Chimeric Antigen Receptor-T Cell Therapy for Lymphoma: New Settings and Future Directions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Upcoming Settings
2.1. Follicular Lymphoma
2.2. Other Indolent Non-Hodgkin Lymphomas
3. Extending the Setting for Large B-Cell Lymphoma
3.1. CAR-T Cells for Lymphomas with Central Nervous System Involvement
3.2. Frontline Adoption of CAR-T Cells
4. New Targets for B-NHLs: Multispecific CAR-T Cells
5. New Lymphoma Settings
5.1. Hodgkin Lymphoma
5.2. T-Cell Lymphomas
6. ‘Off-the-Shelf’ Products for NHLs: Allogeneic CAR-T and CAR-NK Cells
6.1. Allogeneic CAR-T Cells
6.2. CAR-NK Cells
6.3. Clinical Experiences with NHLs
7. Other Strategies for CAR-T Cell Manufacturing Improvement
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. New Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Raje, N.; Berdeja, J.; Lin, Y.; Siegel, D.; Jagannath, S.; Madduri, D.; Liedtke, M.; Rosenblatt, J.; Maus, M.V.; Turka, A.; et al. Anti-BCMA CAR T-Cell Therapy Bb2121 in Relapsed or Refractory Multiple Myeloma. New Engl. J. Med. 2019, 380, 1726–1737. [Google Scholar] [CrossRef] [PubMed]
- Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Jakubowiak, A.; Agha, M.; Cohen, A.D.; Stewart, A.K.; Hari, P.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene Autoleucel, a B-Cell Maturation Antigen-Directed Chimeric Antigen Receptor T-Cell Therapy in Patients with Relapsed or Refractory Multiple Myeloma (CARTITUDE-1): A Phase 1b/2 Open-Label Study. Lancet 2021, 398, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Coscia, M.; Vitale, C.; Cerrano, M.; Maffini, E.; Giaccone, L.; Boccadoro, M.; Bruno, B. Adoptive Immunotherapy with CAR Modified T Cells in Cancer: Current Landscape and Future Perspectives. Front. Biosci.-Landmark 2019, 24, 1284–1315. [Google Scholar] [CrossRef] [PubMed]
- Poletto, S.; Novo, M.; Paruzzo, L.; Frascione, P.M.M.; Vitolo, U. Treatment Strategies for Patients with Diffuse Large B-Cell Lymphoma. Cancer Treat Rev. 2022, 110, 102443. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. New Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef] [PubMed]
- Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; McGuirk, J.P.; Jäger, U.; Jaglowski, S.; Andreadis, C.; Westin, J.R.; et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. New Engl. J. Med. 2019, 380, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.S.; Palomba, M.L.; Gordon, L.I.; Lunning, M.A.; Wang, M.; Arnason, J.; Mehta, A.; Purev, E.; Maloney, D.G.; Andreadis, C.; et al. Lisocabtagene Maraleucel for Patients with Relapsed or Refractory Large B-Cell Lymphomas (TRANSCEND NHL 001): A Multicentre Seamless Design Study. Lancet 2020, 396, 839–852. [Google Scholar] [CrossRef]
- Locke, F.L.; Ghobadi, A.; Jacobson, C.A.; Miklos, D.B.; Lekakis, L.J.; Oluwole, O.O.; Lin, Y.; Braunschweig, I.; Hill, B.T.; Timmerman, J.M.; et al. Long-Term Safety and Activity of Axicabtagene Ciloleucel in Refractory Large B-Cell Lymphoma (ZUMA-1): A Single-Arm, Multicentre, Phase 1-2 Trial. Lancet Oncol. 2019, 20, 31–42. [Google Scholar] [CrossRef]
- YESCARTA (Axicabtagene Ciloleucel)|FDA. Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/yescarta-axicabtagene-ciloleucel (accessed on 10 October 2023).
- Yescarta | European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/yescarta (accessed on 10 October 2023).
- BREYANZI (Lisocabtagene Maraleucel)|FDA. Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/breyanzi-lisocabtagene-maraleucel (accessed on 10 October 2023).
- Breyanzi | European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/breyanzi (accessed on 10 October 2023).
- KYMRIAH (Tisagenlecleucel)|FDA. Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/kymriah-tisagenlecleucel (accessed on 10 October 2023).
- Kymriah | European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/kymriah (accessed on 10 October 2023).
- Wang, M.; Munoz, J.; Goy, A.; Locke, F.L.; Jacobson, C.A.; Hill, B.T.; Timmerman, J.M.; Holmes, H.; Jaglowski, S.; Flinn, I.W.; et al. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. New Engl. J. Med. 2020, 382, 1331–1342. [Google Scholar] [CrossRef]
- TECARTUS (Brexucabtagene Autoleucel)|FDA. Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/tecartus-brexucabtagene-autoleucel (accessed on 10 October 2023).
- Tecartus|European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/tecartus (accessed on 10 October 2023).
- Locke, F.L.; Miklos, D.B.; Jacobson, C.A.; Perales, M.-A.; Kersten, M.-J.; Oluwole, O.O.; Ghobadi, A.; Rapoport, A.P.; McGuirk, J.; Pagel, J.M.; et al. Axicabtagene Ciloleucel as Second-Line Therapy for Large B-Cell Lymphoma. New Engl. J. Med. 2022, 386, 640–654. [Google Scholar] [CrossRef] [PubMed]
- Kamdar, M.; Solomon, S.R.; Arnason, J.; Johnston, P.B.; Glass, B.; Bachanova, V.; Ibrahimi, S.; Mielke, S.; Mutsaers, P.; Hernandez-Ilizaliturri, F.; et al. Lisocabtagene Maraleucel versus Standard of Care with Salvage Chemotherapy Followed by Autologous Stem Cell Transplantation as Second-Line Treatment in Patients with Relapsed or Refractory Large B-Cell Lymphoma (TRANSFORM): Results from an Interim Analysis of an Open-Label, Randomised, Phase 3 Trial. Lancet 2022, 399, 2294–2308. [Google Scholar] [PubMed]
- Bishop, M.R.; Dickinson, M.; Purtill, D.; Barba, P.; Santoro, A.; Hamad, N.; Kato, K.; Sureda, A.; Greil, R.; Thieblemont, C.; et al. Second-Line Tisagenlecleucel or Standard Care in Aggressive B-Cell Lymphoma. New Engl. J. Med. 2022, 386, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Westin, J.R.; Oluwole, O.O.; Kersten, M.J.; Miklos, D.B.; Perales, M.-A.; Ghobadi, A.; Rapoport, A.P.; Sureda, A.; Jacobson, C.A.; Farooq, U.; et al. Survival with Axicabtagene Ciloleucel in Large B-Cell Lymphoma. N. Engl. J. Med. 2023, 389, 148–157. [Google Scholar] [CrossRef]
- Cerrano, M.; Ruella, M.; Perales, M.A.; Vitale, C.; Faraci, D.G.; Giaccone, L.; Coscia, M.; Maloy, M.; Sanchez-Escamilla, M.; Elsabah, H.; et al. The Advent of CAR T-Cell Therapy for Lymphoproliferative Neoplasms: Integrating Research into Clinical Practice. Front. Immunol. 2020, 11, 888. [Google Scholar] [CrossRef]
- Plaks, V.; Rossi, J.M.; Chou, J.; Wang, L.; Poddar, S.; Han, G.; Wang, Z.; Kuang, S.Q.; Chu, F.; Davis, R.E.; et al. CD19 Target Evasion as a Mechanism of Relapse in Large B-Cell Lymphoma Treated with Axicabtagene Ciloleucel. Blood 2021, 138, 1081–1085. [Google Scholar] [CrossRef]
