Gene Expression Profile of Benign, Intermediate, and Malignant Spitz and Spitzoid Melanocytic Lesions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, T.W.; Ahern, M.C.; Giubellino, A. The Spectrum of Spitz Melanocytic Lesions: From Morphologic Diagnosis to Molecular Classification. Front. Oncol. 2022, 12, 889223. [Google Scholar] [CrossRef] [PubMed]
- Hagstrom, M.; Fumero-Velázquez, M.; Dhillon, S.; Olivares, S.; Gerami, P. An update on genomic aberrations in Spitz naevi and tumours. Pathology 2023, 55, 196–205. [Google Scholar] [CrossRef]
- Chatzopoulos, K.; Syrnioti, A.; Linos, K. Spitz Melanocytic Tumors: A Fascinating 75-Year Journey. Genes 2024, 15, 195. [Google Scholar] [CrossRef] [PubMed]
- Goto, K.; Pissaloux, D.; Tirode, F.; de la Fouchardière, A. Spitz nevus with a novel TFG-NTRK2 fusion: The first case report of NTRK2-rearranged Spitz/Reed nevus. J. Cutan. Pathol. 2021, 48, 1193–1196. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.J.; McNiff, J.M.; Glusac, E.J. Melanocytic nevi with features of Spitz nevi and Clark’s/dysplastic nevi (“Spark’s” nevi). J. Cutan. Pathol. 2009, 36, 1063–1068. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.J.; Rush, P.S.; Tsao, H.; Duncan, L.M. BRCA1-associated protein (BAP1)-inactivated melanocytic tumors. J. Cutan. Pathol. 2019, 46, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Wiesner, T.; He, J.; Yelensky, R.; Esteve-Puig, R.; Botton, T.; Yeh, I.; Lipson, D.; Otto, G.; Brennan, K.; Murali, R.; et al. Kinase fusions are frequent in Spitz tumours and spitzoid melanomas. Nat. Commun. 2014, 5, 3116. [Google Scholar] [CrossRef] [PubMed]
- Dal Pozzo, C.A.; Cappellesso, R. The Morpho-Molecular Landscape of Spitz Neoplasms. Int. J. Mol. Sci. 2022, 23, 4211. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, S.S.; Peternel, S.; Mully, T.W.; North, J.P.; Pincus, L.B.; LeBoit, P.E.; McCalmont, T.H.; Bastian, B.C.; Yeh, I. Spitz melanoma is a distinct subset of spitzoid melanoma. Mod. Pathol. Off. J. United States Can. Acad. Pathol. Inc 2020, 33, 1122–1134. [Google Scholar] [CrossRef]
- Elder, D.E.; Bastian, B.C.; Cree, I.A.; Massi, D.; Scolyer, R.A. The 2018 World Health Organization Classification of Cutaneous, Mucosal, and Uveal Melanoma: Detailed Analysis of 9 Distinct Subtypes Defined by Their Evolutionary Pathway. Arch. Pathol. Lab. Med. 2020, 144, 500–522. [Google Scholar] [CrossRef]
- Elder, D.E.; Massi, D.; Willemze, R.; Scolyer, R. WHO Classification of Skin Tumours; International Agency for Research on Cancer: Lyon, France, 2018. [Google Scholar]
- Benton, S.; Zhao, J.; Zhang, B.; Bahrami, A.; Barnhill, R.L.; Busam, K.; Cerroni, L.; Cook, M.G.; de la Fouchardière, A.; Elder, D.E.; et al. Impact of Next-generation Sequencing on Interobserver Agreement and Diagnosis of Spitzoid Neoplasms. Am. J. Surg. Pathol. 2021, 45, 1597–1605. [Google Scholar] [CrossRef] [PubMed]
- Cho-Vega, J.H. A diagnostic algorithm for atypical spitzoid tumors: Guidelines for immunohistochemical and molecular assessment. Mod. Pathol. Off. J. United States Can. Acad. Pathol. Inc 2016, 29, 656–670. [Google Scholar] [CrossRef] [PubMed]
