Dysregulation of Peripheral Blood Mononuclear Cells and Immune-Related Proteins during the Early Post-Operative Immune Response in Ovarian Cancer Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Blood Collection
2.3. Isolation of PBMCs and Serum Preparation
2.4. RNA Extraction and Real-Time Polymerase Chain Reaction (RT-PCR)
2.5. Western Blot Analysis
2.6. PBMC Culture and Assessment of Activity
2.7. Assessment of Phagocytosis
2.8. Assessment of ROS Production
2.9. Assessment of NO Production
2.10. Analysis of Serum Cytokines Using Luminex
2.11. Analysis of Serum Proteins Using ELISA
2.12. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Immune-Related Protein Expression Is Downregulated in the PBMCs of OC Patients and Further Dysregulated Postoperatively
3.3. Surgical Treatment of OC Patients Affects PBMC Activity in the Early Post-Operative Period
3.4. Surgical Treatment Alters the Serum Concentrations of Immune-Related Proteins in OC Patients
4. Discussion
4.1. Suppression of PBMCs in OC Patients Compared to Healthy Controls
4.2. Post-Operative Changes in Interleukin Levels in the Serum and PBMCs of OC Patients
4.3. Post-Operative Changes in PBMC and Serum Levels of HO-1, PD-1, and PD-L1 in OC Patients
4.4. Surgery Reduces the Activity of PBMCs in OC Patients
4.5. Final Considerations Regarding the Post-Operative Immune Response in OC Patients
5. Conclusions
6. Study Limitations
7. Practical Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torre, L.A.; Trabert, B.; DeSantis, C.E.; Miller, K.D.; Samimi, G.; Runowicz, C.D.; Gaudet, M.M.; Jemal, A.; Siegel, R.L. Ovarian cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Vergote, I.; Denys, H.; De Greve, J.; Gennigens, C.; Van De Vijver, K.; Kerger, J.; Vuylsteke, P.; Baurain, J.F. Treatment algorithm in patients with ovarian cancer. Facts Views Vis. Obgyn. 2020, 12, 227–239. [Google Scholar] [PubMed]
- Colombo, N.; Sessa, C.; Bois, A.d.; Ledermann, J.; McCluggage, W.G.; McNeish, I.; Morice, P.; Pignata, S.; Ray-Coquard, I.; Vergote, I.; et al. ESMO-ESGO consensus conference recommendations on ovarian cancer: Pathology and molecular biology, early and advanced stages, borderline tumours and recurrent disease. Int. J. Gynecol. Cancer 2019, 29, 728–760. [Google Scholar] [CrossRef] [PubMed]
- Bryant, A.; Johnson, E.; Grayling, M.; Hiu, S.; Elattar, A.; Gajjar, K.; Craig, D.; Vale, L.; Naik, R. Residual Disease Threshold After Primary Surgical Treatment for Advanced Epithelial Ovarian Cancer, Part 1: A Systematic Review and Network Meta-Analysis. Am. J. Ther. 2022, 30, e36–e55. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, Y.; Yang, J.; Zhao, X.; Wei, X. Tumor Microenvironment in Ovarian Cancer: Function and Therapeutic Strategy. Front. Cell. Dev. Biol. 2020, 8, 758. [Google Scholar] [CrossRef] [PubMed]
- Huffman, O.G.; Chau, D.B.; Dinicu, A.I.; DeBernardo, R.; Reizes, O. Mechanistic Insights on Hyperthermic Intraperitoneal Chemotherapy in Ovarian Cancer. Cancers 2023, 15, 1402. [Google Scholar] [CrossRef]
