Discrepancy between Tumor Size Assessed by Full-Field Digital Mammography or Ultrasonography (cT) and Pathology (pT) in a Multicenter Series of Breast Metaplastic Carcinoma Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Ethical Approval
2.3. Statistical Analysis
3. Results
3.1. Characteristic of the Population
3.2. In Both Imaging Techniques, Tumor Size Was Found to Be Statistically Smaller Than in Pathomorphology
3.3. Tumor Size’s Sole Significance in Accurate Imaging Assessment
3.4. Lymph Nodes Involvement (pN) Does Not Correlate with Tumor Size (pT)
3.5. Tumor Size (pT) Correlates with Treatment Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Burstein, H.J.; Curigliano, G.; Thürlimann, B.; Weber, W.P.; Poortmans, P.; Regan, M.M.; Senn, H.J.; Winer, E.P.; Gnant, M.; Aebi, S.; et al. Customizing Local and Systemic Therapies for Women with Early Breast Cancer: The St. Gallen International Consensus Guidelines for Treatment of Early Breast Cancer 2021. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2021, 32, 1216–1235. [Google Scholar] [CrossRef] [PubMed]
- Li, C.I.; Uribe, D.J.; Daling, J.R. Clinical Characteristics of Different Histologic Types of Breast Cancer. Br. J. Cancer 2005, 93, 1046–1052. [Google Scholar] [CrossRef] [PubMed]
- Wilson, N.; Ironside, A.; Diana, A.; Oikonomidou, O. Lobular Breast Cancer: A Review. Front. Oncol. 2021, 10, 591399. [Google Scholar] [CrossRef]
- Rechsteiner, A.; Dietrich, D.; Varga, Z. Prognostic Relevance of Mixed Histological Subtypes in Invasive Breast Carcinoma: A Retrospective Analysis. J. Cancer Res. Clin. Oncol. 2022, 149, 4967–4978. [Google Scholar] [CrossRef] [PubMed]
- Sherwani, M.; Vohra, L.; Ali, D.; Soomro, R.; Adnan, S.; Idrees, R. Clinicopathological Features and Survival Outcomes of Metaplastic Breast Carcinoma—An Observational Multi-Centric Study. Breast Cancer Targets Ther. 2023, 15, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.; Brogi, E.; Reis-Filho, J.S.; Plitas, G.; Robson, M.; Norton, L.; Morrow, M.; Wen, H.Y. Poor Response to Neoadjuvant Chemotherapy in Metaplastic Breast Carcinoma. NPJ Breast Cancer 2021, 7, 96. [Google Scholar] [CrossRef]
- Lee, S.H.; Jang, M.J.; Kim, S.M.; Yun, B.L.; Rim, J.; Chang, J.M.; Kim, B.; Choi, H.Y. Factors Affecting Breast Cancer Detectability on Digital Breast Tomosynthesis and Two-Dimensional Digital Mammography in Patients with Dense Breasts. Korean J. Radiol. 2019, 20, 58–68. [Google Scholar] [CrossRef]
- Appleton, D.C.; Hackney, L.; Narayanan, S. Ultrasonography Alone for Diagnosis of Breast Cancer in Women under 40. Ann. R. Coll. Surg. Engl. 2014, 96, 202–206. [Google Scholar] [CrossRef]
- Wasif, N.; Garreau, J.; Terando, A.; Kirsch, D.; Mund, D.F.; Giuliano, A.E. MRI versus Ultrasonography and Mammography for Preoperative Assessment of Breast Cancer. Am. Surg. 2009, 75, 970–975. [Google Scholar] [CrossRef]
- Ramirez, S.I.; Scholle, M.; Buckmaster, J.; Paley, R.H.; Kowdley, G.C. Breast Cancer Tumor Size Assessment with Mammography, Ultrasonography, and Magnetic Resonance Imaging at a Community Based Multidisciplinary Breast Center. Am. Surg. 2012, 78, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Donato, H.; Candelária, I.; Oliveira, P.; Gonçalo, M.; Caseiro-Alves, F. Imaging Findings of Metaplastic Carcinoma of the Breast with Pathologic Correlation. J. Belgian Soc. Radiol. 2018, 102, 46. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Han, B.K.; Moon, W.K.; Choe, Y.H.; Ahn, S.H.; Gong, G. Metaplastic Carcinoma of the Breast: Mammographic and Sonographic Findings. J. Clin. Ultrasound 2000, 28, 179–186. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, S.Y.; Huh, S. Multimodality Imaging Findings of Metaplastic Breast Carcinomas: A Report of Five Cases. Ultrasound Q. 2018, 34, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Bian, T.; Lin, Q.; Wu, Z.; Cui, C.; Qi, C.; Li, L.; Su, X. Metaplastic Carcinoma of the Breast: Imaging and Pathological Features. Oncol. Lett. 2016, 12, 3975–3980. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; He, C.; Liu, L.; Sun, L.; Chen, Y.; Luo, Y.; Yu, T. A Retrospective Study of the Imaging and Pathological Features of Metaplastic Breast Carcinoma and Review of the Literature. Med. Sci. Monit. 2019, 25, 248. [Google Scholar] [CrossRef] [PubMed]
- Patterson, S.K.; Tworek, J.A.; Roubidoux, M.A.; Helvie, M.A.; Oberman, H.A. Metaplastic Carcinoma of the Breast: Mammographic Appearance with Pathologic Correlation. AJR Am. J. Roentgenol. 1997, 169, 709–712. [Google Scholar] [CrossRef]
- Oberman, H.A. Metaplastic Carcinoma of the Breast. A Clinicopathologic Study of 29 Patients. Am. J. Surg. Pathol. 1987, 11, 918–929. [Google Scholar] [CrossRef]
- Alhaidary, A.A.; Arabi, H.; Elessawy, M.; Alkushi, A. Metaplastic Breast Carcinoma: An Overview of the Radio-Pathologic Features in Retrospective Cohort Tertiary Hospital. Egypt. J. Radiol. Nucl. Med. 2022, 53, 92. [Google Scholar] [CrossRef]
- Choi, B.B.; Shu, K.S. Metaplastic Carcinoma of the Breast: Multimodality Imaging and Histopathologic Assessment. Acta Radiol. 2012, 53, 5–11. [Google Scholar] [CrossRef]
- Lai, Y.C.; Hsu, C.Y.; Chou, Y.H.; Tiu, C.M.; Tseng, L.M.; Wang, H.K.; Chiou, H.J. Sonographic Presentations of Metaplastic Breast Cancers. J. Chin. Med. Assoc. 2012, 75, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Velasco, M.; Santamaría, G.; Ganau, S.; Farrús, B.; Zanón, G.; Romagosa, C.; Fernández, P.L. MRI of Metaplastic Carcinoma of the Breast. AJR Am. J. Roentgenol. 2005, 184, 1274–1278. [Google Scholar] [CrossRef] [PubMed]
- Langlands, F.; Cornford, E.; Rakha, E.; Dall, B.; Gutteridge, E.; Dodwell, D.; Shaaban, A.M.; Sharma, N. Imaging Overview of Metaplastic Carcinomas of the Breast: A Large Study of 71 Cases. Br. J. Radiol. 2016, 89, 20140644. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.W.; Lee, M.H.; Kwon, K.H.; Kim, J.H.; Park, S.T.; Hwang, J.H.; Goo, D.E.; Choi, D.L.; Lee, D.W. Magnetic Resonance Imaging of Metaplastic Carcinoma of the Breast: Sonographic and Pathologic Correlation. Acta Radiol. 2004, 45, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Günhan-Bilgen, I.; Memiş, A.; Üstün, E.E.; Zekioglu, O.; Özdemir, N. Metaplastic Carcinoma of the Breast: Clinical, Mammographic, and Sonographic Findings with Histopathologic Correlation. AJR Am. J. Roentgenol. 2002, 178, 1421–1425. [Google Scholar] [CrossRef] [PubMed]
- McMullen, E.R.; Zoumberos, N.A.; Kleer, C.G. Metaplastic Breast Carcinoma: Update on Histopathology and Molecular Alterations. Arch. Pathol. Lab. Med. 2019, 143, 1492–1496. [Google Scholar] [CrossRef]
- Haque, W.; Verma, V.; Schwartz, M.R.; Lim, B.; Mangalampalli, N.; Butler, E.B.; Teh, B.S. Neoadjuvant Chemotherapy for Metaplastic Breast Cancer: Response Rates, Management, and Outcomes. Clin. Breast Cancer 2022, 22, e691–e699. [Google Scholar] [CrossRef]
- Schmid, P.; Cortes, J.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; Harbeck, N.; et al. Pembrolizumab for Early Triple-Negative Breast Cancer. N. Engl. J. Med. 2020, 382, 810–821. [Google Scholar] [CrossRef]
- Kim, I.; Rajamanickam, V.; Bernard, B.; Chun, B.; Wu, Y.; Martel, M.; Sun, Z.; Redmond, W.L.; Sanchez, K.; Basho, R.; et al. A Case Series of Metastatic Metaplastic Breast Carcinoma Treated with Anti-PD-1 Therapy. Front. Oncol. 2021, 11, 635237. [Google Scholar] [CrossRef]
- Tray, N.; Taff, J.; Adams, S. Therapeutic Landscape of Metaplastic Breast Cancer. Cancer Treat. Rev. 2019, 79, 101888. [Google Scholar] [CrossRef]
- Nonnemacher, C.J.; Dale, P.; Scott, A.; Bonner, M. Pathologic Tumor Size versus Mammography, Sonography, and MRI in Breast Cancer Based on Pathologic Subtypes. Am. Surg. 2023, 89, 3652–3654. [Google Scholar] [CrossRef] [PubMed]
- Cuesta Cuesta, A.B.; Martín Ríos, M.D.; Noguero Meseguer, M.R.; García Velasco, J.A.; de Matías Martínez, M.; Bartolomé Sotillos, S.; Abreu Griego, E. Accuracy of Tumor Size Measurements Performed by Magnetic Resonance, Ultrasound and Mammography, and Their Correlation with Pathological Size in Primary Breast Cancer. Cir. Esp. 2019, 97, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Cortadellas, T.; Argacha, P.; Acosta, J.; Rabasa, J.; Peiró, R.; Gomez, M.; Rodellar, L.; Gomez, S.; Navarro-Golobart, A.; Sanchez-Mendez, S.; et al. Estimation of Tumor Size in Breast Cancer Comparing Clinical Examination, Mammography, Ultrasound and MRI-Correlation with the Pathological Analysis of the Surgical Specimen. Gland Surg. 2017, 6, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Corso, G.; Marabelli, M.; Calvello, M.; Gandini, S.; Risti, M.; Feroce, I.; Mannucci, S.; Girardi, A.; De Scalzi, A.M.; Magnoni, F.; et al. Germline Pathogenic Variants in Metaplastic Breast Cancer Patients and the Emerging Role of the BRCA1 Gene. Eur. J. Hum. Genet. 2023, 31, 1275–1282. [Google Scholar] [CrossRef] [PubMed]
- Corso, G.; Frassoni, S.; Girardi, A.; De Camilli, E.; Montagna, E.; Intra, M.; Bottiglieri, L.; Margherita De Scalzi, A.; Fanianos, D.M.; Magnoni, F.; et al. Metaplastic Breast Cancer: Prognostic and Therapeutic Considerations. J. Surg. Oncol. 2021, 123, 61–70. [Google Scholar] [CrossRef]
- Yang, M.H.; Chen, I.C.; Lu, Y.S. PI3K Inhibitor Provides Durable Response in Metastatic Metaplastic Carcinoma of the Breast: A Hidden Gem in the BELLE-4 Study. J. Formos. Med. Assoc. 2019, 118, 1333–1338. [Google Scholar] [CrossRef]
- Gorshein, E.; Matsuda, K.; Riedlinger, G.; Sokol, L.; Rodriguez-Rodriguez, L.; Eladoumikdachi, F.; Grandhi, M.; Ganesan, S.; Toppmeyer, D.L.; Potdevin, L.; et al. Durable Response to PD1 Inhibitor Pembrolizumab in a Metastatic, Metaplastic Breast Cancer. Case Rep. Oncol. 2021, 14, 931–937. [Google Scholar] [CrossRef]
- Chartier, S.; Brochard, C.; Martinat, C.; Coussy, F.; Feron, J.G.; Kirova, Y.; Cottu, P.; Marchiò, C.; Vincent-Salomon, A. TROP2, Androgen Receptor, and PD-L1 Status in Histological Subtypes of High-Grade Metaplastic Breast Carcinomas. Histopathology 2023, 82, 664–671. [Google Scholar] [CrossRef]
Study | n | IHC | Histopathology | Tumor Size, Median (Range) | Treatment | Conclusions |
---|---|---|---|---|---|---|
