The Role of HER2 Status in the Biliary Tract Cancers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Prognostic Role of HER2 Status in BTC
3. HER2 Alterations in BTC
4. Resistance to Anti-HER2 Therapies
5. Completed and Ongoing Clinical Trials
6. Conclusions—Concluding Remarks and Future Perspectives
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kam, A.E.; Masood, A.; Shroff, R.T. Current and emerging therapies for advanced biliary tract cancers. Lancet Gastroenterol. Hepatol. 2021, 6, 956–969. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.Y.; Bang, Y.J. HER2-targeted therapies—A role beyond breast cancer. Nat. Rev. Clin. Oncol. 2020, 17, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Clements, O.; Eliahoo, J.; Kim, J.U.; Taylor-Robinson, S.D.; Khan, S.A. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: A systematic review and meta-analysis. J. Hepatol. 2020, 72, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Valle, J.; Wasan, H.; Palmer, D.H.; Cunningham, D.; Anthoney, A.; Maraveyas, A.; Madhusudan, S.; Iveson, T.; Hughes, S.; Pereira, S.P.; et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N. Engl. J. Med. 2010, 362, 1273–1281. [Google Scholar] [CrossRef]
- Lamarca, A.; Palmer, D.H.; Wasan, H.S.; Ross, P.J.; Ma, Y.T.; Arora, A.; Falk, S.; Gillmore, R.; Wadsley, J.; Patel, K.; et al. Second-line FOLFOX chemotherapy versus active symptom control for advanced biliary tract cancer (ABC-06): A phase 3, open-label, randomised, controlled trial. Lancet Oncol. 2021, 22, 690–701. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Sahai, V.; Hollebecque, A.; Vaccaro, G.; Melisi, D.; Al-Rajabi, R.; Paulson, A.S.; Borad, M.J.; Gallinson, D.; Murphy, A.G.; et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: A multicentre, open-label, phase 2 study. Lancet Oncol. 2020, 21, 671–684. [Google Scholar] [CrossRef]
- Javle, M.; Roychowdhury, S.; Kelley, R.K.; Sadeghi, S.; Macarulla, T.; Weiss, K.H.; Waldschmidt, D.-T.; Goyal, L.; Borbath, I.; El-Khoueiry, A.; et al. Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: Mature results from a multicentre, open-label, single-arm, phase 2 study. Lancet Gastroenterol. Hepatol. 2021, 6, 803–815. [Google Scholar] [CrossRef]
- Bahleda, R.; Meric-Bernstam, F.; Goyal, L.; Tran, B.; He, Y.; Yamamiya, I.; Benhadji, K.A.; Matos, I.; Arkenau, H.-T. Phase I, first-in-human study of futibatinib, a highly selective, irreversible FGFR1-4 inhibitor in patients with advanced solid tumors. Ann. Oncol. 2020, 31, 1405–1412. [Google Scholar] [CrossRef]
- Goyal, L.; Meric-Bernstam, F.; Hollebecque, A.; Valle, J.W.; Morizane, C.; Karasic, T.B.; Abrams, T.A.; Furuse, J.; Kelley, R.K.; Cassier, P.A.; et al. Futibatinib for FGFR2-Rearranged Intrahepatic Cholangiocarcinoma. N. Engl. J. Med. 2023, 388, 228–239. [Google Scholar] [CrossRef]
- Zhu, A.X.; Macarulla, T.; Javle, M.M.; Kelley, R.K.; Lubner, S.J.; Adeva, J.; Cleary, J.M.; Catenacci, D.V.T.; Borad, M.J.; Bridgewater, J.A.; et al. Final Overall Survival Efficacy Results of Ivosidenib for Patients With Advanced Cholangiocarcinoma With IDH1 Mutation: The Phase 3 Randomized Clinical ClarIDHy Trial. JAMA Oncol. 2021, 7, 1669–1677. [Google Scholar] [CrossRef]
