Robot-Assisted Radical Prostatectomy. Cancers 2023, 15, 2611. https://doi.org/10.3390/cancers15092611
Gloger S, Wagner C, Leyh-Bannurah S-R, Siemer S, Arndt M, Stolzenburg J-U, Franz T, Ubrig B. High BMI and Surgical Time Are Significant Predictors of Lymphocele after Robot-Assisted Radical Prostatectomy. Cancers. 2023; 15(9):2611. https://doi.org/10.3390/cancers15092611
Chicago/Turabian StyleGloger, Simon, Christian Wagner, Sami-Ramzi Leyh-Bannurah, Stefan Siemer, Madeleine Arndt, Jens-Uwe Stolzenburg, Toni Franz, and Burkhard Ubrig. 2023. "High BMI and Surgical Time Are Significant Predictors of Lymphocele after Robot-Assisted Radical Prostatectomy" Cancers 15, no. 9: 2611. https://doi.org/10.3390/cancers15092611
APA StyleGloger, S., Wagner, C., Leyh-Bannurah, S. -R., Siemer, S., Arndt, M., Stolzenburg, J. -U., Franz, T., & Ubrig, B. (2023). High BMI and Surgical Time Are Significant Predictors of Lymphocele after Robot-Assisted Radical Prostatectomy. Cancers, 15(9), 2611. https://doi.org/10.3390/cancers15092611