- Jain, M.D.; Zhao, H.; Wang, X.; Atkins, R.; Menges, M.; Reid, K.; Spitler, K.; Faramand, R.; Bachmeier, C.; Dean, E.A.; et al. Tumor Interferon Signaling and Suppressive Myeloid Cells Are Associated with CAR T-Cell Failure in Large B-Cell Lymphoma. Blood 2021, 137, 2621–2633. [Google Scholar] [CrossRef]
- Allen, E.S.; Stroncek, D.F.; Ren, J.; Eder, A.F.; West, K.A.; Fry, T.J.; Lee, D.W.; Mackall, C.L.; Conry-Cantilena, C. Autologous Lymphapheresis for the Production of Chimeric Antigen Receptor T Cells. Transfusion 2017, 57, 1133–1141. [Google Scholar] [CrossRef]
- Jo, T.; Yoshihara, S.; Okuyama, Y.; Fujii, K.; Henzan, T.; Kahata, K.; Yamazaki, R.; Takeda, W.; Umezawa, Y.; Fukushima, K.; et al. Risk Factors for CAR-T Cell Manufacturing Failure among DLBCL Patients: A Nationwide Survey in Japan. Br. J. Haematol. 2023, 202, 256–266. [Google Scholar] [CrossRef]
- Jacobson, C.; Chavez, J.C.; Sehgal, A.R.; William, B.M.; Munoz, J.; Salles, G.; Munshi, P.N.; Casulo, C.; Maloney, D.; de Vos, S.; et al. Primary Analysis of Zuma-5: A Phase 2 Study of Axicabtagene Ciloleucel (Axi-Cel) in Patients with Relapsed/Refractory (R/R) Indolent Non-Hodgkin Lymphoma (INHL). Blood 2020, 136, 40–41. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Chavez, J.; Sehgal, A.R.; Epperla, N.; Ulrickson, M.; Bachy, E.; Munshi, P.N.; Casulo, C.; Maloney, D.G.; de Vos, S.; et al. 3-Year Follow-up Analysis of ZUMA-5: A Phase 2 Study of Axicabtagene Ciloleucel (Axi-Cel) in Patients with Relapsed/Refractory (R/R) Indolent Non-Hodgkin Lymphoma (INHL). Blood 2022, 140, 10380–10383. [Google Scholar] [CrossRef]
- Palomba, M.L.; Ghione, P.; Patel, A.R.; Nahas, M.; Beygi, S.; Hatswell, A.J.; Kanters, S.; Limbrick-Oldfield, E.H.; Wade, S.W.; Ray, M.D.; et al. A 24-Month Updated Analysis of the Comparative Effectiveness of ZUMA-5 (Axi-Cel) vs. SCHOLAR-5 External Control in Relapsed/Refractory Follicular Lymphoma. Expert Rev. Anticancer Ther. 2023, 23, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Dreyling, M.; Dickinson, M.; Martinez Lopez, J.; Kolstad, A.; Butler, J.P.; Ghosh, M.; Popplewell, L.L.; Chavez, J.; Bachy, E.; Kato, K.; et al. Long-Term Clinical Outcomes and Correlative Efficacy Analyses in Patients (Pts) with Relapsed/Refractory Follicular Lymphoma (r/r FL) Treated with Tisagenlecleucel in the Elara Trial. Blood 2022, 140, 1459–1463. [Google Scholar] [CrossRef]
- Salles, G.; Schuster, S.J.; Dreyling, M.; Fischer, L.; Kuruvilla, J.; Patten, P.E.M.; von Tresckow, B.; Smith, S.M.; Jiménez-Ubieto, A.; Davis, K.L.; et al. Efficacy Comparison of Tisagenlecleucel vs Usual Care in Patients with Relapsed or Refractory Follicular Lymphoma. Blood Adv. 2022, 6, 5835–5843. [Google Scholar] [CrossRef] [PubMed]
- Morschhauser, F.; Dahiya, S.; Palomba, M.L.; Garcia-Sancho, A.M.; Ortega, J.L.R.; Kuruvilla, J.; Jager, U.; Cartron, G.; Izutsu, K.; Dreyling, M.; et al. TRANSCEND FL: PHASE 2 STUDY RESULTS OF LISOCABTAGENE MARALEUCEL (LISO-CEL) IN PATIENTS (PTS) WITH RELAPSED/REFRACTORY (R/R) FOLLICULAR LYMPHOMA (FL). Hematol. Oncol. 2023, 41, 877–880. [Google Scholar] [CrossRef]
- Study Details | Study of Axicabtagene Ciloleucel Versus Standard of Care Therapy in Participants with Relapsed/Refractory Follicular Lymphoma|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT05371093 (accessed on 10 October 2023).
- Holtzman, N.G.; Shah, N.N. CAR T-Cell Therapy for Indolent Lymphoma: A New Treatment Paradigm? Lancet Oncol. 2022, 23, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Lia Palomba, M.; Qualls, D.; Monette, S.; Sethi, S.; Dogan, A.; Roshal, M.; Senechal, B.; Wang, X.; Rivière, I.; Sadelain, M.; et al. CD19-Directed Chimeric Antigen Receptor T Cell Therapy in Waldenström Macroglobulinemia: A Preclinical Model and Initial Clinical Experience. J. Immunother Cancer 2022, 10, e004128. [Google Scholar] [CrossRef]
- Shadman, M.; Yeung, C.; Redman, M.W.; Lee, S.Y.; Lee, D.H.; Ra, S.; Qian, D.H.; Dezube, B.; Chapuis, A.; Green, D.; et al. P1097: CD20 CAR-T THERAPY WITH MB-106 FOR BTK INHIBITOR-REFRACTORY WALDENSTRÖM MACROGLOBULINEMIA (WM)/LYMPHOPLASMACYTIC LYMPHOMA (LPL)—SINGLE INSTITUTION STUDY. Hemasphere 2023, 7, e68877ca. [Google Scholar] [CrossRef]
- Study Details | Study of Brexucabtagene Autoleucel in Adults with Rare B-Cell Malignancies|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT05537766 (accessed on 10 October 2023).
- Zhang, Y.; Wang, Y.; Liu, Y.; Tong, C.; Wang, C.; Guo, Y.; Ti, D.; Yang, Q.; Qiao, S.; Wu, Z.; et al. Long-Term Activity of Tandem CD19/CD20 CAR Therapy in Refractory/Relapsed B-Cell Lymphoma: A Single-Arm, Phase 1-2 Trial. Leukemia 2022, 36, 189–196. [Google Scholar] [CrossRef]
- Shah, N.N.; Johnson, B.D.; Schneider, D.; Zhu, F.; Szabo, A.; Keever-Taylor, C.A.; Krueger, W.; Worden, A.A.; Kadan, M.J.; Yim, S.; et al. Bispecific Anti-CD20, Anti-CD19 CAR T Cells for Relapsed B Cell Malignancies: A Phase 1 Dose Escalation and Expansion Trial. Nat. Med. 2020, 26, 1569–1575. [Google Scholar] [CrossRef]
- Zurko, J.C.; Fenske, T.S.; Johnson, B.D.; Bucklan, D.; Szabo, A.; Xu, H.; Chaney, K.; Hamadani, M.; Hari, P.; Shah, N.N. Long-Term Outcomes and Predictors of Early Response, Late Relapse, and Survival for Patients Treated with Bispecific LV20.19 CAR T-Cells. Am. J. Hematol. 2022, 97, 1580–1588. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Hu, X.; Cao, W.; Li, C.; Xiao, Y.; Cao, Y.; Gu, C.; Zhang, S.; Chen, L.; Cheng, J.; et al. Efficacy and Safety of CAR19/22 T-Cell Cocktail Therapy in Patients with Refractory/Relapsed B-Cell Malignancies. Blood 2020, 135, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, J.; Lou, X.; Chen, X.; Yu, Z.; Kang, L.; Chen, J.; Zhou, J.; Zong, X.; Yang, Z.; et al. A Prospective Investigation of Bispecific CD19/22 CAR T Cell Therapy in Patients with Relapsed or Refractory B Cell Non-Hodgkin Lymphoma. Front. Oncol. 2021, 11, 664421. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Zhang, Y.; Zhao, H.; Wang, Y.; Liu, Y.; Liang, B.; Wang, X.; Xu, H.; Cui, J.; Wu, W.; et al. CD19/CD22 Dual-Targeted CAR T-Cell Therapy for Relapsed/Refractory Aggressive B-Cell Lymphoma: A Safety and Efficacy Study. Cancer Immunol. Res. 2021, 9, 1061–1070. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, J.Y.; Patel, S.; Muffly, L.; Hossain, N.M.; Oak, J.; Baird, J.H.; Frank, M.J.; Shiraz, P.; Sahaf, B.; Craig, J.; et al. CAR T Cells with Dual Targeting of CD19 and CD22 in Adult Patients with Recurrent or Refractory B Cell Malignancies: A Phase 1 Trial. Nat. Med. 2021, 27, 1419–1431. [Google Scholar] [CrossRef]