- Akter, S.; Rahman, M.A.; Hasan, M.N.; Akhter, H.; Noor, P.; Islam, R.; Shin, Y.; Rahman, M.H.; Gazi, M.S.; Huda, M.N.; et al. Recent Advances in Ovarian Cancer: Therapeutic Strategies, Potential Biomarkers, and Technological Improvements. Cells 2022, 11, 650. [Google Scholar] [CrossRef]
- Tang, F.; Tie, Y.; Tu, C.; Wei, X. Surgical trauma-induced immunosuppression in cancer: Recent advances and the potential therapies. Clin. Transl. Med. 2020, 10, 199–223. [Google Scholar] [CrossRef]
- Amodeo, G.; Bugada, D.; Franchi, S.; Moschetti, G.; Grimaldi, S.; Panerai, A.; Allegri, M.; Sacerdote, P. Immune function after major surgical interventions: The effect of postoperative pain treatment. J. Pain Res. 2018, 11, 1297–1305. [Google Scholar] [CrossRef]
- Alieva, M.; van Rheenen, J.; Broekman, M.L.D. Potential impact of invasive surgical procedures on primary tumor growth and metastasis. Clin. Exp. Metastasis 2018, 35, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Tohme, S.; Simmons, R.L.; Tsung, A. Surgery for Cancer: A Trigger for Metastases. Cancer Res. 2017, 77, 1548–1552. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, M.F.; Ai, D.; Bauer, M.; Vauthey, J.; Gottumukkala, V.; Kee, S.; Shon, D.; Truty, M.; Kuerer, H.M.; Kurz, A.; et al. Innate immune function after breast, lung, and colorectal cancer surgery. J. Surg. Res. 2015, 194, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Angka, L.; Martel, A.B.; Kilgour, M.; Jeong, A.; Sadiq, M.; de Souza, C.T.; Baker, L.; Kennedy, M.A.; Kekre, N.; Auer, R.C. Natural Killer Cell IFNγ Secretion is Profoundly Suppressed Following Colorectal Cancer Surgery. Ann. Surg. Oncol. 2018, 25, 3747–3754. [Google Scholar] [CrossRef]
- Ng, C.S.H.; Lau, K.K.W. Surgical trauma and immune functional changes following major lung resection. Indian J. Surg. 2015, 77, 49–54. [Google Scholar] [CrossRef]
- Kleiveland, C.R. Peripheral Blood Mononuclear Cells; Springer: Cham, Switzerland, 2015; Chapter 15. [Google Scholar]
- Zhang, L.; Hou, L.; Wu, J.; Li, C.; Hu, T.; Zhu, C.; Wu, C.; Chen, C. Peripheral blood mononuclear cells (PBMCs), an ideal liquid biopsy approach to evaluate systematic immunity and predict response of neoadjuvant chemo-immunotherapy in resectable NSCLC. J. Clin. Oncol. 2022, 40, e20618. [Google Scholar] [CrossRef]
- Salas-Benito, D.; Vercher, E.; Conde, E.; Glez-Vaz, J.; Tamayo, I.; Hervas-Stubbs, S. Inflammation and immunity in ovarian cancer. EJC Suppl. 2020, 15, 56–66. [Google Scholar] [CrossRef]
- Micheli, D.C.; Jammal, M.P.; Martins-Filho, A.; Côrtes, J.R.X.d.M.; Souza, C.N.d.; Nomelini, R.S.; Murta, E.F.C.; Tavares-Murta, B.M. Serum cytokines and CXCR2: Potential tumour markers in ovarian neoplasms. Biomarkers 2020, 25, 474–482. [Google Scholar] [CrossRef]
- Kampan, N.C.; Madondo, M.T.; Reynolds, J.; Hallo, J.; McNally, O.M.; Jobling, T.W.; Stephens, A.N.; Quinn, M.A.; Plebanski, M. Pre-operative sera interleukin-6 in the diagnosis of high-grade serous ovarian cancer. Sci. Rep. 2020, 10, 2213. [Google Scholar] [CrossRef]