[16] | 19 | ER neg 91% PR neg 81% HER2 neg 80.0% | Axillary lymph node metastases n = 4 -Squamous cell carcinoma n = 10 -Mesenchymal differentiation with chondroid and mixed metaplasia n = 3 -Spindle carcinoma n = 3 -Low-grade adenosquamous carcinoma n = 1 | No data | Surgery n = 19 NCT n = 3 Adjuvant CTH n = 11, RTH n = 3, Endocrine therapy n = 1 | Imaging features of BC-Mp on FFDM and US were benign. T2WI MRI showed characteristic features of signal intensity using TIC curve and ADC analysis. Limitations: small sample size, lack of information regarding tumor size. |
[13] | 16 | ER neg 83% PR neg 83% HER2 neg 43% | Axillary lymph node metastases n = 6 -Squamous cell type in n = 7 -Cartilaginous n = 5 -Spindle n = 4 -Matrix-producing n = 4 -Chondrosarcomatous n = 2 -Osseous n = 2 | FFDM 4.6 cm (1–10) Pathologic exam. 4.2 cm (1.2–11) | Surgery n = 15 | In US present complex echogenicity with solid and cystic components. Those findings are related to hemorrhagic or cystic necrosis found pathologically. Limitations: small sample size, no data on systemic treatment or RTH, Asiatic population, age of patients around 10 years younger than in other reports. |
[17] | 10 | No data | Axillary lymph node metastases n = 1 -Squamous and spindle n = 3 -Spindle n = 6 | FFDM 3 cm (1.7–6.5) Pathologic exam. 2.8 cm (1.7–9) | No data | On FFDM presents as predominately circumscribed, noncalcified masses. Characteristic feature is a circumscribed portion with a spiculated portion. Limitations: small sample, lack of data regarding subtype and treatment. |
[18] | 29 | ER, PR neg 100% | Axillary lymph node metastases n = 0 -Spindle cell carcinoma n = 8 | Pathologic exam. 5.3 cm (3.5–9) | Surgery n = 6 RTH n = 0 | The paucity of lymph node metastases. The size of neoplasm correlated with prognosis. Tumors < 4 cm had a favorable coursespo The lack of correlation of microscopic findings with prognosis. Limitations: small sample size of different histopathological entities. |
ER, PR neg 100% | Axillary lymph node metastases n = 1 -Squamous cell metaplasia n = 6 | Pathologic exam. 4.5 cm (1.5–6) | Surgery n = 6 RTH n = 1 | |||
ER, PR neg 80% | Axillary lymph node metastases n = 1 -Pseudosarcomatous metaplasia (spindle cell, osseous, osteoid, chondroid, rhabdomyoid elements) n = 15 | Pathologic exam. 4.8 cm (1.5–19) | Surgery n = 15 RTH n = 1 | |||
[12] | 11 | ER, PR neg 82%, HER2 neg 91% | Axillary lymph node metastases n = 4 -Squamous subtype n = 3 -Carcinosarcoma n = 3 -Matrix producing BC-Mp n = 3 -Spindle cell subtype n = 2 | Imaging 2.7 cm (1.1–10) | No data | FFDM results of BC-Mp were similar to other subtypes. US may differentiate between BC-Mp and other subtypes due to some specific features of BC-Mp: circumscribed margins, complex echogenicity and posterior acoustic enhancement. Limitations: small sample size, retrospective study |
[19] | 22 | ER, PR neg 95% HER2 neg 82% | Distant metastases n = 4 -Squamous cell n = 10 -Spindle cell n = 5 -Mesenchymal differentiation n = 5 -Mixed n = 2 | US 5.4 cm (0.8–20.4) Pathologic exam. 5.9 cm | CTH = 19 Surgery n = 16 RTH = 13 | No definite characteristic on imaging. On US and FFDM a mass with irregular shape and indistinct margins with posterior acoustic enhancement and rarely containing microcalcifications. Limitations: most of the data from the hospital electronic system were missing. |
[20] | 33 | ER neg 91% PR neg 81% HER2 neg 84% | Axillary lymph node metastases n = 8 -Squamous cell n = 18 -Matrix producing n = 10 -Other heterogeneous n = 4 (squamous + spindle-cell type n = 1, spindle + osseous n = 1, myxoid matrix + sarcoma n = 1, spindle + neuroendocrine n = 4) | No data | Mastectomy n = 23 BCS n = 8 Excision n = 1 | BC-Mp might display more benign features and less axillary lymph node metastasis than other BC. High signal intensity on T2 MRI images and hormone receptor negativity are most typical hallmark. Limitations: lack of data regarding tumor diameter, retrospective study |
[21] | 10 | ER neg 90% PR neg 100% HER2 neg 70% | Axillary lymph node metastases n = 3 -Adenosquamous carcinoma n = 2 -Adenocarcinoma with spindle cell metaplasia n = 4 -Carcinoma with chondroid differentiation n = 3 -Carcinoma with osseous differentiation n = 1 | US 5.7 cm (1–15) | Mastectomy n = 7 BCS n = 3 NCT n = 2 Adjuvant CTH n = 3 | US reveals gently lobulated, complex mass lesion with cystic parts and posterior acoustic enhancement, which represents necrosis or hemorrhage. Another finding on US is increased color flow signals, and relative high RI of the feeding arteries were also seen. Limitations: small sample size, lack of data regarding tumor size in a pathological exam. |
[22] | 12 | ER neg 100% PR neg 100% HER2 neg 83.3% | Axillary lymph node metastases n = 3 -Carcinoma with chondroid metaplasia n = 6 -Squamous large cell keratinizing n = 5 -Carcinosarcoma n = 1 | Pathologic exam. 2.6 cm (1.2–4.5) | No data | On MRI, the high signal intensity on T2-weighted is useful for preoperative diagnosis of BC-Mp. It is necessary to differentiate from mucinous carcinoma and necrotic infiltrating ductal carcinoma. Limitations: small sample size, lack of data regarding treatment modalities. |
[23] | 71 | ER neg 90% PR neg 79% HER2 neg 84.5% | Axillary lymph node metastases n = 11 | US 2.6 cm (3–70) FFDM 3.2 cm (10–76) Pathologic exam 2.7 cm (5–75) | Mastectomy n = 35 BCS n = 36 NCT = 11 | MRI outlines the extent of disease well and is useful in monitoring response to NCT. Those tumors respond by showing concentric reduction in size. Limitations: no data on histopathologic subtypes. |
[14] | 5 | ER neg 100% PR neg 100% HER2 neg 40% | Axillary lymph node metastases n = 1 -Low-grade adenosquamous carcinoma n = 2 -Low-grade adenosquamous and mixed metaplastic carcinoma n = 2 -Squamous n = 1 | No data | Mastectomy n = 3 BCS n = 1 RTH n = 3 Adjuvant CTH n = 3 | BC-Mp tends to show more benign imaging features such as round or oval shape with circumscribed margins and less axillary lymph node metastasis compared with invasive ductal carcinoma. High signal intensity on T2-weighted magnetic resonance imaging due to its cystic or necrotic component may be useful for diagnosis of metaplastic carcinoma. Limitations: case series study, small sample size, lack of data regarding tumor size. |
[15] | 13 | ER neg 86.7% PR neg 93.3% HER2 neg 93.3% | Axillary lymph node metastases n = 1 -Squamous cell carcinoma n = 8 -Spindle cell carcinoma n = 3 -Matrix-producing carcinoma n = 2 -Fibromatosis-like carcinoma n = 1 -Mixed metaplastic carcinoma n = 1 | No data | No data | Imaging examinations have certain imaging features such as posterior acoustic enhancement, and together with an absence of hormone receptor expression, may suggest the metaplastic carcinoma. Limitations: lack of data regarding tumor size and treatment modalities. |
Characteristics | n | n% | |
---|---|---|---|
Location—side | Right breast | 19 | 42.2 |
Left breast | 26 | 57.8 | |
Location—quadrant | Upper outer | 23 | 51.1 |
Upper inner | 1 | 2.2 | |
Lower outer | 6 | 13.3 | |
Lower inner | 1 | 2.2 | |
Central | 4 | 8.9 | |
Not assessed/multiple | 10 | 22.2 | |
AJCC stage | I | 16 | 35.6 |
II | 16 | 35.6 | |
III | 13 | 28.9 | |
pT | 1 | 16 | 35.6 |
2 | 17 | 37.8 | |
3 | 11 | 24.4 | |
4 | 1 | 2.2 | |
Lymph node involvement | Negative | 37 | 82.2 |
Positive | 8 | 17.8 | |
Grade | I | 0 | 0 |
II | 9 | 20.0 | |
III | 35 | 77.8 | |
No data | 1 | 2.2 | |
DCIS presence | Yes | 16 | 35.6 |
No * | 29 | 64.4 | |
ER status | Positive | 6 | 13.3 |
Negative | 39 | 86.7 | |
PR status | Positive | 1 | 2.2 |
Negative | 44 | 97.8 | |
Subtype | Luminal A | 0 | 0 |
Luminal B | 6 | 13.3 | |
HER-2 positive | 0 | 0 | |
Triple-negative | 39 | 86.7 | |
HER2 | Positive | 0 | 0 |
Negative ** | 45 | 100 | |
Menopausal status | Postmenopausal | 34 | 75.6 |
Premenopausal | 11 | 24.4 | |
Method of tumor initial detection | Noted by the patient | 27 | 60.0 |
Accidental finding on imaging tests | 17 | 37.8 | |
No data | 1 | 2.2 | |
Type of imaging technique preoperative assessment | FFDM | 43 | 95.6 |
US | 41 | 91.1 |
Assessment Type | Tumor Size (mm) | p | ||
---|---|---|---|---|
Mean (±SD) | Median | Quartiles | ||
Pathologic examination * | 40.55 ± 32.22 | 30 | 16.5–51.5 | p = 0.018 *** |
FFDM * | 34.14 ± 25.19 | 28 | 18–42.5 | |
Pathological examination ** | 38.67 ± 31.84 | 30 | 16–45 | p = 0.002 *** |
US ** | 31.8 ± 22.38 | 28 | 17–40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Püsküllüoğlu, M.; Świderska, K.; Konieczna, A.; Rudnicki, W.; Pacholczak-Madej, R.; Kunkiel, M.; Grela-Wojewoda, A.; Mucha-Małecka, A.; Mituś, J.W.; Stobiecka, E.; et al. Discrepancy between Tumor Size Assessed by Full-Field Digital Mammography or Ultrasonography (cT) and Pathology (pT) in a Multicenter Series of Breast Metaplastic Carcinoma Patients. Cancers 2024, 16, 188. https://doi.org/10.3390/cancers16010188
Püsküllüoğlu M, Świderska K, Konieczna A, Rudnicki W, Pacholczak-Madej R, Kunkiel M, Grela-Wojewoda A, Mucha-Małecka A, Mituś JW, Stobiecka E, et al. Discrepancy between Tumor Size Assessed by Full-Field Digital Mammography or Ultrasonography (cT) and Pathology (pT) in a Multicenter Series of Breast Metaplastic Carcinoma Patients. Cancers. 2024; 16(1):188. https://doi.org/10.3390/cancers16010188
Chicago/Turabian StylePüsküllüoğlu, Mirosława, Katarzyna Świderska, Aleksandra Konieczna, Wojciech Rudnicki, Renata Pacholczak-Madej, Michał Kunkiel, Aleksandra Grela-Wojewoda, Anna Mucha-Małecka, Jerzy W. Mituś, Ewa Stobiecka, and et al. 2024. "Discrepancy between Tumor Size Assessed by Full-Field Digital Mammography or Ultrasonography (cT) and Pathology (pT) in a Multicenter Series of Breast Metaplastic Carcinoma Patients" Cancers 16, no. 1: 188. https://doi.org/10.3390/cancers16010188
APA StylePüsküllüoğlu, M., Świderska, K., Konieczna, A., Rudnicki, W., Pacholczak-Madej, R., Kunkiel, M., Grela-Wojewoda, A., Mucha-Małecka, A., Mituś, J. W., Stobiecka, E., Ryś, J., Jarząb, M., & Ziobro, M. (2024). Discrepancy between Tumor Size Assessed by Full-Field Digital Mammography or Ultrasonography (cT) and Pathology (pT) in a Multicenter Series of Breast Metaplastic Carcinoma Patients. Cancers, 16(1), 188. https://doi.org/10.3390/cancers16010188