- Frigault, M.J.; Dietrich, J.; Gallagher, K.; Roschewski, M.; Jordan, J.T.; Forst, D.; Plotkin, S.R.; Cook, D.; Casey, K.S.; Lindell, K.A.; et al. Safety and Efficacy of Tisagenlecleucel in Primary CNS Lymphoma: A Phase 1/2 Clinical Trial. Blood 2022, 139, 2306–2315. [Google Scholar] [CrossRef] [PubMed]
- Roddie, C.; Dias, J.; O’Reilly, M.; Green, L.; Vaughan, M.; Agliardi, G.; Garcia, J.; Lewin, E.; Lowdell, M.; Mitsikakou, M.; et al. P1460: SAFETY AND EFFICACY FINDINGS OF AUTO1, A FAST-OFF RATE CD19 CAR, IN RELAPSED/REFRACTORY PRIMARY CNS LYMPHOMA. Hemasphere 2022, 6, 1342–1343. [Google Scholar] [CrossRef]
- Li, T.; Zhao, L.; Zhang, Y.; Xiao, Y.; Wang, D.; Huang, L.; Ma, L.; Chen, L.; Liu, S.; Long, X.; et al. CAR T-Cell Therapy Is Effective but Not Long-Lasting in B-Cell Lymphoma of the Brain. Front. Oncol. 2020, 10, 1306. [Google Scholar] [CrossRef]
- Wang, C.M.; Wu, Z.Q.; Wang, Y.; Guo, Y.L.; Dai, H.R.; Wang, X.H.; Li, X.; Zhang, Y.J.; Zhang, W.Y.; Chen, M.X.; et al. Autologous T Cells Expressing CD30 Chimeric Antigen Receptors for Relapsed or Refractory Hodgkin Lymphoma: An Open-Label Phase I Trial. Clin. Cancer Res. 2017, 23, 1156–1166. [Google Scholar] [CrossRef]
- Wang, D.; Zeng, C.; Xu, B.; Xu, J.H.; Wang, J.; Jiang, L.J.; Wang, Q.X.; Li, C.R.; Wang, N.; Huang, L.; et al. Anti-CD30 Chimeric Antigen Receptor T Cell Therapy for Relapsed/Refractory CD30+ Lymphoma Patients. Blood Cancer J. 2020, 10, 1–4. [Google Scholar] [CrossRef]
- Ramos, C.A.; Ballard, B.; Zhang, H.; Dakhova, O.; Gee, A.P.; Mei, Z.; Bilgi, M.; Wu, M.F.; Liu, H.; Grilley, B.; et al. Clinical and Immunological Responses after CD30-Specific Chimeric Antigen Receptor-Redirected Lymphocytes. J. Clin. Investig. 2017, 127, 3462–3471. [Google Scholar] [CrossRef] [PubMed]
- Ramos, C.A.; Grover, N.S.; Beaven, A.W.; Lulla, P.D.; Wu, M.F.; Ivanova, A.; Wang, T.; Shea, T.C.; Rooney, C.M.; Dittus, C.; et al. Anti-CD30 CAR-T Cell Therapy in Relapsed and Refractory Hodgkin Lymphoma. J. Clin. Oncol. 2020, 38, 3794–3804. [Google Scholar] [CrossRef] [PubMed]
- Hill, L.C.; Rouce, R.H.; Smith, T.S.; Yang, L.; Srinivasan, M.; Zhang, H.; Perconti, S.; Mehta, B.; Dakhova, O.; Randall, J.; et al. Safety and Anti-Tumor Activity of CD5 CAR T-Cells in Patients with Relapsed/Refractory T-Cell Malignancies. Blood 2019, 134, 199. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Du, M.; Jiang, H.; Luo, W.; Tang, L.; Kang, Y.; Xu, J.; Wu, Z.; Wang, X.; et al. Allogenic and Autologous Anti-CD7 CAR-T Cell Therapies in Relapsed or Refractory T-Cell Malignancies. Blood Cancer J. 2023, 13, 61. [Google Scholar] [CrossRef] [PubMed]
- Frigault, M.J.; Chen, Y.-B.; Gallagher, K.M.E.; Horick, N.K.; El-Jawahri, A.; Scarfò, I.; Wehrli, M.; Huang, L.; Casey, K.; Cook, D.; et al. Phase 1 Study of CD37-Directed CAR T Cells in Patients with Relapsed or Refractory CD37+ Hematologic Malignancies. Blood 2021, 138, 653. [Google Scholar] [CrossRef]
- Cwynarski, K.; Iacoboni, G.; Tholouili, E.; Menne, T.; Irvine, D.; Balasubramaniam, N.; Wood, L.; Stephens, C.; Shang, J.; Xue, E.; et al. FIRST IN HUMAN STUDY OF AUTO4, A TRBC1-TRAGETTING CART T CELL THERAPY IN RELAPSED/REFRACTORY TRBC1-POSITIVE PERIPHERAL T-CELL LYMPHOMA. Hematol. Oncol. 2023, 41, 80–81. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Nath, R.; Munoz, J.; Tees, M.; Miklos, D.B.; Frank, M.J.; Malik, S.A.; Stevens, D.; Shin, C.R.; Balakumaran, A.; et al. ALPHA Study: ALLO-501 Produced Deep and Durable Responses in Patients with Relapsed/Refractory Non-Hodgkin’s Lymphoma Comparable to Autologous CAR T. Blood 2021, 138, 3878. [Google Scholar] [CrossRef]
- Heslop, H.E.; Locke, F.L.; Lekakis, L.; Eradat, H.; Munoz, J.; Tees, M.; De Vos, S.; Nath, R.; Stevens, D.; Malik, S.; et al. DURABLES RESPONSES WITH ANTI-CD19 ALLOGENEIC CAR T ALLO-501/501A IN PHASE 1 TRIALS OF RELAPSED/REFRACTORY LARGE B-CELL LYMPHOMA (R/R LBCL). Hematol. Oncol. 2023, 41, 85–86. [Google Scholar]
- Shah, B.D.; Jacobson, C.A.; Solomon, S.; Jain, N.; Vainorius, M.; Heery, C.R.; He, F.C.; Reshef, R.; Herrera, A.F.; Akard, L.P.; et al. Preliminary Safety and Efficacy of PBCAR0191, an Allogeneic, off-the-Shelf CD19-Targeting CAR-T Product, in Relapsed/Refractory (r/r) CD19+ NHL. J. Clin. Oncol. 2021, 39, 7516. [Google Scholar] [CrossRef]
- McGuirk, J.P.; Tam, C.S.; Kröger, N.; Riedell, P.A.; Murthy, H.S.; Ho, P.J.; Maakaron, J.E.; Waller, E.K.; Awan, F.T.; Shaughnessy, P.J.; et al. CTX110 Allogeneic CRISPR-Cas9-Engineered CAR T Cells in Patients (Pts) with Relapsed or Refractory (R/R) Large B-Cell Lymphoma (LBCL): Results from the Phase 1 Dose Escalation Carbon Study. Blood 2022, 140, 10303–10306. [Google Scholar] [CrossRef]
- Iyer, S.P.; Sica, R.A.; Ho, P.J.; Hu, B.; Zain, J.; Prica, A.; Weng, W.-K.; Kim, Y.H.; Khodadoust, M.S.; Palomba, M.L.; et al. S262: The COBALT-LYM Study of CTX130: A Phase 1 Dose Escalation Study of Cd70-Targeted Allogeneic CRISPR-Cas9–Engineered Car T Cells In Patients With Relapsed/Refractory (R/R) T-Cell Malignancies. Hemasphere 2022, 6, 163–164. [Google Scholar] [CrossRef]
- Nastoupil, L.J.; O’Brien, S.; Holmes, H.E.; Dsouza, L.; Hart, D.; Matsuda, E.; Satterfield-Ledbetter, T.; Skoble, J.; Garner, E.; Bryan, M.; et al. P1455: First-In-Human Trial Of CB-010, A Crispr-Edited Allogeneic Anti-Cd19 Car-T Cell Therapy with A Pd-1 Knock Out, In Patients with Relapsed Or Refractory B Cell Non-Hodgkin Lymphoma (ANTLER Study). Hemasphere 2022, 6, 1337–1338. [Google Scholar] [CrossRef]
- Liu, E.; Marin, D.; Banerjee, P.; Macapinlac, H.A.; Thompson, P.; Basar, R.; Nassif Kerbauy, L.; Overman, B.; Thall, P.; Kaplan, M.; et al. Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors. N. Engl. J. Med. 2020, 382, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhou, Y.; Zhang, M.; Zhao, H.; Wei, G.; Ge, W.; Cui, Q.; Mu, Q.; Chen, G.; Han, L.; et al. Genetically Modified CD7-Targeting Allogeneic CAR-T Cell Therapy with Enhanced Efficacy for Relapsed/Refractory CD7-Positive Hematological Malignancies: A Phase I Clinical Study. Cell Res. 2022, 32, 995–1007. [Google Scholar] [CrossRef] [PubMed]