- Nowak, M.; Klink, M.; Glowacka, E.; Sulowska, Z.; Kulig, A.; Szpakowski, M.; Szyllo, K.; Tchorzewski, H. Production of cytokines during interaction of peripheral blood mononuclear cells with autologous ovarian cancer cells or benign ovarian tumour cells. Scand. J. Immunol. 2010, 71, 91–98. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, J.; Ke, X.; Zhang, S.; Huang, P.; Xu, T.; Huang, L.; Lou, J.; Shi, X.; Sun, R.; et al. Expression and function of Toll-like receptors in peripheral blood mononuclear cells from patients with ovarian cancer. Cancer Immunol. Immunother. 2015, 64, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Drakes, M.L.; Stiff, P.J. Ovarian Cancer: Therapeutic Strategies to Overcome Immune Suppression. Adv. Exp. Med. Biol. 2021, 1330, 33–54. [Google Scholar] [CrossRef] [PubMed]
- De Bruyn, C.; Ceusters, J.; Landolfo, C.; Baert, T.; Thirion, G.; Claes, S.; Vankerckhoven, A.; Wouters, R.; Schols, D.; Timmerman, D.; et al. Neo-Adjuvant Chemotherapy Reduces, and Surgery Increases Immunosuppression in First-Line Treatment for Ovarian Cancer. Cancers 2021, 13, 5899. [Google Scholar] [CrossRef] [PubMed]
- Napoletano, C.; Bellati, F.; Landi, R.; Pauselli, S.; Marchetti, C.; Visconti, V.; Sale, P.; Liberati, M.; Rughetti, A.; Frati, L.; et al. Ovarian cancer cytoreduction induces changes in T cell population subsets reducing immunosuppression. J. Cell. Mol. Med. 2010, 14, 2748–2759. [Google Scholar] [CrossRef]
- Luu Hoang, K.N.; Anstee, J.E.; Arnold, J.N. The Diverse Roles of Heme Oxygenase-1 in Tumor Progression. Front. Immunol. 2021, 12, 658315. [Google Scholar] [CrossRef]
- Mielczarek-Palacz, A.; Sikora, J.; Kondera-Anasz, Z.; Mickiewicz, P.; Mickiewicz, A. Effect of Th1/Th2 cytokine administration on proinflammatory SKOV-3 cell activation. Arch. Med. Sci. 2016, 12, 1337–1347. [Google Scholar] [CrossRef] [PubMed]
- Habel, A.; Weili, X.; Hadj Ahmed, M.; Stayoussef, M.; Bouaziz, H.; Ayadi, M.; Mezlini, A.; Larbi, A.; Yaacoubi-Loueslati, B. Immune checkpoints as potential theragnostic biomarkers for epithelial ovarian cancer. Int. J. Biol. Markers 2023, 38, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Dumitru, A.; Dobrica, E.; Croitoru, A.; Cretoiu, S.M.; Gaspar, B.S. Focus on PD-1/PD-L1 as a Therapeutic Target in Ovarian Cancer. Int. J. Mol. Sci. 2022, 23, 12067. [Google Scholar] [CrossRef]
- Gordon, S.R.; Maute, R.L.; Dulken, B.W.; Hutter, G.; George, B.M.; McCracken, M.N.; Gupta, R.; Tsai, J.M.; Sinha, R.; Corey, D.; et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 2017, 545, 495–499. [Google Scholar] [CrossRef]
- Lu, J.; Abudukeyoumu, A.; Zhang, X.; Liu, L.; Li, M.; Xie, F. Heme oxygenase 1: A novel oncogene in multiple gynecological cancers. Int. J. Biol. Sci. 2021, 17, 2252–2261. [Google Scholar] [CrossRef]
- Berek, J.S.; Renz, M.; Kehoe, S.; Kumar, L.; Friedlander, M. Cancer of the ovary, fallopian tube, and peritoneum: 2021 update. Int. J. Gynaecol. Obstet. 2021, 155 (Suppl. 1), 61–85. [Google Scholar] [CrossRef]
- Isolation of Mononuclear Cells. Available online: https://cdn.cytivalifesciences.com/api/public/content/digi-16156-pdf (accessed on 26 September 2023).