- Andea, A.A. Molecular testing for melanocytic tumors: A practical update. Histopathology 2022, 80, 150–165. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10, R25. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinform. (Oxf. Engl.) 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Schulz-Trieglaff, O.; Shaw, R.; Barnes, B.; Schlesinger, F.; Källberg, M.; Cox, A.J.; Kruglyak, S.; Saunders, C.T. Manta: Rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 2016, 32, 1220–1222. [Google Scholar] [CrossRef] [PubMed]
- Saunders, C.T.; Wong, W.S.; Swamy, S.; Becq, J.; Murray, L.J.; Cheetham, R.K. Strelka: Accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics 2012, 28, 1811–1817. [Google Scholar] [CrossRef] [PubMed]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Li, M.M.; Datto, M.; Duncavage, E.J.; Kulkarni, S.; Lindeman, N.I.; Roy, S.; Tsimberidou, A.M.; Vnencak-Jones, C.L.; Wolff, D.J.; Younes, A.; et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J. Mol. Diagn. JMD 2017, 19, 4–23. [Google Scholar] [CrossRef]
- Chen, J.; Bardes, E.E.; Aronow, B.J.; Jegga, A.G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009, 37, W305–W311. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 2005, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics A J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef] [PubMed]
- The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 2019, 47, D330–D338. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- Bastian, B.C.; LeBoit, P.E.; Pinkel, D. Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features. Am. J. Pathol. 2000, 157, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Hillen, L.M.; Geybels, M.S.; Rennspiess, D.; Spassova, I.; Ritter, C.; Becker, J.C.; Garmyn, M.; Zur Hausen, A.; Van den Oord, J.; Winnepenninckx, V. Molecular profiling of Spitz nevi identified by digital RNA counting. Melanoma Res. 2018, 28, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Hillen, L.M.; Geybels, M.S.; Spassova, I.; Becker, J.C.; Gambichler, T.; Garmyn, M.; Zur Hausen, A.; van den Oord, J.; Winnepenninckx, V. A digital mRNA expression signature to classify challenging Spitzoid melanocytic neoplasms. FEBS Open Bio 2020, 10, 1326–1341. [Google Scholar] [CrossRef]
- Jansen, B.; Hansen, D.; Moy, R.; Hanhan, M.; Yao, Z. Gene Expression Analysis Differentiates Melanomas from Spitz Nevi. J. Drugs Dermatol. JDD 2018, 17, 574–576. [Google Scholar]
- Grossman, D.; Kim, C.C.; Hartman, R.I.; Berry, E.; Nelson, K.C.; Okwundu, N.; Curiel-Lewandrowski, C.; Leachman, S.A.; Swetter, S.M. Prognostic gene expression profiling in melanoma: Necessary steps to incorporate into clinical practice. Melanoma Manag. 2019, 6, Mmt32. [Google Scholar] [CrossRef] [PubMed]
- Garg, M.; Couturier, D.L.; Nsengimana, J.; Fonseca, N.A.; Wongchenko, M.; Yan, Y.; Lauss, M.; Jönsson, G.B.; Newton-Bishop, J.; Parkinson, C.; et al. Tumour gene expression signature in primary melanoma predicts long-term outcomes. Nat. Commun. 2021, 12, 1137. [Google Scholar] [CrossRef] [PubMed]