- van Golen, R.F.; Dekker, T.J.A. Dabrafenib plus trametinib in patients with BRAF. Lancet Oncol. 2020, 21, e515. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Kreitman, R.; Wainberg, Z.; Cho, J.; Schellens, J.; Soria, J.; Wen, P.; Zielinski, C.; Cabanillas, M.; Boran, A.; et al. Dabrafenib plus trametinib in patients with BRAF. Lancet Oncol. 2020, 21, 1234–1243. [Google Scholar] [CrossRef]
- Massard, C.; Michiels, S.; Ferté, C.; Le Deley, M.-C.; Lacroix, L.; Hollebecque, A.; Verlingue, L.; Ileana, E.; Rosellini, S.; Ammari, S.; et al. High-Throughput Genomics and Clinical Outcome in Hard-to-Treat Advanced Cancers: Results of the MOSCATO 01 Trial. Cancer Discov. 2017, 7, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Mosele, F.; Remon, J.; Mateo, J.; Westphalen, C.; Barlesi, F.; Lolkema, M.; Normanno, N.; Scarpa, A.; Robson, M.; Meric-Bernstam, F.; et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: A report from the ESMO Precision Medicine Working Group. Ann. Oncol. 2020, 31, 1491–1505. [Google Scholar] [CrossRef]
- Valle, J.W.; Lamarca, A.; Goyal, L.; Barriuso, J.; Zhu, A.X. New Horizons for Precision Medicine in Biliary Tract Cancers. Cancer Discov. 2017, 7, 943–962. [Google Scholar] [CrossRef] [PubMed]
- Vivaldi, C.; Fornaro, L.; Ugolini, C.; Niccoli, C.; Musettini, G.; Pecora, I.; Insilla, A.C.; Salani, F.; Pasquini, G.; Catanese, S.; et al. HER2 Overexpression as a Poor Prognostic Determinant in Resected Biliary Tract Cancer. Oncologist 2020, 25, 886–893. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, R.; Kim, H.R.; Jo, H.; Kim, H.; Ha, S.Y.; Park, J.O.; Park, Y.S.; Kim, S.T. HER2 Aberrations as a Novel Marker in Advanced Biliary Tract Cancer. Front. Oncol. 2022, 12, 834104. [Google Scholar] [CrossRef]
- Galdy, S.; Lamarca, A.; McNamara, M.G.; Hubner, R.A.; Cella, C.A.; Fazio, N.; Valle, J.W. HER2/HER3 pathway in biliary tract malignancies; systematic review and meta-analysis: A potential therapeutic target? Cancer Metastasis Rev. 2017, 36, 141–157. [Google Scholar] [CrossRef]
- Hiraoka, N.; Nitta, H.; Ohba, A.; Yoshida, H.; Morizane, C.; Okusaka, T.; Nara, S.; Esaki, M.; Kishi, Y.; Shimada, K. Details of human epidermal growth factor receptor 2 status in 454 cases of biliary tract cancer. Hum. Pathol. 2020, 105, 9–19. [Google Scholar] [CrossRef]
- Ata, A.; Polat, A.; Serinsöz, E.; Sungur, M.A.; Arican, A. Prognostıc value of increased HER2 expression in cancers of pancreas and biliary tree. Pathol. Oncol. Res 2015, 21, 831–838. [Google Scholar] [CrossRef]
- Rüschoff, J.; Hanna, W.; Bilous, M.; Hofmann, M.; Osamura, R.Y.; Penault-Llorca, F.; van de Vijver, M.; Viale, G. HER2 testing in gastric cancer: A practical approach. Mod. Pathol. 2012, 25, 637–650. [Google Scholar] [CrossRef] [PubMed]
- Nam, A.R.; Kim, J.-W.; Cha, Y.; Ha, H.; Park, J.E.; Bang, J.-H.; Jin, M.H.; Lee, K.-H.; Kim, T.-Y.; Han, S.-W.; et al. Therapeutic implication of HER2 in advanced biliary tract cancer. Oncotarget 2016, 7, 58007–58021. [Google Scholar] [CrossRef] [PubMed]
- de Bitter, T.J.J.; de Reuver, P.R.; de Savornin Lohman, E.A.; Kroeze, L.I.; Vink-Börger, M.E.; van Vliet, S.; Simmer, F.; von Rhein, D.; Jansen, E.A.M.; Verheij, J.; et al. Comprehensive clinicopathological and genomic profiling of gallbladder cancer reveals actionable targets in half of patients. NPJ. Precis. Oncol. 2022, 6, 83. [Google Scholar] [CrossRef] [PubMed]
- Pahuja, K.B.; Nguyen, T.T.; Jaiswal, B.S.; Prabhash, K.; Thaker, T.M.; Senger, K.; Chaudhuri, S.; Kljavin, N.M.; Antony, A.; Phalke, S.; et al. Actionable Activating Oncogenic ERBB2/HER2 Transmembrane and Juxtamembrane Domain Mutations. Cancer Cell 2018, 34, 792–806.e5. [Google Scholar] [CrossRef] [PubMed]
- Ayasun, R.; Sahin, I. Trastuzumab plus FOLFOX for HER2-positive biliary tract cancer. Lancet Gastroenterol. Hepatol. 2023, 8, 211. [Google Scholar] [CrossRef] [PubMed]
- Jacobi, O.; Ross, J.S.; Goshen-Lago, T.; Haddad, R.; Moore, A.; Sulkes, A.; Brenner, B.; Ben-Aharon, I. ERBB2 Pathway in Biliary Tract Carcinoma: Clinical Implications of a Targetable Pathway. Oncol. Res. Treat 2021, 44, 20–27. [Google Scholar] [CrossRef]
- Wu, X.; Yang, H.; Yu, X.; Qin, J.-J. Drug-resistant HER2-positive breast cancer: Molecular mechanisms and overcoming strategies. Front. Pharmacol. 2022, 13, 1012552. [Google Scholar] [CrossRef]
- Bose, R.; Kavuri, S.M.; Searleman, A.C.; Shen, W.; Shen, D.; Koboldt, D.C.; Monsey, J.; Goel, N.; Aronson, A.B.; Li, S.; et al. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov. 2013, 3, 224–237. [Google Scholar] [CrossRef]
- Ma, C.X.; Bose, R.; Gao, F.; Freedman, R.A.; Telli, M.L.; Kimmick, G.; Winer, E.; Naughton, M.; Goetz, M.P.; Russell, C.; et al. Neratinib Efficacy and Circulating Tumor DNA Detection of HER2 Mutations in HER2 Nonamplified Metastatic Breast Cancer. Clin. Cancer Res. 2017, 23, 5687–5695. [Google Scholar] [CrossRef]
- Meric-Bernstam, F.; Johnson, A.M.; Dumbrava, E.E.I.; Raghav, K.; Balaji, K.; Bhatt, M.; Murthy, R.K.; Rodon, J.; Piha-Paul, S.A. Advances in HER2-Targeted Therapy: Novel Agents and Opportunities Beyond Breast and Gastric Cancer. Clin. Cancer Res. 2019, 25, 2033–2041. [Google Scholar] [CrossRef]
- Vernieri, C.; Milano, M.; Brambilla, M.; Mennitto, A.; Maggi, C.; Cona, M.S.; Prisciandaro, M.; Fabbroni, C.; Celio, L.; Mariani, G.; et al. Resistance mechanisms to anti-HER2 therapies in HER2-positive breast cancer: Current knowledge, new research directions and therapeutic perspectives. Crit. Rev. Oncol. Hematol. 2019, 139, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Bogenberger, J.M.; DeLeon, T.T.; Arora, M.; Ahn, D.H.; Borad, M.J. Emerging role of precision medicine in biliary tract cancers. NPJ. Precis. Oncol. 2018, 2, 21. [Google Scholar] [CrossRef]
- Hanker, A.B.; Garrett, J.T.; Estrada, M.V.; Moore, P.D.; Ericsson, P.G.; Koch, J.P.; Langley, E.; Singh, S.; Kim, P.S.; Frampton, G.M.; et al. HER2-Overexpressing Breast Cancers Amplify FGFR Signaling upon Acquisition of Resistance to Dual Therapeutic Blockade of HER2. Clin. Cancer Res. 2017, 23, 4323–4334. [Google Scholar] [CrossRef]
- Rizzo, A.; Ricci, A.D.; Brandi, G. Pemigatinib: Hot topics behind the first approval of a targeted therapy in cholangiocarcinoma. Cancer Treat Res. Commun. 2021, 27, 100337. [Google Scholar] [CrossRef]
- Harding, J.J.; Piha-Paul, S.A.; Shah, R.H.; Cleary, J.M.; Quinn, D.I.; Brana, I.; Moreno, V.; Borad, M.J.; Loi, S.; Spanggaard, I.; et al. Targeting HER2 mutation–positive advanced biliary tract cancers with neratinib: Final results from the phase 2 SUMMIT basket trial. J. Clin. Oncol. 2022, 40 (Suppl. 16), 4079. [Google Scholar] [CrossRef]
- Li, B.T.; Smit, E.F.; Goto, Y.; Nakagawa, K.; Udagawa, H.; Mazières, J.; Nagasaka, M.; Bazhenova, L.; Saltos, A.N.; Felip, E.; et al. Trastuzumab Deruxtecan in HER2-Mutant Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2022, 386, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Weisser, N.E.; Wickman, G.; Abraham, L.; O’Toole, J.; Harbourne, B.; Guedia, J.; Cheng, C.W.; Chan, P.; Browman, D.; Gold, M.R.; et al. Abstract 1005: The bispecific antibody zanidatamab’s (ZW25’s) unique mechanisms of action and durable anti-tumor activity in HER2-expressing cancers. Cancer Res. 2021, 81, 1005. [Google Scholar] [CrossRef]
- Meric-Bernstam, F.; Beeram, M.; Hamilton, E.; Oh, D.-Y.; Hanna, D.L.; Kang, Y.-K.; Elimova, E.; Chaves, J.; Goodwin, R.; Lee, J.; et al. Zanidatamab, a novel bispecific antibody, for the treatment of locally advanced or metastatic HER2-expressing or HER2-amplified cancers: A phase 1, dose-escalation and expansion study. Lancet Oncol. 2022, 23, 1558–1570. [Google Scholar] [CrossRef]
- Javle, M.; Borad, M.J.; Azad, N.S.; Kurzrock, R.; Abou-Alfa, G.K.; George, B.; Hainsworth, J.; Meric-Bernstam, F.; Swanton, C.; Sweeney, C.J.; et al. Pertuzumab and trastuzumab for HER2-positive, metastatic biliary tract cancer (MyPathway): A multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol. 2021, 22, 1290–1300. [Google Scholar] [CrossRef]
- Lee, C.K.; Chon, H.J.; Cheon, J.; Lee, M.A.; Im, H.-S.; Jang, J.-S.; Kim, M.H.; Park, S.; Kang, B.; Hong, M.; et al. Trastuzumab plus FOLFOX for HER2-positive biliary tract cancer refractory to gemcitabine and cisplatin: A multi-institutional phase 2 trial of the Korean Cancer Study Group (KCSG-HB19-14). Lancet Gastroenterol. Hepatol. 2023, 8, 56–65. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Y.; Gong, J.; Zhang, X.; Peng, Z.; Sheng, X.; Mao, C.; Fan, Q.; Bai, Y.; Ba, Y.; et al. Phase I study of the recombinant humanized anti-HER2 monoclonal antibody-MMAE conjugate RC48-ADC in patients with HER2-positive advanced solid tumors. Gastric Cancer 2021, 24, 913–925. [Google Scholar] [CrossRef]
- Yu, J.; Fang, T.; Yun, C.; Liu, X.; Cai, X. Antibody-Drug Conjugates Targeting the Human Epidermal Growth Factor Receptor Family in Cancers. Front. Mol. Biosci. 2022, 9, 847835. [Google Scholar] [CrossRef] [PubMed]
- Ohba, A.; Morizane, C.; Kawamoto, Y.; Komatsu, Y.; Ueno, M.; Kobayashi, S.; Ikeda, M.; Sasaki, M.; Furuse, J.; Okano, N.; et al. Trastuzumab deruxtecan (T-DXd; DS-8201) in patients (pts) with HER2-expressing unresectable or recurrent biliary tract cancer (BTC): An investigator-initiated multicenter phase 2 study (HERB trial). J. Clin. Oncol. 2022, 40, 4006. [Google Scholar] [CrossRef]
- Modi, S.; Jacot, W.; Yamashita, T.; Sohn, J.; Vidal, M.; Tokunaga, E.; Tsurutani, J.; Ueno, N.T.; Prat, A.; Chae, Y.S.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. N. Engl. J. Med. 2022, 387, 9–20. [Google Scholar] [CrossRef]
- Peck, J.; Wei, L.; Zalupski, M.; O’Neil, B.; Calero, M.V.; Bekaii-Saab, T. HER2/neu may not be an interesting target in biliary cancers: Results of an early phase II study with lapatinib. Oncology 2012, 82, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, R.K.; Belani, C.; Singh, D.A.; Tanaka, M.; Lenz, H.-J.; Yen, Y.; Kindler, H.L.; Iqbal, S.; Longmate, J.; Mack, P.C.; et al. A phase II study of lapatinib in patients with advanced biliary tree and hepatocellular cancer. Cancer Chemother. Pharmacol. 2009, 64, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Pignochino, Y.; Sarotto, I.; Peraldo-Neia, C.; Penachioni, J.Y.; Cavalloni, G.; Migliardi, G.; Casorzo, L.; Chiorino, G.; Risio, M.; Bardelli, A.; et al. Targeting EGFR/HER2 pathways enhances the antiproliferative effect of gemcitabine in biliary tract and gallbladder carcinomas. BMC Cancer 2010, 10, 631. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Guo, Z.; Liu, J.; Chen, Y.-A.; Lu, Q.; Zhang, P.; Hong, L.; Wang, Y.; Dong, J. Lapatinib Suppresses HER2-Overexpressed Cholangiocarcinoma and Overcomes ABCB1-Mediated Gemcitabine Chemoresistance. Front. Oncol. 2022, 12, 860339. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Kamgar, M.; Mahipal, A. Targeted Therapies in Advanced Biliary Tract Cancer: An Evolving Paradigm. Cancers 2020, 12, 2039. [Google Scholar] [CrossRef]
Primary Tumor Site | Frequency of HER2 Alteration |
---|---|
Intrahepatic cholangiocarcinoma | 5.8% |
Extrahepatic cholangiocarcinoma | 13.9% |
Gallbladder cancer | 36.4% |
Ampulla of Vater | 18.2% |
Type of HER2 Alteration | Frequency of HER2 Alteration 100% (n = 18) |
---|---|
Point mutation | 27.8% (n = 5) |
Gene amplification | 61.1% (n = 11) |
Point mutation and gene amplification | 11.1% (n = 2) |
Primary Tumor Site | Frequency of HER2 Alteration | Type of HER2 Alteration |
---|---|---|
Intrahepatic CCA | 4.2% | Point mutation (23.8%) and copy number alteration (66.6%) |
Extrahepatic CCA | 9.7% | Point mutation (53.6%) and copy number alteration (41.2%) |
Clinical Trial | Drug | Patient Characteristics | Study Phase | Recruitment Status | Primary Endpoint | Results |
---|---|---|---|---|---|---|
NCT00478140 | Trastuzumab | Previously treated, locally advanced or metastatic gallbladder cancer or bile duct cancer that cannot be removed by surgery | II | Terminated due to slow accrual | ORR, DOR | Terminated |
NCT00107536 | Lapatinib ditosylate | Previously treated, unresectable liver or biliary tract cancer (BTC) | II | Completed | ORR, PFS, AEs, median OS, OS | Completed |
NCT04466891 (HERIZON-BTC-01) | Zanidatamab | Previously treated, advanced or metastatic HER2-amplified BTCs | II | Active, not recruiting | ORR, DOR, DCR, PFS, OS, AEs | Not recruiting |
NCT04329429 | RC48-ADC | Previously treated, locally advanced or metastatic HER2 overexpressed BTC who have failed first-line chemotherapy | II | Recruiting | ORR, DOR, PFS, OS, DCR, AEs | Active |
NCT03929666 | ZW25 (Zanidatamab) Capecitabine Cisplatin Fluorouracil Leucovorin Oxaliplatin Bevacizumab Gemcitabine | Previously treated, unresectable, locally advanced, recurrent, or metastatic HER2-expressing BTC | II | Recruiting | DLT, AEs, ORR | Active |
NCT04837508 | MRG002 ADC | Previously treated, unresectable locally advanced or metastatic BTC patients who have progressed during or relapsed after at least one prior stand therapy | II | Recruiting | ORR | Active |
NCT04722133 | Herzuma (Trastuzumab-pkrb) mFOLFOX | Previously treated, HER2-positive advanced/metastatic/nonresectable BTC | II | Recruiting | ORR, PFS, DCR, OS, AEs | Active |
NCT05417230 | RC48-ADC Envafolimab (anti-PDL1) | Previously treated, locally advanced or metastatic BTC with positive HER-2 | II | Not yet recruiting | ORR, PFS, DCR, OS, AEs | Active |
NCT04482309 (DESTINY-PanTumor02) | Trastuzumab Deruxtecan (T-DXd, DS-8201a) | HER2-overexpressing tumor-specific cohorts including BTC | II | Active, not recruiting | ORR, PFS, DCR, OS, AEs | Active, not recruiting |
NCT05540483 (RIGHT) | RC-48 GLS-010 (anti-PD1) | Previously treated unresectable BTC | II | Recruiting | ORR, AEs, PFS, DOR, DCR, OS | Active |
NCT04450732 | GQ1001 | Previously treated, HER2-positive advanced solid tumors | I | Recruiting | DLT, AEs, maximum tolerated dose (MTD) | Active |
NCT02451553 | Afatinib dimaleate Capecitabine | Previously treated, advanced refractory solid tumors, pancreatic cancer, or biliary cancer | I | Completed | DLT, AEs, MTD | Completed |
NCT04660929 | CT-0508 (CAR macrophages) | Previously treated, HER2-overexpressing solid tumors | I | Recruiting | AEs, ORR, PFS | Active |
NCT04579380 | Tucatinib Trastuzumab | Previously treated, locally advanced unresectable or metastatic solid tumors driven by HER2 alterations | II | Recruiting | cORR, DCR, PFS, OS, AEs | Active |
NCT04278144 | BDC-1001 (immune stimulating antibody conjugate, ISAC) Nivolumab | HER2-overexpressing advanced malignancies | I/II | Recruiting | AEs, DLT, ORR, DOR, DCR, PFS | Active |
NCT04460456 | SBT6050 (ISAC) Pembrolizumab Cemiplimab | HER2 expressing or amplified advanced malignancies | I | Active, not recruiting | DLT, AEs, ORR, DOR, DCR, PFS | Active, not recruiting |
NCT05150691 | DB-1303 | HER2 expressing advanced solid tumors | I/II | Recruiting | DLT, ORR, AEs | Active |
NCT00478140 | Trastuzumab | HER2/neu-positive advanced gallbladder or biliary tract cancer | II | Terminated (Due to slow accrual) | ORR, DCR, OS | Terminated |
NCT02999672 | Trastuzumab emtansine | HER2 overexpressing solid tumors | II | Completed | OS, PFS, AEs | Completed |
NCT04430738 | Tucatinib Trastuzumab FOLFOX CAPOX Pembrolizumab | HER2+ gastrointestinal cancers | I/II | Recruiting | DLT, AEs, ORR, DOR, PFS, OS | Active |
NCT03613168 (BILHER) | Trastuzumab GEMCIS | HER2+ biliary tract cancer | II | Completed | RR, PFS, OS | Completed |
NCT00101036 | Lapatinib ditosylate | Locally Advanced or Metastatic Biliary Tract or Liver Cancer That Cannot Be Removed By Surgery | II | Completed | ORR, OS, PFS | Completed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayasun, R.; Ozer, M.; Sahin, I. The Role of HER2 Status in the Biliary Tract Cancers. Cancers 2023, 15, 2628. https://doi.org/10.3390/cancers15092628
Ayasun R, Ozer M, Sahin I. The Role of HER2 Status in the Biliary Tract Cancers. Cancers. 2023; 15(9):2628. https://doi.org/10.3390/cancers15092628
Chicago/Turabian StyleAyasun, Ruveyda, Muhammet Ozer, and Ilyas Sahin. 2023. "The Role of HER2 Status in the Biliary Tract Cancers" Cancers 15, no. 9: 2628. https://doi.org/10.3390/cancers15092628
APA StyleAyasun, R., Ozer, M., & Sahin, I. (2023). The Role of HER2 Status in the Biliary Tract Cancers. Cancers, 15(9), 2628. https://doi.org/10.3390/cancers15092628