- RNA Extraction Kit (abx098089). Available online: https://www.abbexa.com/documents/manual/abx098089_ifu.pdf (accessed on 7 October 2023).
- AlamarBlue® Assay Protocol. Available online: https://tools.thermofisher.com/content/sfs/manuals/PI-DAL1025-1100_TI%20alamarBlue%20Rev%201.1.pdf (accessed on 27 September 2023).
- Mantovani, A.; Sica, A.; Sozzani, S.; Allavena, P.; Vecchi, A.; Locati, M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004, 25, 677–686. [Google Scholar] [CrossRef] [PubMed]
- pHrodoTM Red, Deep Red, and Green BioParticlesTM Conjugates for Phagocytosis. Available online: https://www.thermofisher.com/document-connect/document-connect.html?url=https://assets.thermofisher.com/TFS-Assets%2FLSG%2Fmanuals%2Fmp35361.pdf (accessed on 28 September 2023).
- Nathan, C.; Cunningham-Bussel, A. Beyond oxidative stress: An immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol. 2013, 13, 349–361. [Google Scholar] [CrossRef] [PubMed]
- DCFDA/H2DCFDA—Cellular ROS Assay Kit (ab113851). Available online: https://www.abcam.com/products/assay-kits/dcfda--h2dcfda-cellular-ros-assay-kit-ab113851.html (accessed on 28 September 2023).
- Bogdan, C. Nitric oxide synthase in innate and adaptive immunity: An update. Trends Immunol. 2015, 36, 161–178. [Google Scholar] [CrossRef] [PubMed]
- Bronte, V.; Zanovello, P. Regulation of immune responses by L-arginine metabolism. Nat. Rev. Immunol. 2005, 5, 641–654. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Yang, X.; Wang, L.; Gao, K.; Jiang, Z. L-Arginine Inhibited Inflammatory Response and Oxidative Stress Induced by Lipopolysaccharide via Arginase-1 Signaling in IPEC-J2 Cells. Int. J. Mol. Sci. 2019, 20, 1800. [Google Scholar] [CrossRef] [PubMed]
- Griess Reagent Kit for Nitrite Determination (G-7921). Available online: https://www.thermofisher.com/document-connect/document-connect.html?url=https://assets.thermofisher.com/TFS-Assets%2FLSG%2Fmanuals%2Fmp07921.pdf (accessed on 28 September 2023).
- Human Heme Oxygenase 1 (HO-1) CatchPoint SimpleStep ELISA Kit (ab229429). Available online: https://www.abcam.com/ps/products/229/ab229429/documents/Human-Heme-Oxygenase-1-ELISA-Kit-protocol-book-v4-ab229429%20(website).pdf (accessed on 29 September 2023).
- Human PD-L1 SimpleStep ELISA Kit (ab277712). Available online: https://www.abcam.com/ps/products/277/ab277712/documents/Human-PD-L1-ELISA-Kit-[28-8]-protocol-book-v2-ab277712%20(website).pdf (accessed on 29 September 2023).
- Human PD-1 SimpleStep ELISA Kit (ab252360). Available online: https://www.abcam.com/ps/products/252/ab252360/documents/Human-PD-1-ELISA-Kit-protocol-book-v2-ab252360%20(website).pdf (accessed on 29 September 2023).