- Quach, D.H.; Ramos, C.A.; Lulla, P.D.; Sharma, S.; Ganesh, H.R.; Nouraee, N.; Briones, Y.D.; Hadidi, Y.F.; Becerra-Dominguez, L.; Thakkar, S.G.; et al. CD30.CAR-Modified Epstein-Barr Virus-Specific T Cells (CD30.CAR EBVSTs) Provide a Safe and Effective Off-the-Shelf Therapy for Patients with CD30-Positive Lymphoma. Blood 2022, 140, 412–414. [Google Scholar] [CrossRef]
- Dickinson, M.; Hamad, N.; Bryant, C.E.; Kothari, N.; Ojeras, P.; Vohra, A.; Lin, M.; Tohme, M.; Trager, J.; Shook, D.; et al. First in Human Data of NKX019, an Allogeneic CAR NK for the Treatment of Relapsed/Refractory (R/R) B-Cell Malignancies. Hematol. Oncol. 2023, 41, 526–527. [Google Scholar] [CrossRef]
- Strati, P.; Bachanova, V.; Goodman, A.; Pagel, J.M.; Castro, J.E.; Griffis, K.; Anderson, M.; Atwal, S.K.; Bickers, C.; Fremgen, D.; et al. Preliminary Results of a Phase I Trial of FT516, an off-the-Shelf Natural Killer (NK) Cell Therapy Derived from a Clonal Master Induced Pluripotent Stem Cell (IPSC) Line Expressing High-Affinity, Non-Cleavable CD16 (HnCD16), in Patients (Pts) with Relapsed/Refractory (R/R) B-Cell Lymphoma (BCL). J. Clin. Oncol. 2021, 39, 7541. [Google Scholar] [CrossRef]
- Mehta, A.; Farooq, U.; Chen, A.; McGuirk, J.P.; Ly, T.; Wong, L.; Cooley, S.; Valamehr, B.; Elstrom, R.; Chu, Y.-W.; et al. Interim Phase I Clinical Data of FT819-101, a Study of the First-Ever, Off-the-Shelf, IPSC-Derived TCR-Less CD19 CAR T-Cell Therapy for Patients with Relapsed/Refractory B-Cell Malignancies. Blood 2022, 140, 4577–4578. [Google Scholar] [CrossRef]
- Khanal, R.; Mehta, A.; Maly, J.J.; Holmes, H.; Saultz, J.N.; Hamdan, A.; Robinson, A.M.; Mandal, M.; Patel, A.; Graef, T.; et al. AB-101, an Allogeneic, Non–Genetically Modified, Natural Killer (NK) Cell Therapy, Evaluated as Monotherapy or in Combination with Rituximab in R/R Non-Hodgkin Lymphoma. J. Clin. Oncol. 2023, 41, 7529. [Google Scholar] [CrossRef]
- Jahnke, K.; Thiel, E.; Martus, P.; Herrlinger, U.; Weller, M.; Fischer, L.; Korfel, A. Relapse of Primary Central Nervous System Lymphoma: Clinical Features, Outcome and Prognostic Factors. J. Neurooncol. 2006, 80, 159–165. [Google Scholar] [CrossRef]
- Zinzani, P.L.; Magagnoli, M.; Frezza, G.; Prologo, G.; Gherlinzoni, F.; Bendandi, M.; Albertini, P.; Babini, L.; D’Alessandro, R.; Tura, S. Isolated Central Nervous System Relapse in Aggressive Non-Hodgkin’s Lymphoma: The Bologna Experience. Leuk. Lymphoma 1999, 32, 571–576. [Google Scholar] [CrossRef]
- Chihara, D.; Dunleavy, K. Primary Central Nervous System Lymphoma: Evolving Biologic Insights and Recent Therapeutic Advances. Clin. Lymphoma Myeloma Leuk. 2021, 21, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Parker, K.R.; Migliorini, D.; Perkey, E.; Yost, K.E.; Bhaduri, A.; Bagga, P.; Haris, M.; Wilson, N.E.; Liu, F.; Gabunia, K.; et al. Single-Cell Analyses Identify Brain Mural Cells Expressing CD19 as Potential Off-Tumor Targets for CAR-T Immunotherapies. Cell 2020, 183, 126–142.e17. [Google Scholar] [CrossRef] [PubMed]
- Grupp, S.A.; Kalos, M.; Barrett, D.; Aplenc, R.; Porter, D.L.; Rheingold, S.R.; Teachey, D.T.; Chew, A.; Hauck, B.; Wright, J.F.; et al. Chimeric Antigen Receptor–Modified T Cells for Acute Lymphoid Leukemia. New Engl. J. Med. 2013, 368, 1509–1518. [Google Scholar] [CrossRef] [PubMed]
- Keu, K.V.; Witney, T.H.; Yaghoubi, S.; Rosenberg, J.; Kurien, A.; Magnusson, R.; Williams, J.; Habte, F.; Wagner, J.R.; Forman, S.; et al. Reporter Gene Imaging of Targeted T Cell Immunotherapy in Recurrent Glioma. Sci. Transl. Med. 2017, 9, eaag2196. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.S.; McGree, B.; Noyes, S.; Plummer, S.; Wong, C.; Chen, Y.-B.; Palmer, E.; Albertson, T.; Ferry, J.A.; Arrillaga-Romany, I.C. Anti-CD19 CAR T Cells in CNS Diffuse Large-B-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 783–784. [Google Scholar] [CrossRef] [PubMed]
- Novo, M.; Ruff, M.W.; Skrabek, P.J.; Lin, Y. Axicabtagene Ciloleucel Chimeric Antigen Receptor T Cell Therapy in Lymphoma with Secondary Central Nervous System Involvement. Mayo Clin. Proc. 2019, 94, 2361–2364. [Google Scholar] [CrossRef]
- Frigault, M.J.; Maus, M.V.; Dietrich, J.; Martinez-Lage, M.; Leick, M.; Choi, B.D.; DeFilipp, Z.; Chen, Y.-B.; Abramson, J.; Crombie, J.; et al. Tisagenlecleucel CAR T-Cell Therapy in Secondary CNS Lymphoma. Blood 2019, 134, 860–866. [Google Scholar] [CrossRef]
- Ghafouri, S.; Timmerman, J.; Larson, S.; Mead, M.D. Axicabtagene Ciloleucel CAR T-Cell Therapy for Relapsed/Refractory Secondary CNS Non-Hodgkin Lymphoma: Comparable Outcomes and Toxicities, but Shorter Remissions May Warrant Alternative Consolidative Strategies? Bone Marrow Transpl. 2021, 56, 974–977. [Google Scholar] [CrossRef]
- Ahmed, G.; Hamadani, M.; Shah, N.N. CAR T-Cell Therapy for Secondary CNS DLBCL. Blood Adv. 2021, 5, 5626–5630. [Google Scholar] [CrossRef]
- Bennani, N.N.; Maurer, M.J.; Nastoupil, L.J.; Jain, M.D.; Chavez, J.C.; Cashen, A.F.; Dahiya, S.; Lekakis, L.J.; Reagan, P.M.; Oluwole, O.O.; et al. Experience with Axicabtagene Ciloleucel (Axi-Cel) in Patients with Secondary CNS Involvement: Results from the US Lymphoma CAR T Consortium. Blood 2019, 134, 763. [Google Scholar] [CrossRef]
- Siddiqi, T.; Wang, X.; Suzette Blanchard, M.; Wagner, J.R.; Popplewell, L.L.; Elizabeth Budde, L.; Stiller, T.L.; Clark, M.C.; Lim, L.; Vyas, V.; et al. CD19-Directed CAR T-Cell Therapy for Treatment of Primary CNS Lymphoma. Blood Adv. 2021, 5, 4059–4063. [Google Scholar] [CrossRef] [PubMed]
- Alcantara, M.; Houillier, C.; Blonski, M.; Rubio, M.T.; Willems, L.; Rascalou, A.W.; Le Garff-Tavernier, M.; Maloum, K.; Bravetti, C.; Souchet, L.; et al. CAR T-Cell Therapy in Primary Central Nervous System Lymphoma: The Clinical Experience of the French LOC Network. Blood 2022, 139, 792–796. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.R.; Dorris, C.S.; Makambi, K.H.; Luo, Y.; Munshi, P.N.; Donato, M.; Rowley, S.; Saad, A.; Goy, A.; Dunleavy, K.; et al. Toxicity and Efficacy of CAR T-Cell Therapy in Primary and Secondary CNS Lymphoma: A Meta-Analysis of 128 Patients. Blood Adv. 2023, 7, 32–39. [Google Scholar] [CrossRef]
- Ayuk, F.; Gagelmann, N.; von Tresckow, B.; Wulf, G.; Rejeski, K.; Stelljes, M.; Penack, O.; Baldus, C.D.; Kröger, N.; Bethge, W.; et al. Real-World Results of CAR T-Cell Therapy for Large B-Cell Lymphoma with CNS Involvement: A GLA/DRST Study. Blood Adv. 2023, 7, 5316–5319. [Google Scholar] [CrossRef]
- Wu, J.; Meng, F.; Cao, Y.; Zhang, Y.; Zhu, X.; Wang, N.; Wang, J.; Huang, L.; Zhou, J.; Xiao, Y. Sequential CD19/22 CAR T-Cell Immunotherapy Following Autologous Stem Cell Transplantation for Central Nervous System Lymphoma. Blood Cancer J. 2021, 11, 131. [Google Scholar] [CrossRef]
- Vu, K.; Frank, M.J. CAR T-Cell Therapy for Mantle Cell Lymphoma with Central Nervous System Relapse. Blood Adv. 2023, 7, 375–378. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Dickinson, M.; Munoz, J.; Ulrickson, M.L.; Thieblemont, C.; Oluwole, O.O.; Herrera, A.F.; Ujjani, C.S.; Lin, Y.; Riedell, P.A.; et al. Axicabtagene Ciloleucel as First-Line Therapy in High-Risk Large B-Cell Lymphoma: The Phase 2 ZUMA-12 Trial. Nat. Med. 2022, 28, 735–742. [Google Scholar] [CrossRef]
- Barrington, S.F.; Mikhaeel, N.G.; Kostakoglu, L.; Meignan, M.; Hutchings, M.; Müeller, S.P.; Schwartz, L.H.; Zucca, E.; Fisher, R.I.; Trotman, J.; et al. Role of Imaging in the Staging and Response Assessment of Lymphoma: Consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J. Clin. Oncol. 2014, 32, 3048–3058. [Google Scholar] [CrossRef]
- Nastoupil, L.J. Will CAR T-Cell Therapy Be the Preferred Modality in Frontline Treatment of Large B-Cell Lymphoma? Hematologist 2023, 20, doi. [Google Scholar] [CrossRef]
- Westin, J.R.; Kersten, M.J.; Salles, G.; Abramson, J.S.; Schuster, S.J.; Locke, F.L.; Andreadis, C. Efficacy and Safety of CD19-Directed CAR-T Cell Therapies in Patients with Relapsed/Refractory Aggressive B-Cell Lymphomas: Observations from the JULIET, ZUMA-1, and TRANSCEND Trials. Am. J. Hematol. 2021, 96, 1295–1312. [Google Scholar] [CrossRef] [PubMed]
- Schuster, S.J.; Svoboda, J.; Chong, E.A.; Nasta, S.D.; Mato, A.R.; Anak, Ö.; Brogdon, J.L.; Pruteanu-Malinici, I.; Bhoj, V.; Landsburg, D.; et al. Chimeric Antigen Receptor T Cells in Refractory B-Cell Lymphomas. N. Engl. J. Med. 2017, 377, 2545–2554. [Google Scholar] [CrossRef] [PubMed]
- Zah, E.; Lin, M.Y.; Anne, S.B.; Jensen, M.C.; Chen, Y.Y. T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape by Malignant B Cells. Cancer Immunol. Res. 2016, 4, 498–508. [Google Scholar] [CrossRef] [PubMed]
- Furqan, F.; Shah, N.N. Multispecific CAR T Cells Deprive Lymphomas of Escape via Antigen Loss. Annu. Rev. Med. 2023, 74, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.N.; Maatman, T.; Hari, P.; Johnson, B. Multi Targeted CAR-T Cell Therapies for B-Cell Malignancies. Front. Oncol. 2019, 9, 146. [Google Scholar] [CrossRef] [PubMed]
- Pavlasova, G.; Mraz, M. The Regulation and Function of CD20: An “Enigma” of B-Cell Biology and Targeted Therapy. Haematologica 2020, 105, 1494–1506. [Google Scholar] [CrossRef] [PubMed]
- Jellusova, J.; Nitschke, L. Regulation of B Cell Functions by the Sialic Acid-Binding Receptors Siglec-G and CD22. Front. Immunol. 2012, 2, 96. [Google Scholar] [CrossRef] [PubMed]
- Ormhøj, M.; Scarfo, I.; Cabral, M.L.; Bailey, S.R.; Lorrey, S.J.; Bouffard, A.A.; Castano, A.P.; Larson, R.C.; Riley, L.S.; Schmidts, A.; et al. Chimeric Antigen Receptor T Cells Targeting CD79b Show Efficacy in Lymphoma with or without Cotargeting CD19. Clin. Cancer Res. 2019, 25, 7046–7057. [Google Scholar] [CrossRef]
- Mihara, K.; Yoshida, T.; Takei, Y.; Sasaki, N.; Takihara, Y.; Kuroda, J.; Ichinohe, T. T Cells Bearing Anti-CD19 and/or Anti-CD38 Chimeric Antigen Receptors Effectively Abrogate Primary Double-Hit Lymphoma Cells. J. Hematol. Oncol. 2017, 10, 116. [Google Scholar] [CrossRef]
- Yan, L.E.; Zhang, H.; Wada, M.; Fang, L.; Feng, J.; Zhang, W.; Chen, Q.; Cao, Y.; Pinz, K.G.; Chen, K.H.; et al. Targeting Two Antigens Associated with B-ALL with CD19-CD123 Compound Car T Cell Therapy. Stem Cell Rev. Rep. 2020, 16, 385–396. [Google Scholar] [CrossRef]
- Golubovskaya, V.; Zhou, H.; Li, F.; Valentine, M.; Sun, J.; Berahovich, R.; Xu, S.; Quintanilla, M.; Ma, M.C.; Sienkiewicz, J.; et al. Novel CD37, Humanized CD37 and Bi-Specific Humanized CD37-CD19 CAR-T Cells Specifically Target Lymphoma. Cancers 2021, 13, 981. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Deng, B.; Rong, L.; Li, C.; Song, W.; Ling, Z.; Xu, J.; Duan, J.; Wang, Z.; Chang, A.H.; et al. Short-Interval Sequential CAR-T Cell Infusion May Enhance Prior CAR-T Cell Expansion to Augment Anti-Lymphoma Response in B-NHL. Front. Oncol. 2021, 11, 640166. [Google Scholar] [CrossRef] [PubMed]
- Schneider, D.; Xiong, Y.; Wu, D.; Hu, P.; Alabanza, L.; Steimle, B.; Mahmud, H.; Anthony-Gonda, K.; Krueger, W.; Zhu, Z.; et al. Trispecific CD19-CD20-CD22-Targeting DuoCAR-T Cells Eliminate Antigen-Heterogeneous B Cell Tumors in Preclinical Models. Sci. Transl. Med. 2021, 13, eabc6401. [Google Scholar] [CrossRef] [PubMed]
- Roddie, C.; Lekakis, L.J.; Marzolini, M.A.V.; Ramakrishnan, A.; Zhang, Y.; Hu, Y.; Peddareddigari, V.G.R.; Khokhar, N.Z.; Chen, R.W.; Basilico, S.; et al. Dual Targeting of CD19 and CD22 with Bicistronic CAR-T Cells in Patients with Relapsed/Refractory Large B-Cell Lymphoma. Blood 2023, 141, 2470–2482. [Google Scholar] [CrossRef] [PubMed]
- Connors, J.M.; Jurczak, W.; Straus, D.J.; Ansell, S.M.; Kim, W.S.; Gallamini, A.; Younes, A.; Alekseev, S.; Illés, Á.; Picardi, M.; et al. Brentuximab Vedotin with Chemotherapy for Stage III or IV Hodgkin’s Lymphoma. N. Engl. J. Med. 2018, 378, 331–344. [Google Scholar] [CrossRef]
- Ansell, S.M.; Radford, J.; Connors, J.M.; Długosz-Danecka, M.; Kim, W.-S.; Gallamini, A.; Ramchandren, R.; Friedberg, J.W.; Advani, R.; Hutchings, M.; et al. Overall Survival with Brentuximab Vedotin in Stage III or IV Hodgkin’s Lymphoma. N. Engl. J. Med. 2022, 387, 310–320. [Google Scholar] [CrossRef]
- Herrera, A.F.; LeBlanc, M.L.; Castellino, S.M.; Li, H.; Rutherford, S.C.; Evens, A.M.; Davison, K.; Punnett, A.; Hodgson, D.C.; Parsons, S.K.; et al. SWOG S1826, a Randomized Study of Nivolumab(N)-AVD versus Brentuximab Vedotin(BV)-AVD in Advanced Stage (AS) Classic Hodgkin Lymphoma (HL). J. Clin. Oncol. 2023, 41, LBA4. [Google Scholar] [CrossRef]
- Voorhees, T.J.; Zhao, B.; Oldan, J.; Hucks, G.; Khandani, A.; Dittus, C.; Smith, J.; Morrison, J.K.; Cheng, C.J.; Ivanova, A.; et al. Pretherapy Metabolic Tumor Volume Is Associated with Response to CD30 CAR T Cells in Hodgkin Lymphoma. Blood Adv. 2022, 6, 1255–1263. [Google Scholar] [CrossRef]
- Voorhees, T.J.; Grover, N.S.; Beaven, A.; Park, S.I.; Morrison, J.K.; Cheng, C.J.A.; Laing, S.; Dotti, G.; Savoldo, B.; Serody, J.S. Retrospective Cohort Study Analyzing the Safety and Efficacy of Anti-PD-1 Therapy Following CD30 CAR-T Cell Therapy in Relapsed/Refractory Hodgkin Lymphoma. Blood 2019, 134, 3233. [Google Scholar] [CrossRef]
- Safarzadeh Kozani, P.; Safarzadeh Kozani, P.; Rahbarizadeh, F. CAR-T Cell Therapy in T-Cell Malignancies: Is Success a Low-Hanging Fruit? Stem Cell Res. Ther. 2021, 12, 527. [Google Scholar] [CrossRef]
- Leonard, W.J. Cytokines and Immunodeficiency Diseases. Nat. Rev. Immunol. 2001, 1, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Alcantara, M.; Tesio, M.; June, C.H.; Houot, R. CAR T-Cells for T-Cell Malignancies: Challenges in Distinguishing between Therapeutic, Normal, and Neoplastic T-Cells. Leukemia 2018, 32, 2307–2315. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.L.; Choi, J.; Staser, K.; Ritchey, J.K.; Devenport, J.M.; Eckardt, K.; Rettig, M.P.; Wang, B.; Eissenberg, L.G.; Ghobadi, A.; et al. An “off-the-Shelf” Fratricide-Resistant CAR-T for the Treatment of T Cell Hematologic Malignancies. Leukemia 2018, 32, 1970–1983. [Google Scholar] [CrossRef] [PubMed]
- Ruella, M.; Xu, J.; Barrett, D.M.; Fraietta, J.A.; Reich, T.J.; Ambrose, D.E.; Klichinsky, M.; Shestova, O.; Patel, P.R.; Kulikovskaya, I.; et al. Induction of Resistance to Chimeric Antigen Receptor T Cell Therapy by Transduction of a Single Leukemic B Cell. Nat. Med. 2018, 24, 1499–1503. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Zhou, X.; Zhou, L.; Liang, Z.; Yang, J.; Tu, S.; Li, Y. Current State of CAR-T Therapy for T-Cell. Ther. Adv. Hematol. 2022, 13, 20406207221143025. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Liu, Y.; Yang, J.; Zhang, X.; Yang, X.; Wang, H.; Wang, L.; Wang, Q.; Jin, D.; Li, J.; et al. Naturally Selected CD7 CAR-T Therapy without Genetic Manipulations for T-ALL/LBL: First-in-Human Phase 1 Clinical Trial. Blood 2022, 140, 321–334. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Chen, D.; Fu, X.; Meng, H.; Nan, F.; Sun, Z.; Yu, H.; Zhang, L.; Li, L.; Li, X.; et al. Autologous Nanobody-Derived Fratricide-Resistant CD7-CAR T-Cell Therapy for Patients with Relapsed and Refractory T-Cell Acute Lymphoblastic Leukemia/Lymphoma. Clin. Cancer Res. 2022, 28, 2830–2843. [Google Scholar] [CrossRef]
- Pan, J.; Tan, Y.; Wang, G.; Deng, B.; Ling, Z.; Song, W.; Seery, S.; Zhang, Y.; Peng, S.; Xu, J.; et al. Donor-Derived CD7 Chimeric Antigen Receptor T Cells for T-Cell Acute Lymphoblastic Leukemia: First-in-Human, Phase I Trial. J. Clin. Oncol. 2021, 39, 3340–3351. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, J.; Zhang, W.; Chen, Q.; Cao, Y.; Pinz, K.; Liu, F.; Ma, Y.; Wada, M.; Ma, Y. First-in-Human CD4 CAR Clinical Trial on Peripheral T-Cell Lymphoma. Blood 2019, 134, 2881. [Google Scholar] [CrossRef]
- Wang, D.; Xiao, Y.; Li, C.; Wang, N.; Huang, L.; Zhang, Y.; Zhang, T.; Zhou, J. Anti-CD30 Chimeric Antigen Receptor T Cell Therapy for CD30+ Relapsed/Refractory Hodgkin Lymphoma and Anaplastic Large Cell Lymphoma Patients. Blood 2018, 132, 1660. [Google Scholar] [CrossRef]
- Voorhees, T.J.; Ghosh, N.; Grover, N.; Block, J.; Cheng, C.; Morrison, K.; Ivanova, A.; Dotti, G.; Serody, J.; Savoldo, B.; et al. Long-Term Remission in Multiply Relapsed Enteropathy-Associated T-Cell Lymphoma Following CD30 CAR T-Cell Therapy. Blood Adv. 2020, 4, 5925–5928. [Google Scholar] [CrossRef] [PubMed]
- Maciocia, P.M.; Wawrzyniecka, P.A.; Philip, B.; Ricciardelli, I.; Akarca, A.U.; Onuoha, S.C.; Leguţ, M.; Cole, D.K.; Sewell, A.K.; Gritti, G.; et al. Targeting the T Cell Receptor β-Chain Constant Region for Immunotherapy of T Cell Malignancies. Nat. Med. 2017, 23, 1416–1423. [Google Scholar] [CrossRef] [PubMed]
- Phase I/II Study Evaluating AUTO4 in Patients with TRBC1 Positive T Cell Lymphoma—Full Text View—ClinicalTrials.Gov. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT03590574 (accessed on 11 October 2023).
- Study Details | Anti-TRBC1 CAR-T Cell Therapy in Patients with TRBC1 Positive T Cell Malignancies | ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT04828174 (accessed on 11 October 2023).
- Depil, S.; Duchateau, P.; Grupp, S.A.; Mufti, G.; Poirot, L. “Off-the-Shelf” Allogeneic CAR T Cells: Development and Challenges. Nat. Rev. Drug Discov. 2020, 19, 185–199. [Google Scholar] [CrossRef] [PubMed]
- Jommi, C.; Bramanti, S.; Pani, M.; Ghirardini, A.; Santoro, A. CAR T-Cell Therapies in Italy: Patient Access Barriers and Recommendations for Health System Solutions. Front. Pharmacol. 2022, 13, 915342. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Abila, B.; Mostafa Kamel, Y. CAR-T: What Is Next? Cancers 2023, 15, 663. [Google Scholar] [CrossRef]
- Jeyakumar, N.; Smith, M. Custom CARs: Leveraging the Adaptability of Allogeneic CAR Therapies to Address Current Challenges in Relapsed/Refractory DLBCL. Front. Immunol. 2022, 13, 887866. [Google Scholar] [CrossRef]
- Brudno, J.N.; Somerville, R.P.T.; Shi, V.; Rose, J.J.; Halverson, D.C.; Fowler, D.H.; Gea-Banacloche, J.C.; Pavletic, S.Z.; Hickstein, D.D.; Lu, T.L.; et al. Allogeneic T Cells That Express an Anti-CD19 Chimeric Antigen Receptor Induce Remissions of B-Cell Malignancies That Progress After Allogeneic Hematopoietic Stem-Cell Transplantation Without Causing Graft-Versus-Host Disease. J. Clin. Oncol. 2016, 34, 1112–1121. [Google Scholar] [CrossRef]
- Sheikh, S.; Migliorini, D.; Lang, N. CAR T-Based Therapies in Lymphoma: A Review of Current Practice and Perspectives. Biomedicines 2022, 10, 1960. [Google Scholar] [CrossRef]
- Khurana, A.; Lin, Y. Allogeneic Chimeric Antigen Receptor Therapy in Lymphoma. Curr. Treat Options Oncol. 2022, 23, 171–187. [Google Scholar] [CrossRef]
- Leen, A.M.; Bollard, C.M.; Mendizabal, A.M.; Shpall, E.J.; Szabolcs, P.; Antin, J.H.; Kapoor, N.; Pai, S.Y.; Rowley, S.D.; Kebriaei, P.; et al. Multicenter Study of Banked Third-Party Virus-Specific T Cells to Treat Severe Viral Infections after Hematopoietic Stem Cell Transplantation. Blood 2013, 121, 5113–5123. [Google Scholar] [CrossRef]
- Cruz, C.R.Y.; Micklethwaite, K.P.; Savoldo, B.; Ramos, C.A.; Lam, S.; Ku, S.; Diouf, O.; Liu, E.; Barrett, A.J.; Ito, S.; et al. Infusion of Donor-Derived CD19-Redirected Virus-Specific T Cells for B-Cell Malignancies Relapsed after Allogeneic Stem Cell Transplant: A Phase 1 Study. Blood 2013, 122, 2956–2973. [Google Scholar]
- Qasim, W.; Zhan, H.; Samarasinghe, S.; Adams, S.; Amrolia, P.; Stafford, S.; Butler, K.; Rivat, C.; Wright, G.; Somana, K.; et al. Molecular Remission of Infant B-ALL after Infusion of Universal TALEN Gene-Edited CAR T Cells. Sci. Transl. Med. 2017, 9, eaaj2013. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, R.; Georgiadis, C.; Syed, F.; Zhan, H.; Etuk, A.; Gkazi, S.A.; Preece, R.; Ottaviano, G.; Braybrook, T.; Chu, J.; et al. Base-Edited CAR7 T Cells for Relapsed T-Cell Acute Lymphoblastic Leukemia. New Engl. J. Med. 2023, 389, 899–910. [Google Scholar] [CrossRef] [PubMed]
- Capsomidis, A.; Benthall, G.; Van Acker, H.H.; Fisher, J.; Kramer, A.M.; Abeln, Z.; Majani, Y.; Gileadi, T.; Wallace, R.; Gustafsson, K.; et al. Chimeric Antigen Receptor-Engineered Human Gamma Delta T Cells: Enhanced Cytotoxicity with Retention of Cross Presentation. Mol. Ther. 2018, 26, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Sabbah, M.; Jondreville, L.; Lacan, C.; Norol, F.; Vieillard, V.; Roos-Weil, D.; Nguyen, S. CAR-NK Cells: A Chimeric Hope or a Promising Therapy? Cancers 2022, 14, 3839. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R.S.; Rezvani, K. Chimeric Antigen Receptor Expressing Natural Killer Cells for the Immunotherapy of Cancer. Front. Immunol. 2018, 9, 283. [Google Scholar] [CrossRef] [PubMed]
- Klichinsky, M.; Ruella, M.; Shestova, O.; Lu, X.M.; Best, A.; Zeeman, M.; Schmierer, M.; Gabrusiewicz, K.; Anderson, N.R.; Petty, N.E.; et al. Human Chimeric Antigen Receptor Macrophages for Cancer Immunotherapy. Nat. Biotechnol. 2020, 38, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yu, Z.; Tan, X.; Jiang, H.; Xu, Z.; Fang, Y.; Han, D.; Hong, W.; Wei, W.; Tu, J. CAR-Macrophage: A New Immunotherapy Candidate against Solid Tumors. Biomed. Pharmacother. 2021, 139, 111605. [Google Scholar] [CrossRef]
- Reiss, K.A.; Yuan, Y.; Ueno, N.T.; Johnson, M.L.; Gill, S.; Dees, E.C.; Chao, J.; Angelos, M.; Shestova, O.; Serody, J.S.; et al. A Phase 1, First-in-Human (FIH) Study of the Anti-HER2 CAR Macrophage CT-0508 in Subjects with HER2 Overexpressing Solid Tumors. J. Clin. Oncol. 2022, 40, 2533. [Google Scholar] [CrossRef]
- Gumber, D.; Wang, L.D. Improving CAR-T Immunotherapy: Overcoming the Challenges of T Cell Exhaustion. EBioMedicine 2022, 77, 103941. [Google Scholar] [CrossRef]
- Irving, M.; Lanitis, E.; Migliorini, D.; Ivics, Z.; Guedan, S. Choosing the Right Tool for Genetic Engineering: Clinical Lessons from Chimeric Antigen Receptor-T Cells. Hum. Gene Ther. 2021, 32, 1044–1058. [Google Scholar] [CrossRef] [PubMed]
- Reichenbach, P.; Giordano Attianese, G.M.P.; Ouchen, K.; Cribioli, E.; Triboulet, M.; Ash, S.; Saillard, M.; Vuillefroy de Silly, R.; Coukos, G.; Irving, M. A Lentiviral Vector for the Production of T Cells with an Inducible Transgene and a Constitutively Expressed Tumour-Targeting Receptor. Nat. Biomed. Eng. 2023, 7, 1063–1080. [Google Scholar] [CrossRef] [PubMed]
- Prinzing, B.; Zebley, C.C.; Petersen, C.T.; Fan, Y.; Anido, A.A.; Yi, Z.; Nguyen, P.; Houke, H.; Bell, M.; Haydar, D.; et al. Deleting DNMT3A in CAR T Cells Prevents Exhaustion and Enhances Antitumor Activity. Sci. Transl. Med. 2021, 13, eabh0272. [Google Scholar] [CrossRef] [PubMed]
- Fraietta, J.A.; Nobles, C.L.; Sammons, M.A.; Lundh, S.; Carty, S.A.; Reich, T.J.; Cogdill, A.P.; Morrissette, J.J.D.; DeNizio, J.E.; Reddy, S.; et al. Disruption of TET2 Promotes the Therapeutic Efficacy of CD19-Targeted T Cells. Nature 2018, 558, 307–312. [Google Scholar] [CrossRef]
- Labanieh, L.; Mackall, C.L. CAR Immune Cells: Design Principles, Resistance and the next Generation. Nature 2023, 614, 635–648. [Google Scholar] [CrossRef]
CAR-T | Disease | Line of Therapy (n) | Patients (n) | Efficacy | Toxicity | |||||
---|---|---|---|---|---|---|---|---|---|---|
Product (study ref) | Target | Costimulatory domain | ORR(CR) | PFS | OS | CRS (grade ≥ 3) | ICANS (grade ≥ 3) | |||
B-cell non-Hodgkin lymphomas | ||||||||||
Axi-cel (ZUMA-5) [29] | CD19 | CD28 | FL | >1 | 124 | 94 (79)% | 3-year 54% | 3-year 75% | (6)% | (15)% |
Tisa-cel (ELARA) [31] | CD19 | 4-1BB | FL | >1 | 94 | 86 (68)% | 2-year 57% | 2-year 88% | 49 (0)% | 3 (1)% |
Liso-cel (TRANSCEND) [33] | CD19 | 4-1BB | FL | >1 POD24/>2 | 130 | 97%/94.1% in 101 pts, line of therapy ≥ 3 | 1-year 81% | NA | 58 (1)% | 15 (2)% |
Axi-cel (ZUMA-5) [28,29] | CD19 | CD28 | MZL | >1 | 28 | 83 (63)% | median 17 m | 2-year 70% | (9)% | (36)% |
TanCAR7 [39] | CD19/CD20 | 4-1BB | BNHL | >1 | 87 | 78 (70)% | media 28 m | median not reached | 70 (10)% | 17 (2)% |
LV20.19 [40,41] | CD19/CD20 | 4-1BB | BNHL, CLL | 22 | 82 (64)% | median 16 m | median not reached | 64 (5)% | 32 (14)% | |
CART-cocktail ° [42] | CD19, CD22 (sequential infusion) | CD28, 4-1BB | BNHL | >1 | 36 | 72 (50)% | median 10 m | median 18 m | 100 (21)% | 13 (0)% |
CD19/22 CAR [43] | CD19/22 | 4-1BB | BNHL | 32 | 79 (34)% | 1-year 40% | 1-year 63% | 91 (28)% | 16 (12)% | |
CD19/CD22 CAR [44] | CD19/CD22 | 4-1BB | DLBCL | >1 | 16 | 87 (62)% | 2-year 40% | 2-year 77.3% | 100 (6)% | 0% |
D19-22.BB.z-CA [45] | CD19/CD22 | 4-1BB | LBCL | >2 | 22 | 62 (29)% | median 3 m | median 22 m | 76 (5)% | 43 (5)% |
Tisa-cel [46] | CD19 | 4-1BB | PCNSL | >1 | 12 | 58 (50)% | 1-year 25% | 1-year 58% | 58 (0)% | 42 (8)% |
AUTO1 (I ± I-VEN) (CAROUSEL) * [47] | CD19 | 4-1BB | SCNSL | >1 | 5 | 2/4 (2/4) • | NR | NR | 4 (0) • | 2 (2) • |
CAR-T cocktail ° [48] | CD19, CD22 | 4-1BB, CD28 | SCNSL, PCNSL | >1 | 5 | 5/5 (1/5) | median 3 m | 6-month 100% | 5/5 (0) • | 2/5 (1) • |
Hodgkin lymphoma, T-cell lymphomas | ||||||||||
CART-30 [49] | CD30 | 4-1BB | HL, ALCL | >2 | 18 | 39 (39)% | median 6 m | ns | 100% (NR) | ns |
CD30 CART [50] | CD30 | 4-1BB, CD28 | HL, ALCL | >2 | 9 | 78 (78)% | median 13 m | nr | 67 (20)% | 0% |
CD30.CAR-T [51] | CD30 | CD28 | HL, ALCL | ≥3 | 9 | 3/9 • | NR | NR | 0% | 0 (0)% |
CD30.CAR-T [52] | CD30 | CD28 | HL | >2 | 41 | 72 (19)% | 1-year 36% | 1-year 94% | 24 (0)% | 0% |
Hill, 2019 [53] | CD5 | CD28 | TNHL | ≥2 | 5 * | 44 (33)% | NR | NR | 33 (0)% | 11 (0)% |
Zhang, 2023 [54] | CD7 | 4-1BB | TNHL MF | ≥2 | 2 * | 50 (0)% | NR | NR | 80 (10)% | 0 (0)% |
Frigault, 2021 [55] | CD37 | 4-1BB | LBCL, CTCL, HL | ≥2 | 4 | 75 (75)% | NR | NR | 75 (25)% | 25 (25)% |
Cwynarski, 2023 [56] | TRBC1 | 4-1BB | TNHL | ≥1 | 10 | 67 (56)% | NR | NR | 40 (10)% | 0 (0)% |
Allogeneic CAR products | ||||||||||
ALLO-501 [57] | CD19 | 4-1BB | LBCL, FL | ≥2 | 46 | 75 (50)% | NR | NR | 22 (2)% | NR (0)% |
ALLO-501/ALLO-501A [58] | CD19 | 4-1BB | LBCL | ≥3 | 33 | 58 (42)% | NR | NR | 24 (0)% | 0 (0)% |
PBCAR0191 [59] | CD19 | NR | BNHL | ≥2 | 13 | 77 (54)% | NR | NR | 46 (0)% | 31 (0)% |
CTX110 [60] | CD19 | NR | LBCL | ≥2 | 32 | 56 (34)% | NR | NR | 56 (0)% | 9 (6)% |
CTX130 [61] | CD70 | NR | TNHL | ≥1 | 15 | 71 (29)% | NR | NR | 47 (0)% | 20 (0)% |
CB-010 [62] | CD19 | NR | BNHL | ≥2 | 6 | 5/6 (4/6) • | NR | NR | 1 (1) • | 1 (1) • |
iC9/CAR.19/IL15-Transduced CB-NKs (cord blood-derived NK cells) [63] | CD19 | CD28 | LBCL † | ≥3 | 6 * | 73 (64)% | NR | NR | 0 (0)% | 0 (0)% |
RD13-01 [64] | CD7 | 4-1BB | TNHL † | ≥2 | 4 | 82 (64)% | NR | NR | 83 (0)% | 0 (0)% |
CD30.CAR-EBVSTs (allo EBV-CTLs) [65] | CD30 | CD28 | HL | ≥3 | 14 | 69 (38)% | NR | NR | 29 (0)% | 0 (0)% (NR) |
NKX019 (allo CAR-NK) [66] | CD19 | OX40 | BNHLs † | ≥2 | 14 | 71 (57)% | NR | NR | 26 (0)% | 0 (0)% |
FT516 (iPSC-derived NK cells) [67] | hnCD16 | NR | BNHLs | ≥2 | 6 | 3/4 (2/4) • | NR | NR | 0 (0)% | 0 (0)% |
FT819-101 (iPSC-derived NK cells) [68] | CD19 | NR | BNHLs | ≥2 | 12 * | NR | NR | NR | 8(0)% | 0(0)% |
AB-101 (cord blood-derived NK cells) [69] | CD16 | NR | BNHLs | NR | 17 | 67(50)% | NR | NR | 12(0)% | 0(0)% |
9 | CAR-T Product | Target | Costimulatory Domain | Target Population | Study Phase | Line of Therapy (n) | Recruiting (Yes/No) |
---|---|---|---|---|---|---|---|
B-cell malignancies | |||||||
NCT05371093 | Axi-cel | CD19 | CD28 | FL | III | >POD24/>2 | yes |
NCT05537766 | Brexu-cel | CD19 | CD28 | WM, HCL | II | >1 | no |
NCT06043323 | Axi-cel + RT | CD19 | CD28 | FL | II | >2 | no |
NCT05972720 | CRG-022 | CD22 | NR | DLBCL | II | >1 * | no |
NCT05091541 | CT120 | CD19/22 | NR | DLBCL | I/II | >2 | no |
NCT05098613 | CD19 × 22 CAR T | CD19/22 | NR | BNHLs | I | >2 | yes |
NCT05797233 | CD19/20 | NR | BNHLs | I | variable | yes | |
NCT05607420 | UCART20 × 22 | CD20/22 | NR | BNHLs | I | >2 | yes |
NCT03287817 | AUTO3 | CD/19/22 | NR | DLBCL, PMBCL | I/II | >1 refractory/>2 | no |
NCT04989803 | KITE-363 KITE-753 | CD19/20 | NR | BNHLs | I | >1 | yes |
NCT03870945 | MB-CART2019.1 | CD19/20 | NR | BNHLs | I/II | variable | no |
NCT04443829 | AUTO1 | CD19 | 4-1BB | PCNSL | I | >1 | no |
NCT05651178 | NR | CD19/22 | NR | BALL, BNHLs with CNSD | I | >1 | yes |
NCT04532203 | NR | CD19 | NR | BALL, BNHLs with CNSD | I | >1 | yes |
NCT05625594 | ICV CAR-T | CD19 | CD28 | PCNSL | I | >1 | yes |
NCT04608487 | axi-cel | CD19 | CD28 | PCNSL, SCNSL | I | >1 | no |
Hodgkin lymphoma, T-cell lymphomas | |||||||
NCT02917083 | CD30.CAR-T | CD30 | NR | HL, NHLs CD30+ | I | >1 | yes |
NCT04008394 | - | CD30 | NR | HL, NHLs CD30+ | I | >1 | unknown |
NCT04288726 | Allo-CD30.CAR-EBVST | CD30 | NR | HL, NHLs CD30+ | I | >1 | yes |
NCT04268706 | CD30.CAR-T | CD30 | NR | HL | II | >2 | no |
NCT03383965 | ICAR30-T | CD30 | NR | HL, ALCL | I | >1 | yes |
NCT02690545 | ATLCAR.CD30 | CD30 | NR | HL, NHLs CD30+ | Ib/II | >3 | yes |
NCT05352828 | CD30.CAR-T + Nivo | CD30 | NR | HL | I | >1 | no |
NCT04653649 | HSP-CAR30 | CD30 | 4-1BB | HL, NHLs CD30+ | I/II | >2 | yes |
NCT02259556 | CART30 | CD30 | NR | HL, NHLs CD30+ | I/II | >2 | yes |
NCT03602157 | ATLCAR.CD30.CCR4 | CD30, CCR4 | NR | HL, CTCL, GZL | I | >2 | yes |
Allogenic CAR products | |||||||
NCT04176913 | LUCRA-20S (Allo CAR-T) | CD20 | NR | BNHLs | I | ≥1 DLBCL ≥2 others BNHLs | no |
NCT04384393 | ThisCART19 (Allo CAR-T) | CD19 | NR | BNHLs | I | NR (R/R) | yes |
NCT04601181 | ThisCART22 (Allo CAR-T) | CD22 | NR | BNHLs | I | NR (R/R) | yes |
NCT01430390 | Allo EBV-CTLs | CD19 | NR | BHLs | I | NR (R/R) | no |
NCT02050347 | CD19.CAR-CD28Z T (DDTC) | CD19 | CD28 | BNHL post AlloHSCT | I | NR (R/R post AlloHSCT) | no |
NCT04026100 | CTA101 (UCART) | CD19/CD22 | NR | DLBCL | I | ≥2 | unknown |
NCT03166878 | UCART019 | CD19 | 4-1BB | BNHLs | I/II | NR (R/R) | unknown |
NCT04030195 | PBCAR20A-01 | CD20 | NR | BNHLs | I/IIa | ≥2 | no |
NCT04264078 | CD7 UCAR-T cells | CD7 | NR | T-cell malignancies | I | NR | unknown |
NCT03774654 | Allo CAR-NKT | CD19 | NR | BNHLs | I | ≥2 | yes |
NCT04245722 | iDNKs | CD19 | NR | BNHLs | I | NR (R/R) | no |
NCT04629729 | FT516 (iDNKs) | CD19 | NR | BNHLs | I | ≥2 | yes |
NCT02892695 | anti-CD19 CAR-NK | CD19 | NR | BNHLs | I/II | NR (R/R) | unknown |
NCT04887012 | HLA haplo CAR-NK | CD19 | NR | BNHLs | I | ≥2 | yes |
NCT04639739 | anti-CD19 CAR NK | CD19 | NR | BNHLs | I | ≥1 | no |
NCT02656147 | CD19 CAR γδT-cells | CD19 | NR | BNHLs | I | NR (R/R) | unknown |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benevolo Savelli, C.; Clerico, M.; Botto, B.; Secreto, C.; Cavallo, F.; Dellacasa, C.; Busca, A.; Bruno, B.; Freilone, R.; Cerrano, M.; et al. Chimeric Antigen Receptor-T Cell Therapy for Lymphoma: New Settings and Future Directions. Cancers 2024, 16, 46. https://doi.org/10.3390/cancers16010046
Benevolo Savelli C, Clerico M, Botto B, Secreto C, Cavallo F, Dellacasa C, Busca A, Bruno B, Freilone R, Cerrano M, et al. Chimeric Antigen Receptor-T Cell Therapy for Lymphoma: New Settings and Future Directions. Cancers. 2024; 16(1):46. https://doi.org/10.3390/cancers16010046
Chicago/Turabian StyleBenevolo Savelli, Corrado, Michele Clerico, Barbara Botto, Carolina Secreto, Federica Cavallo, Chiara Dellacasa, Alessandro Busca, Benedetto Bruno, Roberto Freilone, Marco Cerrano, and et al. 2024. "Chimeric Antigen Receptor-T Cell Therapy for Lymphoma: New Settings and Future Directions" Cancers 16, no. 1: 46. https://doi.org/10.3390/cancers16010046
APA StyleBenevolo Savelli, C., Clerico, M., Botto, B., Secreto, C., Cavallo, F., Dellacasa, C., Busca, A., Bruno, B., Freilone, R., Cerrano, M., & Novo, M. (2024). Chimeric Antigen Receptor-T Cell Therapy for Lymphoma: New Settings and Future Directions. Cancers, 16(1), 46. https://doi.org/10.3390/cancers16010046