- Fung, M.A.; Vidal, C.I.; Armbrecht, E.A.; Andea, A.A.; Cassarino, D.S.; Comfere, N.I.; Emanuel, P.O.; Ferringer, T.; Hristov, A.C.; Kim, J.; et al. Appropriate use criteria for ancillary diagnostic testing in dermatopathology: New recommendations for 11 tests and 220 clinical scenarios from the American Society of Dermatopathology Appropriate Use Criteria Committee. J. Cutan. Pathol. 2022, 49, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Farberg, A.S.; Glazer, A.M.; Winkelmann, R.R.; Rigel, D.S. Assessing Genetic Expression Profiles in Melanoma Prognosis. Dermatol. Clin. 2017, 35, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.F.; Gerami, P.; Busam, K.J. Malignant melanoma test results by a commercial 35-gene expression test are enriched for benign or atypical Spitz tumors. J. Cutan. Pathol. 2022, 49, 1009–1011. [Google Scholar] [CrossRef] [PubMed]
- Karakas, C.; Giampoli, E.J.; Love, T.; Hicks, D.G.; Velez, M.J. Validation and interpretation of Pan-TRK immunohistochemistry: A practical approach and challenges with interpretation. Diagn. Pathol. 2024, 19, 10. [Google Scholar] [CrossRef] [PubMed]
- Haberecker, M.; Töpfer, A.; Melega, F.; Moch, H.; Pauli, C. A systematic comparison of pan-Trk immunohistochemistry assays among multiple cancer types. Histopathology 2023, 82, 1003–1012. [Google Scholar] [CrossRef] [PubMed]
- Donati, M.; Nosek, D.; Waldenbäck, P.; Martinek, P.; Jonsson, B.A.; Galgonkova, P.; Hawawrehova, M.; Berouskova, P.; Kastnerova, L.; Persichetti, P.; et al. MAP2K1-Mutated Melanocytic Neoplasms With a SPARK-Like Morphology. Am. J. Dermatopathol. 2021, 43, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Fumero-Velázquez, M.; Hagstrom, M.; Dhillon, S.; Geraminejad, T.; Olivares, S.; Donati, M.; Nosek, D.; Waldenbäck, P.; Kazakov, D.; Sheffield, B.S.; et al. Clinical, Morphologic, and Molecular Features of Benign and Intermediate-grade Melanocytic Tumors With Activating Mutations in MAP2K1. Am. J. Surg. Pathol. 2023, 47, 1438–1448. [Google Scholar] [CrossRef]
Case ID | Consensus Diagnosis | Age (Years) | Gender | Anatomic Site | Additional Features | Follow Up | Pathogenic Fusion/Mutation |
---|---|---|---|---|---|---|---|
ALK1 | Compound Spitz nevus with ALK gene fusion | 19 | F | Right foot | Spindled and epithelioid; mitoses | 6 years (no recurrence) | TPM3-ALK fusion |
ALK2 | Compound Spitz nevus with ALK gene fusion | 10 | F | Right wrist | Spindled and epithelioid | (no follow up available) | TPM3-ALK fusion |
RN1 | Compound Spitz nevus/Reed Nevus | 1 | F | Left upper thigh | Kamino bodies; spindled | 5 years (no recurrence) | MYO5A-NTRK fusion |
RN2 | Compound Spitz nevus/Reed Nevus | 3 | M | Left forehead | Kamino bodies; spindled | (no follow up available) | MYO5A-NTRK fusion |
SN1 | Compound Spitz nevus | 2 | M | Left cheeck | Kamino bodies; epithelioid (mostly) and spindled; brisk inflammation | 7 years (no recurrence) | |
SN2 | Compound Spitz nevus | 7 | F | Left calf | Kamino bodies; spindled and epithelioid; | 6 years (no recurrence) | |
SN3 | Compound Spitz nevus | 3 | M | Right helix | No Kamino bodies; spindled and epithelioid | 5 years (no recurrence) | |
SN4 | Desmoplastic Spitz nevus (Intradermal) | 19 | M | R posterior neck | No Kamino bodies, 2 mitoses; spindled and epitheliod (some resemblance with ALK-fuse morphology) | 5 years (no recurrence) | HRAS p.Q61K |
SN5 | Compound Spitz nevus | 9 | M | Right ear | Kamino bodies; spindled | 4 years (no recurrence) | |
SNa1 | Compound Spitz nevus with atypia | 3 | M | R knee | No Kamino bodies; epithelioid and spindled; notable pagetoid array; brisk inflammtion | 6 years (no recurrence) | |
SNa2 | Compound Spitz nevus with atypia | 0.5 (6 months) | M | Left leg | Kamino bodies; epithelioid | (no follow up available) | |
SNa3 | Compound Spitz nevus with atypia | 43 | F | L sup helical rim | Spindled and epithelioid; mitoses | 8 years (no recurrence) | |
SPARK1 | SPARK compound nevus | 20 | M | Left lower abdomen | Epithelioid and spindled | 4 years (no recurrence) | |
SPARK2 | SPARK compound nevus | 30 | F | Right lower abdomen | Spindled and epithelioid, multifocal pagetoid scatter | 5 years (no recurrence) | |
SPARK3 | SPARK compound nevus | 26 | F | Right thigh | Spindled and epithelioid | 3 years (no recurrence) | |
SPARK4 | SPARK compound nevus | 29 | F | Left anterior thigh | Epithelioid, mitosis | 4 years (no recurrence) | |
SPARK5 | SPARK compound nevus | 31 | F | Left upper mid arm | Kamino bodies; spindled and epithelioid | 3 years (no recurrence) | |
AST1 | Atypical Spitz tumor | 3 | F | Right shoulder | No Kamino bodies; epithelioid; brisk inflammation | 4 years (no recurrence) | |
AST2 | Atypical Spitz tumor | 4 | F | Left arm | Spindled and epithelioid; mitoses | 6 years (no recurrence) | |
AST3 | Atypical Spitz tumor | 18 | F | Left thigh | Spindled and epithelioid | 4 years (no recurrence) | HRAS p.Q61K |
AST4 | Atypical Spitz tumor | 33 | F | Left forearm | Epithelioid, mitosis | 3 years (no recurrence) | |
AST5 | Atypical Spitz tumor | 42 | M | Right medial thigh | Spindled and epithelioid | 2 years (no recurrence) | |
MM1 | Spitzoid Melanoma | 27 | M | Right mid back | Breslow 1.5 mm; 3 mitoses/mm2; no ulceration; pT2a, N2a; epithelioid; metastasis to SLN (stage IIIA) | 4 years (no recurrence, no mets) | BRAF p.V600K |
MM2 | Spitzoid Melanoma | 24 | M | Right ear helix | Breslo 0.3 mm; no mitoses; no ulceration; pT1a; epithelioid | 4 years (no recurrence) | |
MM3 | Spitzoid melanoma | 53 | F | Left triceps | Breslow 0.4 mm; no ulceration; pT1a; epithelioid | 5 years (no recurrence) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giubellino, A.; He, Y.; Munro, S.A.; Zhou, Y.; Song, K.Y.; Plaza, J.A.; Torres-Cabala, C.A.; Nelson, A.C. Gene Expression Profile of Benign, Intermediate, and Malignant Spitz and Spitzoid Melanocytic Lesions. Cancers 2024, 16, 1798. https://doi.org/10.3390/cancers16101798
Giubellino A, He Y, Munro SA, Zhou Y, Song KY, Plaza JA, Torres-Cabala CA, Nelson AC. Gene Expression Profile of Benign, Intermediate, and Malignant Spitz and Spitzoid Melanocytic Lesions. Cancers. 2024; 16(10):1798. https://doi.org/10.3390/cancers16101798
Chicago/Turabian StyleGiubellino, Alessio, Yuyu He, Sarah A. Munro, Yan Zhou, Kyu Young Song, Jose A. Plaza, Carlos A. Torres-Cabala, and Andrew C. Nelson. 2024. "Gene Expression Profile of Benign, Intermediate, and Malignant Spitz and Spitzoid Melanocytic Lesions" Cancers 16, no. 10: 1798. https://doi.org/10.3390/cancers16101798
APA StyleGiubellino, A., He, Y., Munro, S. A., Zhou, Y., Song, K. Y., Plaza, J. A., Torres-Cabala, C. A., & Nelson, A. C. (2024). Gene Expression Profile of Benign, Intermediate, and Malignant Spitz and Spitzoid Melanocytic Lesions. Cancers, 16(10), 1798. https://doi.org/10.3390/cancers16101798