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Reid, B.M.; Permuth, J.B.; Sellers, T.A. Epidemiology of ovarian cancer: A review. Cancer Biol. Med. 2017, 14, 9–32. [Google Scholar] [CrossRef]
- Nelson, B.H. The impact of T-cell immunity on ovarian cancer outcomes. Immunol. Rev. 2008, 222, 101–116. [Google Scholar] [CrossRef]
- Freedman, R.S.; Ma, Q.; Wang, E.; Gallardo, S.T.; Gordon, I.O.; Shin, J.W.; Jin, P.; Stroncek, D.; Marincola, F.M. Migration deficit in monocyte-macrophages in human ovarian cancer. Cancer Immunol. Immunother. 2008, 57, 635–645. [Google Scholar] [CrossRef]
- Ingersoll, S.B.; Stoltzfus, G.P.; Merchant, M.H.; Ahmad, S.; Edwards, C.R.; Ahmed, A.; Oyer, J.L.; Finkler, N.J.; Holloway, R.W.; Edwards, J.R. Comparison of the cytotoxic response against ovarian cancer by immune effector cells isolated and expanded from normal donors and ovarian cancer patients. Cytotherapy 2012, 14, 716–723. [Google Scholar] [CrossRef]
- Zaborowski, M.P.; Stefens-Stawna, P.; Osztynowicz, K.; Piorunek, T.; Batura-Gabryel, H.; Dyzmann-Sroka, A.; Kozubski, W.; Nowak-Markwitz, E.; Michalak, S. Granzyme B in peripheral blood mononuclear cells as a measure of cell-mediated immune response in paraneoplastic neurological syndromes and malignancy. Cancer Immunol. Immunother. 2021, 70, 1277–1289. [Google Scholar] [CrossRef] [PubMed]
- Kampan, N.C.; Kartikasari, A.E.R.; Deceneux, C.; Madondo, M.T.; McNally, O.M.; Flanagan, K.L.; Aziz, N.A.; Stephens, A.N.; Reynolds, J.; Quinn, M.A.; et al. Combining TNFR2-Expressing Tregs and IL-6 as Superior Diagnostic Biomarkers for High-Grade Serous Ovarian Cancer Masses. Cancers 2023, 15, 667. [Google Scholar] [CrossRef] [PubMed]
- Yabuno, A.; Matsushita, H.; Hamano, T.; Tan, T.Z.; Shintani, D.; Fujieda, N.; Tan, D.S.P.; Huang, R.Y.; Fujiwara, K.; Kakimi, K.; et al. Identification of serum cytokine clusters associated with outcomes in ovarian clear cell carcinoma. Sci. Rep. 2020, 10, 18503. [Google Scholar] [CrossRef] [PubMed]
- Browning, L.; Patel, M.R.; Horvath, E.B.; Tawara, K.; Jorcyk, C.L. IL-6 and ovarian cancer: Inflammatory cytokines in promotion of metastasis. Cancer Manag. Res. 2018, 10, 6685–6693. [Google Scholar] [CrossRef]
- Kartikasari, A.E.R.; Huertas, C.S.; Mitchell, A.; Plebanski, M. Tumor-Induced Inflammatory Cytokines and the Emerging Diagnostic Devices for Cancer Detection and Prognosis. Front. Oncol. 2021, 11, 692142. [Google Scholar] [CrossRef]
- Li, Z.; Chen, L.; Qin, Z. Paradoxical Roles of IL-4 in Tumor Immunity. Cell. Mol. Immunol. 2009, 6, 415–422. [Google Scholar] [CrossRef]
- Souza, J.C.; Ribeiro, R.S.; Pimenta, T.M.; Martins, B.S.; Rangel, L.B.A. The role of pro-inflammatory components, carcinoma-associated fibroblasts, and tumor-associated macrophages in ovarian cancer progression and metastasis. J. Cancer Metastasis Treat. 2023, 9, 3. [Google Scholar] [CrossRef]
- Lan, T.; Chen, L.; Wei, X. Inflammatory Cytokines in Cancer: Comprehensive Understanding and Clinical Progress in Gene Therapy. Cells 2021, 10, 100. [Google Scholar] [CrossRef]
- Wilke, C.M.; Wei, S.; Wang, L.; Kryczek, I.; Kao, J.; Zou, W. Dual biological effects of the cytokines interleukin-10 and interferon-γ. Cancer Immunol. Immunother. 2011, 60, 1529–1541. [Google Scholar] [CrossRef]
- Indra, B.; Lipoeto, N.; Hon Tjong, D.; Rahman, S. Alteration of Interleukin-4, Interleukin-6 Levels, and Post-operative Pain Intensity. Open Access Maced. J. Med. Sci. 2023, 11, 1–7. [Google Scholar] [CrossRef]
- Hsu, T.; Lin, C.; Sun, F.; Chen, M. Postoperative Serum Levels of Interleukin-6 are Affected by Age in Patients with Colorectal Cancer. Int. J. Gerontol. 2017, 11, 75–79. [Google Scholar] [CrossRef]
- Yeldag, G.; Rice, A.; Del Río Hernández, A. Chemoresistance and the Self-Maintaining Tumor Microenvironment. Cancers 2018, 10, 471. [Google Scholar] [CrossRef] [PubMed]
- Wang, L. Prognostic effect of programmed death-ligand 1 (PD-L1) in ovarian cancer: A systematic review, meta-analysis and bioinformatics study. J. Ovarian Res. 2019, 12, 37. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Yan, L.; Wang, Q. Efficacy of PD-1/PD-L1 inhibitors in ovarian cancer: A single-arm meta-analysis. J. Ovarian Res. 2021, 14, 112. [Google Scholar] [CrossRef]
- Świderska, J.; Kozłowski, M.; Kwiatkowski, S.; Cymbaluk-Płoska, A. Immunotherapy of Ovarian Cancer with Particular Emphasis on the PD-1/PDL-1 as Target Points. Cancers 2021, 13, 6063. [Google Scholar] [CrossRef] [PubMed]
- Bacot, S.M.; Harper, T.A.; Matthews, R.L.; Fennell, C.J.; Akue, A.; KuKuruga, M.A.; Lee, S.; Wang, T.; Feldman, G.M. Exploring the Potential Use of a PBMC-Based Functional Assay to Identify Predictive Biomarkers for Anti-PD-1 Immunotherapy. Int. J. Mol. Sci. 2020, 21, 9023. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, Y.; Lu, J.; Xue, J.; Liu, P. High expression of HO-1 predicts poor prognosis of ovarian cancer patients and promotes proliferation and aggressiveness of ovarian cancer cells. Clin. Transl. Oncol. 2018, 20, 491–499. [Google Scholar] [CrossRef]
- Piktel, E.; Ościłowska, I.; Suprewicz, Ł.; Depciuch, J.; Marcińczyk, N.; Chabielska, E.; Wolak, P.; Wollny, T.; Janion, M.; Parlinska-Wojtan, M.; et al. ROS-Mediated Apoptosis and Autophagy in Ovarian Cancer Cells Treated with Peanut-Shaped Gold Nanoparticles. Int. J. Nanomed. 2021, 16, 1993–2011. [Google Scholar] [CrossRef]
- Snezhkina, A.V.; Kudryavtseva, A.V.; Kardymon, O.L.; Savvateeva, M.V.; Melnikova, N.V.; Krasnov, G.S.; Dmitriev, A.A. ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells. Oxid. Med. Cell. Longev. 2019, 2019, 6175804. [Google Scholar] [CrossRef]
- Ding, D.; Xie, L.; Shen, Y.; Li, J.; Guo, Y.; Fu, Y.; Liu, F.; Han, F. Insights into the Role of Oxidative Stress in Ovarian Cancer. Oxid. Med. Cell. Longev. 2021, 2021, 8388258. [Google Scholar] [CrossRef] [PubMed]
- Kovács, A.R.; Pál, L.; Szűcs, S.; Lukács, L.; Póka, R.; Lampé, R. Phagocytic function of monocytes and neutrophil granulocytes in ovarian cancer. Orvosi Hetil. 2018, 159, 1353–1359. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Chen, X.; Lou, J.; Zhang, S.; Zhang, X.; Huang, L.; Sun, R.; Huang, P.; Pan, S.; Wang, F. Changes in regulatory T cells in patients with ovarian cancer undergoing surgery: Preliminary results. Int. Immunopharmacol. 2017, 47, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Zhang, Y.; Xi, H. The effects of epidural anaesthesia and analgesia on natural killer cell cytotoxicity and cytokine response in patients with epithelial ovarian cancer undergoing radical resection. J. Int. Med. Res. 2012, 40, 1822–1829. [Google Scholar] [CrossRef] [PubMed]
- Hogan, B.V.; Peter, M.B.; Shenoy, H.G.; Horgan, K.; Hughes, T.A. Surgery induced immunosuppression. Surgeon 2011, 9, 38–43. [Google Scholar] [CrossRef]
- Lim, M.C.; Chang, S.; Park, B.; Yoo, H.J.; Yoo, C.W.; Nam, B.H.; Park, S. Survival After Hyperthermic Intraperitoneal Chemotherapy and Primary or Interval Cytoreductive Surgery in Ovarian Cancer: A Randomized Clinical Trial. JAMA Surg. 2022, 157, 374–383. [Google Scholar] [CrossRef]
Characteristic | OC Group (n = 23) | Control Group (n = 20) | p-Value |
---|---|---|---|
Age (years) * | 58 (14) | 60.5 (10) | 0.48 |
Body mass index (kg/m2) * | 24 (7.4) | 24.7 (6.6) | 0.97 |
Stage of OC ** | |||
IIIA | 4 (17.4) | NA | NA |
IIIB | 4 (17.4) | NA | NA |
IIIC | 7 (30.4) | NA | NA |
IVA | 1 (4.4) | NA | NA |
IVB | 7 (30.4) | NA | NA |
Histological type of OC ** | |||
Low-grade serous carcinoma | 1 (4.4) | NA | NA |
High-grade serous carcinoma | 15 (65.1) | NA | NA |
Endometrioid carcinoma | 2 (8.7) | NA | NA |
Clear cell carcinoma | 1 (4.4) | NA | NA |
Mucinous carcinoma | 1 (4.4) | NA | NA |
Serous endometrioid carcinoma | 3 (13) | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulevicius, J.; Jasukaitiene, A.; Bartkeviciene, A.; Dambrauskas, Z.; Gulbinas, A.; Urboniene, D.; Paskauskas, S. Dysregulation of Peripheral Blood Mononuclear Cells and Immune-Related Proteins during the Early Post-Operative Immune Response in Ovarian Cancer Patients. Cancers 2024, 16, 190. https://doi.org/10.3390/cancers16010190
Ulevicius J, Jasukaitiene A, Bartkeviciene A, Dambrauskas Z, Gulbinas A, Urboniene D, Paskauskas S. Dysregulation of Peripheral Blood Mononuclear Cells and Immune-Related Proteins during the Early Post-Operative Immune Response in Ovarian Cancer Patients. Cancers. 2024; 16(1):190. https://doi.org/10.3390/cancers16010190
Chicago/Turabian StyleUlevicius, Jonas, Aldona Jasukaitiene, Arenida Bartkeviciene, Zilvinas Dambrauskas, Antanas Gulbinas, Daiva Urboniene, and Saulius Paskauskas. 2024. "Dysregulation of Peripheral Blood Mononuclear Cells and Immune-Related Proteins during the Early Post-Operative Immune Response in Ovarian Cancer Patients" Cancers 16, no. 1: 190. https://doi.org/10.3390/cancers16010190
APA StyleUlevicius, J., Jasukaitiene, A., Bartkeviciene, A., Dambrauskas, Z., Gulbinas, A., Urboniene, D., & Paskauskas, S. (2024). Dysregulation of Peripheral Blood Mononuclear Cells and Immune-Related Proteins during the Early Post-Operative Immune Response in Ovarian Cancer Patients. Cancers, 16(1), 190. https://doi.org/10.3390/cancers16010190