Frequency of Common and Uncommon BRAF Alterations among Colorectal and Non-Colorectal Gastrointestinal Malignancies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Cohort Selection
2.2. Sequencing Assays
2.3. Tumor Mutation Burden
2.4. Microsatellite Instability
2.5. Statistical Analysis
3. Results
3.1. Cohort Characteristics
3.2. Incidence of BRAF Gain-of-Function Alteration by Primary Tumor Location
3.3. Characterization of BRAF Gain-of-Function Alterations
3.4. MSI and TMB among BRAF-Altered Tumors
3.5. Co-Mutations in BRAF-Altered Tumors
3.6. Characterization of Patients Treated with a BRAF Inhibitor
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Śmiech, M.; Leszczyński, P.; Kono, H.; Wardell, C.; Taniguchi, H. Emerging BRAF Mutations in Cancer Progression and Their Possible Effects on Transcriptional Networks. Genes 2020, 11, 1342. [Google Scholar] [CrossRef]
- Dibb, N.J.; Dilworth, S.M.; Mol, C.D. Switching on kinases: Oncogenic activation of BRAF and the PDGFR family. Nat. Rev. Cancer 2004, 4, 718–727. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Zhang, H.; Ding, H.; Qian, J.; Lizaso, A.; Lin, J.; Han-Zhang, H.; Xiang, J.; Li, Y.; Zhu, H. The association between BRAF mutation class and clinical features in BRAF-mutant Chinese non-small cell lung cancer patients. J. Transl. Med. 2019, 17, 298. [Google Scholar] [CrossRef]
- Wan, P.T.C.; Garnett, M.J.; Roe, S.M.; Lee, S.; Niculescu-Duvaz, D.; Good, V.M.; Project, C.G.; Jones, C.M.; Marshall, C.J.; Springer, C.J.; et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 2004, 116, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Schirripa, M.; Biason, P.; Lonardi, S.; Pella, N.; Simona Pino, M.; Urbano, F.; Antoniotti, C.; Cremolini, C.; Corallo, S.; Pietrantonio, F.; et al. Class 1, 2, and 3 BRAF-Mutated Metastatic Colorectal Cancer: A Detailed Clinical, Pathologic, and Molecular Characterization. Clin. Cancer Res. 2019, 25, 3954–3961. [Google Scholar] [CrossRef]
- Ciombor, K.K.; Strickler, J.H.; Bekaii-Saab, T.S.; Yaeger, R. BRAF-Mutated Advanced Colorectal Cancer: A Rapidly Changing Therapeutic Landscape. J. Clin. Oncol. 2022, 40, 2706–2715. [Google Scholar] [CrossRef]
- Sanz-Garcia, E.; Argiles, G.; Elez, E.; Tabernero, J. BRAF mutant colorectal cancer: Prognosis, treatment, and new perspectives. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2017, 28, 2648–2657. [Google Scholar] [CrossRef]
- Subbiah, V.; Kreitman, R.J.; Wainberg, Z.A.; Gazzah, A.; Lassen, U.; Stein, A.; Wen, P.Y.; Dietrich, S.; de Jonge, M.J.A.; Blay, J.Y.; et al. Dabrafenib plus trametinib in BRAFV600E-mutated rare cancers: The phase 2 ROAR trial. Nat. Med. 2023, 29, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Tempus xT Gene Panel List and Validation. Available online: https://www.tempus.com/wp-content/uploads/2023/06/Tempus-xT_Gene-Panel.pdf (accessed on 14 March 2024).
- Beaubier, N.; Bontrager, M.; Huether, R.; Igartua, C.; Lau, D.; Tell, R.; Bobe, A.M.; Bush, S.; Chang, A.L.; Hoskinson, D.C.; et al. Integrated genomic profiling expands clinical options for patients with cancer. Nat. Biotechnol. 2019, 37, 1351–1360. [Google Scholar] [CrossRef]
- Beaubier, N.; Tell, R.; Lau, D.; Parsons, J.R.; Bush, S.; Perera, J.; Sorrells, S.; Baker, T.; Chang, A.; Michuda, J.; et al. Clinical validation of the tempus xT next-generation targeted oncology sequencing assay. Oncotarget 2019, 10, 2384–2396. [Google Scholar] [CrossRef]
- Gao, Y.; Stein, M.M.; Kase, M.; Cummings, A.L.; Bharanikumar, R.; Lau, D.; Garon, E.B.; Patel, S.P. Comparison of the tumor immune microenvironment and checkpoint blockade biomarkers between stage III and IV non-small cell lung cancer. Cancer Immunol. Immunother. 2023, 72, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Finkle, J.D.; Boulos, H.; Driessen, T.M.; Lo, C.; Blidner, R.A.; Hafez, A.; Khan, A.A.; Lozac’hmeur, A.; McKinnon, K.E.; Perera, J.; et al. Validation of a liquid biopsy assay with molecular and clinical profiling of circulating tumor DNA. NPJ Precis. Oncol. 2021, 5, 63. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.C.; MacKay, M.; Kase, M.; Piwowarczyk, A.; Lo, C.; Schaeffer, J.; Finkle, J.D.; Mason, C.E.; Beaubier, N.; Blackwell, K.L.; et al. Longitudinal Shifts of Solid Tumor and Liquid Biopsy Sequencing Concordance in Metastatic Breast Cancer. JCO Precis. Oncol. 2022, 6, e2100321. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Sun, H.; Deng, Y.; Ma, Y.; Huang, H.; Liu, Y.; Zhang, Y.; Zhang, H.; Ye, S.; Mingyan, E.; et al. The clinical and genomic distinctions of Class1/2/3 BRAF-mutant colorectal cancer and differential prognoses. Biomark. Res. 2023, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Owsley, J.; Stein, M.K.; Porter, J.; In, G.K.; Salem, M.; O’Day, S.; Elliott, A.; Poorman, K.; Gibney, G.; VanderWalde, A. Prevalence of class I–III BRAF mutations among 114,662 cancer patients in a large genomic database. Exp. Biol. Med. 2021, 246, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.Y.; Sun, R.Q.; Zou, J.X.; Wang, P.C.; Wang, J.Y.; Ye, Y.H.; Liu, K.X.; Hu, Z.Q.; Zhou, Z.J.; Fan, J.; et al. Association of BRAF Variants with Disease Characteristics, Prognosis, and Targeted Therapy Response in Intrahepatic Cholangiocarcinoma. JAMA Netw. Open 2023, 6, E231476. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.; Di Federico, A.; Ricci, A.D.; Frega, G.; Palloni, A.; Pagani, R.; Tavolari, S.; Di Marco, M.; Brandi, G. Targeting BRAF-Mutant Biliary Tract Cancer: Recent Advances and Future Challenges. Cancer Control 2020, 27. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Lassen, U.; Élez, E.; Italiano, A.; Curigliano, G.; Javle, M.; de Braud, F.; Prager, G.W.; Greil, R.; Stein, A.; et al. Dabrafenib plus trametinib in patients with BRAF V600E-mutated biliary tract cancer (ROAR): A phase 2, open-label, single-arm, multicentre basket trial. Lancet. Oncol. 2020, 21, 1234–1243. [Google Scholar] [CrossRef] [PubMed]
- Pandya, K.; Overman, M.J.; Gulhati, P. Molecular Landscape of Small Bowel Adenocarcinoma. Cancers 2022, 14, 1287. [Google Scholar] [CrossRef]
- Schrock, A.B.; Devoe, C.E.; McWilliams, R.; Sun, J.; Aparicio, T.; Stephens, P.J.; Ross, J.S.; Wilson, R.; Miller, V.A.; Ali, S.M.; et al. Genomic Profiling of Small-Bowel Adenocarcinoma. JAMA Oncol. 2017, 3, 1546–1553. [Google Scholar] [CrossRef]
- Hänninen, U.A.; Katainen, R.; Tanskanen, T.; Plaketti, R.M.; Laine, R.; Hamberg, J.; Ristimäki, A.; Pukkala, E.; Taipale, M.; Mecklin, J.P.; et al. Exome-wide somatic mutation characterization of small bowel adenocarcinoma. PLoS Genet. 2018, 14, e1007200. [Google Scholar] [CrossRef]
- Nebhan, C.A.; Johnson, D.B.; Sullivan, R.J.; Amaria, R.N.; Flaherty, K.T.; Sosman, J.A.; Davies, M.A. Efficacy and Safety of Trametinib in Non-V600 BRAF Mutant Melanoma: A Phase II Study. Oncologist 2021, 26, 731-e1498. [Google Scholar] [CrossRef]
- Dankner, M.; Wang, Y.; Fazelzad, R.; Johnson, B.; Nebhan, C.A.; Dagogo-Jack, I.; Myall, N.J.; Richtig, G.; Bracht, J.W.P.; Gerlinger, M.; et al. Clinical Activity of Mitogen-Activated Protein Kinase-Targeted Therapies in Patients with Non-V600 BRAF-Mutant Tumors. JCO Precis. Oncol. 2022, 6, e2200107. [Google Scholar] [CrossRef]
- Johnson, D.B.; Nebhan, C.A.; Noel, M.S. MEK inhibitors in non-V600 BRAF mutations and fusions. Oncotarget 2020, 11, 3900–3903. [Google Scholar] [CrossRef]
- Johnson, D.B.; Zhao, F.; Noel, M.; Riely, G.J.; Mitchell, E.P.; Wright, J.J.; Chen, H.X.; Gray, R.J.; Li, S.; McShane, L.M.; et al. Trametinib Activity in Patients with Solid Tumors and Lymphomas Harboring BRAF Non-V600 Mutations or Fusions: Results from NCI-MATCH (EAY131). Clin. Cancer Res. 2020, 26, 1812–1819. [Google Scholar] [CrossRef]
- Dankner, M. Targeted Therapy for Colorectal Cancers with Non-V600 BRAF Mutations: Perspectives for Precision Oncology. JCO Precis. Oncol. 2018, 2, 1–12. [Google Scholar] [CrossRef]
- Yaeger, R.; Kotani, D.; Mondaca, S.; Parikh, A.R.; Bando, H.; Van Seventer, E.E.; Taniguchi, H.; Zhao, H.Y.; Thant, C.N.; De Stanchina, E.; et al. Response to Anti-EGFR Therapy in Patients with BRAF non-V600-Mutant Metastatic Colorectal Cancer. Clin. Cancer Res. 2019, 25, 7089–7097. [Google Scholar] [CrossRef]
- Lu, H.; Villafane, N.; Dogruluk, T.; Grzeskowiak, C.L.; Kong, K.; Tsang, Y.H.; Zagorodna, O.; Pantazi, A.; Yang, L.; Neill, N.J.; et al. Engineering and Functional Characterization of Fusion Genes Identifies Novel Oncogenic Drivers of Cancer. Cancer Res. 2017, 77, 3502–3512. [Google Scholar] [CrossRef]
- Dankner, M.; Rose, A.A.N.; Rajkumar, S.; Siegel, P.M.; Watson, I.R. Classifying BRAF alterations in cancer: New rational therapeutic strategies for actionable mutations. Oncogene 2018, 37, 3183–3199. [Google Scholar] [CrossRef]
- Ross, J.S.; Wang, K.; Chmielecki, J.; Gay, L.; Johnson, A.; Chudnovsky, J.; Yelensky, R.; Lipson, D.; Ali, S.M.; Elvin, J.A.; et al. The distribution of BRAF gene fusions in solid tumors and response to targeted therapy. Int. J. Cancer 2016, 138, 881–890. [Google Scholar] [CrossRef]
- Jones, J.C.; Renfro, L.A.; Al-Shamsi, H.O.; Schrock, A.B.; Rankin, A.; Zhang, B.Y.; Kasi, P.M.; Voss, J.S.; Leal, A.D.; Sun, J.; et al. Non-V600 BRAF Mutations Define a Clinically Distinct Molecular Subtype of Metastatic Colorectal Cancer. J. Clin. Oncol. 2017, 35, 2624–2630. [Google Scholar] [CrossRef]
Overall, n = 2516 1 | CRC, n = 1838 1 | Other GI, n = 678 1 | p-Value 2 | |
---|---|---|---|---|
Age at diagnosis | 67 (57, 75) | 67 (57, 76) | 66 (58, 73) | 0.029 |
Unknown | 31 | 23 | 8 | |
Age at diagnosis | 0.13 | |||
>65 | 1349 (54%) | 1002 (55%) | 347 (52%) | |
≤65 | 1136 (46%) | 813 (45%) | 323 (48%) | |
Unknown | 31 | 23 | 8 | |
Gender | <0.001 | |||
Female | 1351 (54%) | 1043 (57%) | 308 (45%) | |
Male | 1165 (46%) | 795 (43%) | 370 (55%) | |
Race | <0.001 | |||
White | 1229 (83%) | 924 (85%) | 305 (77%) | |
Black or African American | 113 (7.6%) | 69 (6.4%) | 44 (11%) | |
Other | 90 (6.1%) | 67 (6.2%) | 23 (5.8%) | |
Asian or Pacific Islander | 49 (3.3%) | 24 (2.2%) | 25 (6.3%) | |
Unknown | 1035 | 754 | 281 | |
Ethnicity | 0.7 | |||
Not Hispanic or Latino | 759 (89%) | 571 (89%) | 188 (89%) | |
Hispanic or Latino | 91 (11%) | 67 (11%) | 24 (11%) | |
Unknown | 1666 | 1200 | 466 | |
Initiation of BRAF inhibitor prior to sample collection | 63 (2.5%) | 52 (2.8%) | 11 (1.6%) | 0.086 |
Primary cancer site | ||||
Colon | 1556 (62%) | 1556 (85%) | 0 (0%) | |
Pancreas | 259 (10%) | 0 (0%) | 259 (38%) | |
Rectum | 244 (9.7%) | 244 (13%) | 0 (0%) | |
Intrahepatic bile duct | 126 (5.0%) | 0 (0%) | 126 (19%) | |
Stomach | 48 (1.9%) | 0 (0%) | 48 (7.1%) | |
Rectosigmoid junction | 38 (1.5%) | 38 (2.1%) | 0 (0%) | |
Esophagus | 30 (1.2%) | 0 (0%) | 30 (4.4%) | |
Biliary tract | 29 (1.2%) | 0 (0%) | 29 (4.3%) | |
Gastrointestinal tract | 29 (1.2%) | 0 (0%) | 29 (4.3%) | |
Extrahepatic bile duct | 26 (1.0%) | 0 (0%) | 26 (3.8%) | |
Ampulla of Vater | 23 (0.9%) | 0 (0%) | 23 (3.4%) | |
Duodenum | 19 (0.8%) | 0 (0%) | 19 (2.8%) | |
Gallbladder | 19 (0.8%) | 0 (0%) | 19 (2.8%) | |
Liver | 19 (0.8%) | 0 (0%) | 19 (2.8%) | |
Appendix | 18 (0.7%) | 0 (0%) | 18 (2.7%) | |
Small intestine | 14 (0.6%) | 0 (0%) | 14 (2.1%) | |
Jejunum | 10 (0.4%) | 0 (0%) | 10 (1.5%) | |
Anus | 8 (0.3%) | 0 (0%) | 8 (1.2%) | |
Ileum | 1 (<0.1%) | 0 (0%) | 1 (0.1%) | |
Assay | 1.00 | |||
xT (tissue-based) | 1833 (73%) | 1339 (73%) | 494 (73%) | |
xF (liquid-based) | 683 (27%) | 499 (27%) | 184 (27%) | |
Months from diagnosis to sample collection | <0.001 | |||
Median (IQR) | 1 (0, 9) | 1 (0, 10) | 0 (0, 5) | |
Range | 0, 225 | 0, 225 | 0, 173 | |
Stage within 60 days of sample collection | <0.001 | |||
Stage 4 | 1317 (78%) | 970 (76%) | 347 (83%) | |
Stage 3 | 244 (14%) | 208 (16%) | 36 (8.6%) | |
Stage 2 | 107 (6.3%) | 84 (6.6%) | 23 (5.5%) | |
Stage 1 | 19 (1.1%) | 7 (0.6%) | 12 (2.9%) | |
Unknown | 829 | 569 | 260 | |
Metastases prior to sample collection | 1660 (66%) | 1258 (69%) | 402 (59%) | <0.001 |
Unknown | 11 | 9 | 2 |
Characteristic | Overall, n = 51,560 1 | BRAF_wt, n = 49,044 2 | BRAF_GOF, n = 2516 2 | p-Value 3 |
---|---|---|---|---|
Cohort | <0.001 | |||
Other GI | 30,904 (60%) | 30,226 (98%) | 678 (2.2%) | |
CRC | 20,656 (40%) | 18,818 (91%) | 1838 (8.9%) | |
Cancer group | <0.001 | |||
CRC | 20,656 (40%) | 18,818 (91%) | 1838 (8.9%) | |
Pancreas | 14,300 (28%) | 14,041 (98%) | 259 (1.8%) | |
Bile duct | 4923 (9.5%) | 4723 (96%) | 200 (4.1%) | |
Other | 3434 (6.7%) | 3366 (98%) | 68 (2.0%) | |
Esophagus | 3316 (6.4%) | 3286 (99%) | 30 (0.9%) | |
Stomach | 3029 (5.9%) | 2981 (98%) | 48 (1.6%) | |
Small intestine | 1093 (2.1%) | 1049 (96%) | 44 (4.0%) | |
GI tract, NOS | 809 (1.6%) | 780 (96%) | 29 (3.6%) |
Overall, n = 2516 1 | CRC, n = 1838 1 | Other GI, n = 678 1 | p-Value 2 | q-Value 3 | |
---|---|---|---|---|---|
BRAF mutation class | |||||
Class I | 1574 (63%) | 1385 (75%) | 189 (28%) | <0.001 | <0.001 |
Class II | 314 (12%) | 125 (6.8%) | 189 (28%) | <0.001 | <0.001 |
Class III | 414 (16%) | 259 (14%) | 155 (23%) | <0.001 | <0.001 |
BRAF mutation | |||||
Val600Glu | 1561 (62%) | 1381 (75%) | 180 (27%) | <0.001 | <0.001 |
Asp594Gly | 152 (6.0%) | 114 (6.2%) | 38 (5.6%) | 0.6 | 0.6 |
Asp594Asn | 95 (3.8%) | 51 (2.8%) | 44 (6.5%) | <0.001 | <0.001 |
Gly469Ala | 56 (2.2%) | 29 (1.6%) | 27 (4.0%) | <0.001 | <0.001 |
Asn486_Pro490del | 52 (2.1%) | 0 (0%) | 52 (7.7%) | <0.001 | <0.001 |
Asn581Ser | 39 (1.6%) | 21 (1.1%) | 18 (2.7%) | 0.006 | 0.009 |
Lys601Glu | 37 (1.5%) | 18 (1.0%) | 19 (2.8%) | <0.001 | 0.001 |
BRAF-SND1 | 32 (1.3%) | 3 (0.2%) | 29 (4.3%) | <0.001 | <0.001 |
Gly466Val | 32 (1.3%) | 20 (1.1%) | 12 (1.8%) | 0.2 | 0.2 |
CN amp | 27 (1.1%) | 6 (0.3%) | 21 (3.1%) | <0.001 | <0.001 |
Gly466Glu | 25 (1.0%) | 15 (0.8%) | 10 (1.5%) | 0.14 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahipal, A.; Storandt, M.H.; Teslow, E.A.; Jaeger, E.; Stoppler, M.C.; Jin, Z.; Chakrabarti, S. Frequency of Common and Uncommon BRAF Alterations among Colorectal and Non-Colorectal Gastrointestinal Malignancies. Cancers 2024, 16, 1823. https://doi.org/10.3390/cancers16101823
Mahipal A, Storandt MH, Teslow EA, Jaeger E, Stoppler MC, Jin Z, Chakrabarti S. Frequency of Common and Uncommon BRAF Alterations among Colorectal and Non-Colorectal Gastrointestinal Malignancies. Cancers. 2024; 16(10):1823. https://doi.org/10.3390/cancers16101823
Chicago/Turabian StyleMahipal, Amit, Michael H. Storandt, Emily A. Teslow, Ellen Jaeger, Melissa C. Stoppler, Zhaohui Jin, and Sakti Chakrabarti. 2024. "Frequency of Common and Uncommon BRAF Alterations among Colorectal and Non-Colorectal Gastrointestinal Malignancies" Cancers 16, no. 10: 1823. https://doi.org/10.3390/cancers16101823
APA StyleMahipal, A., Storandt, M. H., Teslow, E. A., