Prognostic Value of Baseline 18F-FDG PET/CT to Predict Brain Metastasis Development in Melanoma Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Method
2.1. Study Population
2.2. 18F-FDG PET/CT Acquisition
2.3. Image Analysis
2.4. Patient Follow-Up
2.5. Statistical Analysis
3. Results
3.1. Overall Characteristics and Clinical Factors
3.2. 18F-FDG PET/CT-Derived Parameters
3.3. Patient Outcome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arnold, M.; Singh, D.; Laversanne, M.; Vignat, J.; Vaccarella, S.; Meheus, F.; Cust, A.E.; de Vries, E.; Whiteman, D.C.; Bray, F. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol. 2022, 158, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Annovazzi, A.; Ferraresi, V.; Rea, S.; Russillo, M.; Renna, D.; Carpano, S.; Sciuto, R. Prognostic value of total metabolic tumour volume and therapy-response assessment by [18 F] FDG PET/CT in patients with metastatic melanoma treated with BRAF/MEK inhibitors. Eur. Radiol. 2021, 32, 3398–3407. [Google Scholar] [CrossRef] [PubMed]
- Filippi, L.; Bianconi, F.; Schillaci, O.; Spanu, A.; Palumbo, B. The role and potential of 18F-FDG PET/CT in malignant melanoma: Prognostication, monitoring response to targeted and immunotherapy, and radiomics. Diagnostics 2022, 12, 929. [Google Scholar] [CrossRef] [PubMed]
- Forsea, A.-M. Melanoma epidemiology and early detection in Europe: Diversity and disparities. Dermatol. Pract. Concept. 2020, 10, e2020033. [Google Scholar] [CrossRef] [PubMed]
- El-Shourbagy, K.H.; Mashaly, E.M.; Khodair, S.A.; Houseni, M.M.; Abou Khadrah, R.S. PET/CT in restaging, prognosis, and recurrence in patients with malignant melanoma. Egypt. J. Radiol. Nucl. Med. 2020, 51, 167. [Google Scholar] [CrossRef]
- Johnson, J.D.; Young, B. Demographics of brain metastasis. Neurosurg. Clin. N. Am. 1996, 7, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Eroglu, Z.; Holmen, S.L.; Chen, Q.; Khushalani, N.I.; Amaravadi, R.; Thomas, R.; Ahmed, K.A.; Tawbi, H.; Chandra, S.; Markowitz, J. Melanoma central nervous system metastases: An update to approaches, challenges, and opportunities. Pigment Cell Melanoma Res. 2019, 32, 458–469. [Google Scholar] [CrossRef]
- Gardner, L.J.; Ward, M.; Andtbacka, R.H.; Boucher, K.M.; Bowen, G.M.; Bowles, T.L.; Cohen, A.L.; Grossmann, K.; Hitchcock, Y.J.; Holmen, S.L. Risk factors for development of melanoma brain metastasis and disease progression: A single-center retrospective analysis. Melanoma Res. 2017, 27, 477. [Google Scholar] [CrossRef]
- Maxwell, R.; Garzon-Muvdi, T.; Lipson, E.J.; Sharfman, W.H.; Bettegowda, C.; Redmond, K.J.; Kleinberg, L.R.; Ye, X.; Lim, M. BRAF-V600 mutational status affects recurrence patterns of melanoma brain metastasis. Int. J. Cancer 2017, 140, 2716–2727. [Google Scholar] [CrossRef]
- Frankel, T.L.; Bamboat, Z.M.; Ariyan, C.; Coit, D.; Sabel, M.S.; Brady, M.S. Predicting the development of brain metastases in patients with local/regional melanoma. J. Surg. Oncol. 2014, 109, 770–774. [Google Scholar] [CrossRef]
- Zukauskaite, R.; Schmidt, H.; Asmussen, J.T.; Hansen, O.; Bastholt, L. Asymptomatic brain metastases in patients with cutaneous metastatic malignant melanoma. Melanoma Res. 2013, 23, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Aide, N.; Iravani, A.; Prigent, K.; Kottler, D.; Alipour, R.; Hicks, R.J. PET/CT variants and pitfalls in malignant melanoma. Cancer Imaging 2022, 22, 3. [Google Scholar] [CrossRef] [PubMed]
- Bisschop, C.; de Heer, E.; Brouwers, A.; Hospers, G.; Jalving, M. Rational use of 18F-FDG PET/CT in patients with advanced cutaneous melanoma: A systematic review. Crit. Rev. Oncol./Hematol. 2020, 153, 103044. [Google Scholar] [CrossRef] [PubMed]
- Eggen, A.C.; Wind, T.T.; Bosma, I.; Kramer, M.C.A.; van Laar, P.J.; van der Weide, H.L.; Hospers, G.A.P.; Jalving, M. Value of screening and follow-up brain MRI scans in patients with metastatic melanoma. Cancer Med. 2021, 10, 8395–8404. [Google Scholar] [CrossRef] [PubMed]
- Michielin, O.; van Akkooi, A.C.J.; Ascierto, P.A.; Dummer, R.; Keilholz, U. Cutaneous melanoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up††Approved by the ESMO Guidelines Committee: February 2002, last update September 2019. Ann. Oncol. 2019, 30, 1884–1901. [Google Scholar] [CrossRef]
- Chang, C.-C.; Chen, C.-J.; Hsu, W.-L.; Chang, S.-M.; Huang, Y.-F.; Tyan, Y.-C. Prognostic Significance of Metabolic Parameters and Textural Features on 18F-FDG PET/CT in Invasive Ductal Carcinoma of Breast. Sci. Rep. 2019, 9, 10946. [Google Scholar] [CrossRef]
- Gershenwald, J.E.; Scolyer, R.A. Melanoma staging: American joint committee on cancer (AJCC) and beyond. Ann. Surg. Oncol. 2018, 25, 2105–2110. [Google Scholar] [CrossRef]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef]
- Pathak, S.; Zito, P.M. Clinical Guidelines for the Staging, Diagnosis, and Management of Cutaneous Malignant Melanoma. In StatPearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2023. [Google Scholar]
- Gray, B. cmprsk: Subdistribution Analysis of Competing Risks. R Package Version 2.2-11. 2022. Available online: https://cran.r-project.org/web/packages/cmprsk/index.html (accessed on 27 November 2023).
- Cohen, J.V.; Tawbi, H.; Margolin, K.A.; Amravadi, R.; Bosenberg, M.; Brastianos, P.K.; Chiang, V.L.; de Groot, J.; Glitza, I.C.; Herlyn, M.; et al. Melanoma central nervous system metastases: Current approaches, challenges, and opportunities. Pigment. Cell Melanoma Res. 2016, 29, 627–642. [Google Scholar] [CrossRef]
- Gugger, A.; Barnhill, R.L.; Seifert, B.; Dehler, S.; Moch, H.; Lugassy, C.; Marques-Maggio, E.; Rushing, E.J.; Mihic-Probst, D. Cutaneous melanoma with brain metastasis: Report of 193 patients with new observations. PLoS ONE 2016, 11, e0156115. [Google Scholar] [CrossRef]
- Lasithiotakis, K.; Leiter, U.; Meier, F.; Eigentler, T.; Metzler, G.; Moehrle, M.; Breuninger, H.; Garbe, C. Age and gender are significant independent predictors of survival in primary cutaneous melanoma. Cancer Interdiscip. Int. J. Am. Cancer Soc. 2008, 112, 1795–1804. [Google Scholar] [CrossRef]
- Joosse, A.; van der Ploeg, A.P.; Haydu, L.E.; Nijsten, T.E.; de Vries, E.; Scolyer, R.A.; Eggermont, A.M.; Coebergh, J.W.W.; Thompson, J.F. Sex differences in melanoma survival are not related to mitotic rate of the primary tumor. Ann. Surg. Oncol. 2015, 22, 1598–1603. [Google Scholar] [CrossRef]
- El-Osta, H.; Falchook, G.; Tsimberidou, A.; Hong, D.; Naing, A.; Kim, K.; Wen, S.; Janku, F.; Kurzrock, R. BRAF mutations in advanced cancers: Clinical characteristics and outcomes. PLoS ONE 2011, 6, e25806. [Google Scholar] [CrossRef]
- Capper, D.; Berghoff, A.S.; Magerle, M.; Ilhan, A.; Wöhrer, A.; Hackl, M.; Pichler, J.; Pusch, S.; Meyer, J.; Habel, A. Immunohistochemical testing of BRAF V600E status in 1120 tumor tissue samples of patients with brain metastases. Acta Neuropathol. 2012, 123, 223–233. [Google Scholar] [CrossRef]
- Bauer, J.; Büttner, P.; Murali, R.; Okamoto, I.; Kolaitis, N.A.; Landi, M.T.; Scolyer, R.A.; Bastian, B.C. BRAF mutations in cutaneous melanoma are independently associated with age, anatomic site of the primary tumor, and the degree of solar elastosis at the primary tumor site. Pigment Cell Melanoma Res. 2011, 24, 345–351. [Google Scholar] [CrossRef]
- Riveiro-Falkenbach, E.; Santos-Briz, A.; Ríos-Martín, J.J.; Rodríguez-Peralto, J.L. Controversies in intrapatient melanoma BRAFV600E mutation status. Am. J. Dermatopathol. 2017, 39, 291–295. [Google Scholar] [CrossRef]
- Son, S.H.; Kang, S.M.; Jeong, S.Y.; Lee, S.-W.; Lee, S.-J.; Lee, J.; Ahn, B.-C. Prognostic value of volumetric parameters measured by pretreatment 18F FDG PET/CT in patients with cutaneous malignant melanoma. Clin. Nucl. Med. 2016, 41, e266–e273. [Google Scholar] [CrossRef]
- Vensby, P.H.; Schmidt, G.; Kjær, A.; Fischer, B.M. The value of FDG PET/CT for follow-up of patients with melanoma: A retrospective analysis. Am. J. Nucl. Med. Mol. Imaging 2017, 7, 255–262. [Google Scholar]
- Karakousis, C.; Velez, A.; Driscoll, D.; Takita, H. Metastasectomy in malignant melanoma. Surgery 1994, 115, 295–302. [Google Scholar]
- Hlongwa, K.N.; Mokoala, K.M.; Matsena-Zingoni, Z.; Vorster, M.; Sathekge, M.M. The Use of 18F-FDG PET/CT Metabolic Parameters in Predicting Overall Survival in Patients Undergoing Restaging for Malignant Melanoma. Diagnostics 2022, 12, 595. [Google Scholar] [CrossRef] [PubMed]
- Aupérin, A.; Arriagada, R.; Pignon, J.-P.; Le Péchoux, C.; Gregor, A.; Stephens, R.J.; Kristjansen, P.E.; Johnson, B.E.; Ueoka, H.; Wagner, H. Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. N. Engl. J. Med. 1999, 341, 476–484. [Google Scholar] [CrossRef]
- Bovi, J.A. Prevention of brain metastases. Front. Neurol. 2018, 9, 758. [Google Scholar] [CrossRef]
- Abid, H.; Watthanasuntorn, K.; Shah, O.; Gnanajothy, R. Efficacy of pembrolizumab and nivolumab in crossing the blood brain barrier. Cureus 2019, 11, e4446. [Google Scholar] [CrossRef]
- Farnsworth, R.H.; Achen, M.G.; Stacker, S.A. The evolving role of lymphatics in cancer metastasis. Curr. Opin. Immunol. 2018, 53, 64–73. [Google Scholar] [CrossRef]
- Zhou, H.; Lei, P.-J.; Padera, T.P. Progression of metastasis through lymphatic system. Cells 2021, 10, 627. [Google Scholar] [CrossRef]
Number (%)/Mean (SD) | |
---|---|
Patients
| 1 year: 10% (6.3–16.0%) 5 year: 30.8% (24.4–38.9%) 10 year: 35.2% (28.5–43.5%) |
Age (years) at the time of baseline PET/CT | 69.5 (±14.6); Range: 31–97 |
Sex
| 72 (45.3%) 87 (54.7%) |
Location of the primary tumour
| 146 (91.8%) 13 (8.2%) |
BRAF mutation status
| 62 (39%) 97 (61%) |
Immunotherapy history (before brain metastasis) | 111 (69.8%) |
Breslow thickness (mm) | 3.49 (±3.25); Range: 0–14.5 |
Initial TNM stage
| 4 (2.5%) 41 (25.8%) 94 (59.1%) 20 (12.6%) |
Follow-up (years) | Median: 6.28; Range: 1–23 |
Hazard Ratio (95%CI) | p-Value | |
---|---|---|
Age | 1.00 (0.99–1.02) | 0.70 |
Sex (reference: female) | 1.02 (0.61–1.7) | 0.93 |
BRAF positivity | 1.31 (0.78–2.23) | 0.31 |
Primary tumour’s Breslow thickness | 1.08 (0.99–1.18) | 0.081 |
Initial T stage (reference: T4) | ||
T1 | 1.0 (0.77–1.31) | 1.0 |
T2 | 0.81 (0.55–1.17) | 0.27 |
T3 | 0.93 (0.49–1.72) | 0.80 |
Initial N stage (reference: N3) | ||
N0 | 0.82 (0.48–1.41) | 0.48 |
N1 | 0.92 (0.45–1.85) | 0.82 |
N2 | 0.69 (0.32–6.67) | 0.63 |
Initial M stage (reference: M0) | ||
M1 | 2.92 (1.52–5.61) | <0.001 * |
Initial TNM stage of disease (reference: stage IV) | ||
Stage I | 0.8 (0.55–1.16) | 0.66 |
Stage II | 0.74 (0.51–1.07) | 0.11 |
Stage III | 0.36 (0.18–0.70) | 0.003 * |
Parameter | Hazard Ratio (95% CI) | p-Value |
---|---|---|
Regional lymph node metastasis SUVmax | 1.02 (0.98–1.06) | 0.44 |
Regional lymph node metastasis SULmax | 1.07 (1.03–1.12) | <0.001 * |
Regional lymph node metastasis SUVmean | 1.04 (0.93–1.17) | 0.51 |
Regional lymph node metastasis SULpeak | 1.13 (0.98–1.30) | 0.08 |
Regional lymph node metastasis metabolic tumour volume | 1.00 (0.99–1.01) | 0.69 |
Regional lymph node metastasis total lesion glycolysis | 1.00 (1.00–1.00) | 0.38 |
Number of lymph node metastases | 1.02 (0.95–1.10) | 0.63 |
Number of metastases other than lymph nodes | 1.07 (0.97–1.18) | 0.20 |
Patient’s prominent SULmax | 1.08 (1.04–1.11) | <0.001 * |
Patient’s prominent SUVmean | 1.17 (1.06–1.30) | 0.003 * |
Patient’s prominent SULpeak | 1.08 (1.04–1.13) | <0.001 * |
Patient’s prominent metabolic tumour volume | 1.00 (0.96–1.04) | 0.99 |
Patient’s prominent lesion glycolysis | 1.00 (0.99–1.00) | 0.66 |
Parameter | Hazard Ratio (95% CI) | p-Value |
---|---|---|
Regional lymph node metastasis SULmax | 1.11 (1.05–1.16) | <0.001 * |
Patient’s prominent SULmax | 1.05 (1.01–1.10) | 0.028 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalantari, F.; Mirshahvalad, S.A.; Hoellwerth, M.; Schweighofer-Zwink, G.; Huber-Schönauer, U.; Hitzl, W.; Rendl, G.; Koelblinger, P.; Pirich, C.; Beheshti, M. Prognostic Value of Baseline 18F-FDG PET/CT to Predict Brain Metastasis Development in Melanoma Patients. Cancers 2024, 16, 127. https://doi.org/10.3390/cancers16010127
Kalantari F, Mirshahvalad SA, Hoellwerth M, Schweighofer-Zwink G, Huber-Schönauer U, Hitzl W, Rendl G, Koelblinger P, Pirich C, Beheshti M. Prognostic Value of Baseline 18F-FDG PET/CT to Predict Brain Metastasis Development in Melanoma Patients. Cancers. 2024; 16(1):127. https://doi.org/10.3390/cancers16010127
Chicago/Turabian StyleKalantari, Forough, Seyed Ali Mirshahvalad, Magdalena Hoellwerth, Gregor Schweighofer-Zwink, Ursula Huber-Schönauer, Wolfgang Hitzl, Gundula Rendl, Peter Koelblinger, Christian Pirich, and Mohsen Beheshti. 2024. "Prognostic Value of Baseline 18F-FDG PET/CT to Predict Brain Metastasis Development in Melanoma Patients" Cancers 16, no. 1: 127. https://doi.org/10.3390/cancers16010127
APA StyleKalantari, F., Mirshahvalad, S. A., Hoellwerth, M., Schweighofer-Zwink, G., Huber-Schönauer, U., Hitzl, W., Rendl, G., Koelblinger, P., Pirich, C., & Beheshti, M. (2024). Prognostic Value of Baseline 18F-FDG PET/CT to Predict Brain Metastasis Development in Melanoma Patients. Cancers, 16(1), 127. https://doi.org/10.3390/cancers16010127