Selective RET Inhibitors (SRIs) in Cancer: A Journey from Multi-Kinase Inhibitors to the Next Generation of SRIs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Oncogenic RET Alterations and RET Fusions
2.1. Non-Small-Cell Lung Cancer (NSCLC)
2.2. Medullary Thyroid Cancer (MTC)
2.3. Other RET-Altered Solid Tumors
2.4. Treatment of RET-Altered Tumors—A Changing Paradigm
2.5. First-Generation Selective RET Inhibitors
2.6. The Optimal Profile of a Next-Generation SRI
3. Next-Generation Selective RET Inhibitors in Clinical Development
3.1. BOS172738, Boston Pharmaceuticals
3.2. TPX0046, Turning Point Therapeutics
3.3. Vepafestinib (TAS0953/HM06), Helsinn Healthcare SA, Lugano, Switzerland
3.4. SY5007, Shouyao Holdings (Beijing) Co., Ltd., Beijing, China
3.5. EP0031—Kelun Biotech (KL590586/A400) and Ellipses Pharma (EP0031)
3.6. HS-10365 Jiangsu Hansoh Pharmaceutical Co., Ltd., Lianyungang, China
3.7. APS03118, Applied Pharmaceutical Science, Inc., Beijing, China
3.8. LOXO-260, Loxo Oncology, Inc., Stamford, CT, USA, and Eli Lilly and Company, Indianapolis, IN, USA
3.9. TY-1091, TYK Medicines, Inc.
3.10. HA121-28, CSPC ZhongQi Pharmaceutical Technology Co., Ltd.
3.11. HS269, Zhejiang Hisun Pharmaceutical Co., Ltd.
3.12. HEC169096, Sunshine Lake Pharma
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Takahashi, M.; Ritz, J.; Cooper, G.M. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell 1985, 42, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Drilon, A.; Hu, Z.I.; Lai, G.G.Y.; Tan, D.S.W. Targeting RET-driven cancers: Lessons from evolving preclinical and clinical landscapes. Nat. Rev. Clin. Oncol. 2018, 15, 151–167. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Kaversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Cancer.Net. 2023 Cancer.Net. Lung Cancer—Non-Small Cell: Statistics; March 2023. Available online: https://www.cancer.net/cancer-types/lung-cancer-non-small-cell/statistics (accessed on 25 September 2023).
- Drilon, A.; Lin, J.J.; Filleron, T.; Ni, A.; Milia, J.; Bergagnini, I.; Hatzoglou, V.; Velcheti, V.; Offin, M.; Li, B.; et al. Frequency of brain metastases and multikinase inhibitor outcomes in patients with RET-rearranged lung cancers. J. Thorac. Oncol. 2018, 13, 1595–1601. [Google Scholar] [CrossRef] [PubMed]
- Aldea, M.; Marinello, A.; Duruisseaux, M.; Zrafi, W.; Conci, N.; Massa, G.; Metro, G.; Monnet, I.; Gomez Iranzo, P.; Tabbo, F.; et al. RET-MAP: An International Multicenter Study on Clinicobiologic Features and Treatment Response in Patients with Lung Cancer Harboring a RET Fusion. J. Thorac. Oncol. 2023, 18, 576–586. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Hu, M.I.; Wirth, L.J.; Schuler, M.; Mansfield, A.S.; Curigliano, G.; Brose, M.S.; Zhu, V.W.; Leboulleux, S.; Bowles, D.W.; et al. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): A multi-cohort, open-label, registrational, phase 1/2 study. Lancet Diabetes Endocrinol. 2021, 9, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Romei, C.; Ciampi, R.; Casella, F.; Tacito, A.; Torregrossa, L.; Ugolini, C.; Basolo, F.; Materazzi, G.; Vitti, P.; Elisei, R. RET mutation heterogeneity in primary advanced medullary thyroid cancers and their metastases. Oncotarget 2018, 9, 9875–9884. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Subbiah, V.; Marchlik, E.; Elkin, S.K.; Carter, J.L.; Kurzrock, R. RET aberrations in diverse cancers: Next-generation sequencing of 4871 patients. Clin. Cancer Res. 2017, 23, 1988–1997. [Google Scholar] [CrossRef]
- Drilon, A.; Rekhtman, N.; Arcila, M.; Wang, L.; Ni, A.; Albano, M.; Van Voorthuysen, M.; Somwar, R.; Smith, R.S.; Montecalvo, J.; et al. Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: An open-label, single-centre, phase 2, single-arm trial. Lancet Oncol. 2016, 17, 1653–1660. [Google Scholar] [CrossRef]
- Hida, T.; Velcheti, V.; Reckamp, K.L.; Nokihara, H.; Sachdev, P.; Kubota, T.; Nakada, T.; Dutcus, C.E.; Ren, M.; Tamura, T. A phase 2 study of lenvatinib in patients with RET fusion-positive lung adenocarcinoma. Lung Cancer 2019, 138, 124–130. [Google Scholar] [CrossRef]
- Wirth, L.J.; Kohno, T.; Udagawa, H.; Matsumoto, S.; Ishii, G.; Ebata, K.; Tuch, B.B.; Zhu, E.Y.; Nguyen, M.; Smith, S.; et al. Emergence and Targeting of Acquired and Hereditary Resistance to Multikinase RET Inhibition in Patients with RET-Altered Cancer. JCO Precision Oncology 2019, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Velcheti, V.; Tuch, B.B.; Ebata, K.; Busaidy, N.L.; Cabanillas, M.E.; Wirth, L.J.; Stock, S.; Smith, S.; Lauriault, V.; et al. Selective RET kinase inhibition for patients with RET-altered cancers. Ann. Oncol. 2018, 29, 1869–1876. [Google Scholar] [CrossRef] [PubMed]
- Markham, A. Selpercatinib: First approval. Drugs 2020, 80, 1119–1124. [Google Scholar] [CrossRef] [PubMed]
- Wirth, L.J.; Sherman, E.; Robinson, B.; Solomon, B.; Kang, H.; Lorch, J.; Worden, F.; Brose, M.; Patel, J.; Leboulleux, S.; et al. Efficacy of Selpercatinib in RET-Altered Thyroid Cancers. N. Engl. J. Med. 2020, 383, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Drilon, A.; Oxnard, G.R.; Tan, D.S.W.; Loong, H.H.F.; Johnson, M.; Gainor, J.; McCoach, C.E.; Gautschi, O.; Besse, B.; Cho, B.C.; et al. Efficacy of Selpercatinib in RET Fusion–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 13–24. [Google Scholar] [CrossRef]
- RETEVMO US Prescribing Information. 2021. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/213246s002lbl.pdf (accessed on 3 November 2023).
- Drilon, A.; Subbiah, V.; Gautschi, O.; Tomasini, P.; de Braud, F.; Solomon, B.J.; Shao-Weng Tan, D.; Alonso, G.; Wolf, J.; Park, K.; et al. Selpercatinib in Patients with RET Fusion–Positive Non–Small-Cell Lung Cancer: Updated Safety and Efficacy from the Registrational LIBRETTO-001 Phase I/II Trial. J. Clin. Oncol. 2023, 41, 385–394. [Google Scholar] [CrossRef]
- RETEVMO US Prescribing Information. 2022. Available online: https://pi.lilly.com/us/retevmo-uspi.pdf (accessed on 24 September 2023).
- Zhou, C.; Solomon, B.; Loong, H.H.; Park, K.; Pérol, M.; Arriola, E.; Novello, S.; Han, B.; Zhou, J.; Ardizzoni, A.; et al. First-line Selpercatinib or chemotherapy and pembrolizimab in RET fusion-positive NSCLC. N. Engl. J. Med. 2023, 389, 1839–1850. [Google Scholar] [CrossRef]
- Hadoux, J.; Elisei, R.; Brose, M.S.; Hoff, A.O.; Robinson, B.G.; Gao, M.; Jarzab, B.; Isaev, P.; Kopeckova, K.; Wadsley, J.; et al. Phase-3 trial of selpercatinib in advanced RET-mutant medullary thyroid cancer. N. Engl. J. Med. 2023, 389, 1851–1861. [Google Scholar] [CrossRef]
- Gainor, J.F.; Curigliano, G.; Kim, D.W.; Lee, D.H.; Besse, B.; Baik, C.S.; Doebele, R.C.; Cassier, P.A.; Lopes, G.; Tan, D.S.W.; et al. Pralsetinib for RET fusion-positive non-small-cell lung cancer (ARROW): A multi-cohort, open-label, phase 1/2 study. Lancet Oncol. 2021, 22, 959–969. [Google Scholar] [CrossRef]
- GAVRETO US Prescribing Information. 2020. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213721s000lbl.pdf (accessed on 3 November 2023).
- Griesinger, F.; Curigliano, G.; Thomas, M.; Subbiah, V.; Baik, C.S.; Tan, D.S.W.; Lee, D.H.; Misch, D.; Garralda, E.; Kim, D.W.; et al. Safety and efficacy of pralsetinib in RET fusion–positive non-small-cell lung cancer including as first-line therapy: Update from the ARROW trial. Ann. Oncol. 2022, 33, 1168–1178. [Google Scholar] [CrossRef]
- Genentech Provides Update on Gavreto, U.S. Indication for Advanced or Metastatic Medullary Thyroid Cancer. Available online: https://www.gene.com/media/statements/ps_062923 (accessed on 3 November 2023).
- GAVRETO US Prescribing Information. 2023. Available online: https://www.gene.com/download/pdf/gavreto_prescribing.pdf (accessed on 3 November 2023).
- Blueprint Medicines to Regain Global Rights to GAVRETO® (Pralsetinib) from Roche. Available online: https://www.prnewswire.com/news-releases/blueprint-medicines-to-regain-global-rights-to-gavreto-pralsetinib-from-roche-301754042.html (accessed on 3 November 2023).
- Prete, A.; Gambale, C.; Cappagli, V.; Bottici, V.; Rossi, P.; Caciagli, M.; Papini, P.; Taddei, D.; Ortori, S.; Gabbrielli, L.; et al. Chylous effusions in advanced medullary thyroid cancer patients treated with selpercatinib. Eur. J. Endocrinol. 2022, 187, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Shen, T.; Terzyan, S.S.; Liu, X.; Hu, X.; Patel, K.P.; Hu, M.; Cabanillas, M.; Behrang, A.; Meric-Bernstam, F.; et al. Structural basis of acquired resistance to selpercatinib and pralsetinib mediated by non-gatekeeper RET mutations. Ann. Oncol. 2021, 32, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Solomon, B.J.; Tan, L.; Lin, J.J.; Wong, S.Q.; Hollizeck, S.; Ebata, K.; Tuch, B.B.; Yoda, S.; Gainor, J.F.; Sequist, L.V.; et al. RET solvent front mutations mediate acquired resistance to selective RET inhibition in RET-driven malignancies. J. Thorac. Oncol. 2020, 15, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Fancelli, S.; Caliman, E.; Mazzoni, F.; Brugia, M.; Castiglione, F.; Voltolini, L.; Pillozzi, S.; Antonuzzo, L. Chasing the target: New phenomena of resistance to novel selective RET inhibitors in lung cancer. Updated evidence and future perspective. Cancers 2021, 13, 1091. [Google Scholar] [CrossRef] [PubMed]
- Rosen, E.Y.; Won, H.H.; Zheng, Y.; Cocco, E.; Selcuklu, D.; Gong, Y.; Friedman, N.D.; de Bruijn, I.; Sumer, O.; Bielski, C.M.; et al. The evolution of RET inhibitor resistance in RET-driven lung and thyroid cancers. Nat. Commun. 2022, 13, 1450. [Google Scholar] [CrossRef]
- Plenker, D.; Riedel, M.; Brägelmann, J.; Dammert, M.A.; Chauhan, R.; Knowles, P.P.; Lorenz, C.; Keul, M.; Bührmann, M.; Pagel, O.; et al. Drugging the catalytically inactive state of RET kinase in RET-rearranged tumors. Sci. Transl. Med. 2017, 9, eaah6144. [Google Scholar] [CrossRef]
- De Falco, V.; Carlomagno, F.; Li, H.Y.; Santoro, M. The molecular basis for RET tyrosine-kinase inhibitors in thyroid cancer. Best. Pract. Res. Clin. Endocrinol. Metab. 2017, 31, 307–318. [Google Scholar] [CrossRef]
- Khalaf, T.; Heeke, S.; Feng, L.; Drusbosky, L.M.; Lewis, J.; Rinsurongkawong, W.; Rinsurongkawong, V.; Lee, J.; Zhang, J.; Gibbons, D.; et al. The genomic landscape of RET fusions in non-small cell lung cancer and the impact of co-occurring genomic alterations on the efficacy of selective RET inhibitors. Cancer Res. 2023, 83 (Suppl. S7), 4264. [Google Scholar] [CrossRef]
- Kang, Y.; Jin, Y.; Li, Q.; Yuan, X. Advances in Lung Cancer Driver Genes Associated with Brain Metastasis. Front. Oncol. 2021, 10, 606300. [Google Scholar] [CrossRef]
- Keegan, M.; Wilcoxen, K.; Ho, P.T. BOS172738: A novel highly potent and selective RET kinase inhibitor in Phase 1 clinical development. Cancer Res. 2019, 79 (Suppl. S13), 2199. [Google Scholar] [CrossRef]
- Schoffski, P.; Cho, C.; Italiano, A.; Loong, H.H.F.; Massard, C.; Medina Rodriguez, L.; Shih, J.Y.; Subbiah, V.; Verlingue, L.; Andreas, K.; et al. BOS172738, a highly potent and selective RET inhibitor, for the treatment of RET-altered tumors including RET-fusion+ NSCLC and RET-mutant MTC: Phase 1 study results. J. Clin. Oncol. 2021, 39 (Suppl. S15), 3008. [Google Scholar] [CrossRef]
- Study of TPX-0046, A RET/SRC Inhibitor in Adult Subjects with Advanced Solid Tumors Harboring RET Fusions or Mutations. Available online: https://www.clinicaltrials.gov/study/NCT04161391 (accessed on 3 November 2023).
- Miyazaki, I.; Ishida, K.; Kato, M.; Suzuki, T.; Fujita, H.; Ohkubo, S.; Iwasawa, Y. Discovery of TAS0953/HM06, a novel next generation RET-specific inhibitor capable of inhibiting RET solvent front mutations. Mol. Cancer Ther. 2021, 20 (Suppl. S12), P06-02. [Google Scholar] [CrossRef]
- Odintsov, I.; Kurth, R.I.; Ishizawa, K.; Delasos, L.; Lui, A.J.W.; Khodos, I.; Hagen, C.J.; Chang, Q.; Mattar, M.S.; Vojnic, M.; et al. TAS0953/HM06 is effective in preclinical models of diverse tumor types driven by RET alterations. Mol. Cancer Ther. 2021, 20 (Suppl. S12), P233. [Google Scholar] [CrossRef]
- Odintsov, I.; Lui, A.J.W.; Ishizawa, K.; Miyazaki, I.; Khodos, I.; Wakayama, K.; Vojnic, M.; Hagen, C.J.; Chang, Q.; Bonifacio, A.; et al. Comparison of TAS0953/HM06 and selpercatinib in RET fusion-driven preclinical disease models of intracranial metastases. J. Clin. Oncol. 2022, 40 (Suppl. S16), 2024. [Google Scholar] [CrossRef]
- Zhou, C.; Li, W.; Zhang, Y.; Song, Z.; Wang, Y.; Huang, D.; Ye, F.; Wang, Q.; Sun, Y. A first-in-human phase I, dose-escalation and dose-expansion study of SY-5007, a highly potent and selective RET inhibitor, in Chinese patients with advanced RET positive solid tumors. J. Clin. Oncol. 2023, 41 (Suppl. S16), 9111. [Google Scholar] [CrossRef]
- Zhou, Q.; Wu, Y.L.; Zheng, X.; Li, D.; Huang, D.; Li, X.; Liu, A.; Song, X.; Jing, S.; Wang, M.; et al. A phase I study of KL590586, a next-generation selective RET inhibitor, in patients with RET-altered solid tumors. J. Clin. Oncol. 2023, 41 (Suppl. S16), 3007. [Google Scholar] [CrossRef]
- Garralda, E.; Guzman, A.; Garrido, P.; Gianoukakis, A.G.; Taylor, M.; Piha-Paul, S.; Krebs, M.G.; Italiano, A.; Clark, L.; Fisher, G.; et al. Preliminary results from a phase I/II study evaluating the safety, tolerability, and efficacy of EP0031, a next generation selective RET inhibitor, in patients with advanced RET-altered malignancies. In Proceedings of the EORTC-NCI-AACR Meeting 2023 (Abstract B043), Boston, MA, USA, 11–15 October 2023. [Google Scholar]
- Lu, S.; Wang, Q.; Wu, L.; Xing, L.; Li, Y.; Han, L.; Dong, X.; Wei, H.; Xu, W.; Li, C.; et al. HS-10365, a highly potent and selective RET tyrosine kinase inhibitor, demonstrates robust activity in RET fusion positive NSCLC patients. Cancer Res. 2023, 83 (Suppl. S8), CT201. [Google Scholar] [CrossRef]
- Subbiah, V.; Zhong, J.; Lu, Y.; Liu, Y.; Chen, M.; Chen, X.; Wang, H.; Zhu, J.; Lu, S.; Drilon, A.E. The development of APS03118, a potent next-generation RET inhibitor for treating RET-inhibitor-resistant patients. J. Clin. Oncol. 2022, 40 (Suppl. S16), e15107. [Google Scholar] [CrossRef]
- Pennell, N.A.; Wirth, L.J.; Gainor, J.F.; Rotow, J.K.; Johnson, M.L.; Bauer, T.M.; Kroiss, M.; Sukrithan, V.; Kang, H.; Worden, F.P.; et al. A first-in-human phase 1 study of the next-generation RET inhibitor, LOXO-260, in RET inhibitor refractory patients with RET-altered cancers (trial in progress). J. Clin. Oncol. 2022, 40 (Suppl. S16), 8595. [Google Scholar] [CrossRef]
Drug Name Sponsor | Phase (Clinical Data Available) 1 | Status | Trial Identifier |
---|---|---|---|
BOS172738 Boston Pharmaceuticals | Phase I (Phase I reported) [37,38] | Completed | NCT03780517 |
TPX0046 Turning Point | Phase I/II (Preliminary Phase I reported) [39] | Terminated | NCT04161391 |
Vepafestinib (TAS0953/HM06) Helsinn | Phase I/II [40,41,42] | Recruiting US, Japan | NCT04683250 |
SY5007 Shouyao Holdings | Phase I/II (Phase I reported) [43] | Recruiting China | NCT05278364 |
KL590586 (A400, EP0031) Kelun Biotech | Phase I/II (Phase I reported) [44] | Recruiting China | NCT05265091 |
EP0031 (A400, KL590586) Ellipses Pharma | Phase I/II (Preliminary Phase I reported) [45] | Recruiting US, Europe | NCT05443126 |
HS-10365 Jiangsu Hansoh Pharmaceutical | Phase I/II (Phase I reported) [46] | Recruiting China | NCT05207787 |
APS03118 Applied Pharmaceutical Science | Phase I [47] | Recruiting China | NCT05653869 |
LOXO-260 (LY3838915) Eli Lilly | Phase I [48] | Recruiting US | NCT05241834 |
TY-1091 TYK Medicines | Phase I/II | Recruiting China | NCT05675605 |
HA121-28 CSPC ZhongQi Pharmaceutical | Phase II: NSCLC Phase II: MTC | Recruiting China | NCT05117658 NCT04787328 |
HS269 Zhejiang Hisun Pharmaceutical | Phase I | Unknown China | NCT05058352 |
HEC169096 Sunshine Lake Pharma | Phase I/II | Recruiting China | NCT05451602 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clark, L.; Fisher, G.; Brook, S.; Patel, S.; Arkenau, H.-T. Selective RET Inhibitors (SRIs) in Cancer: A Journey from Multi-Kinase Inhibitors to the Next Generation of SRIs. Cancers 2024, 16, 31. https://doi.org/10.3390/cancers16010031
Clark L, Fisher G, Brook S, Patel S, Arkenau H-T. Selective RET Inhibitors (SRIs) in Cancer: A Journey from Multi-Kinase Inhibitors to the Next Generation of SRIs. Cancers. 2024; 16(1):31. https://doi.org/10.3390/cancers16010031
Chicago/Turabian StyleClark, Liz, Geoff Fisher, Sue Brook, Sital Patel, and Hendrik-Tobias Arkenau. 2024. "Selective RET Inhibitors (SRIs) in Cancer: A Journey from Multi-Kinase Inhibitors to the Next Generation of SRIs" Cancers 16, no. 1: 31. https://doi.org/10.3390/cancers16010031
APA StyleClark, L., Fisher, G., Brook, S., Patel, S., & Arkenau, H. -T. (2024). Selective RET Inhibitors (SRIs) in Cancer: A Journey from Multi-Kinase Inhibitors to the Next Generation of SRIs. Cancers, 16(1), 31. https://doi.org/10.3390/cancers16010031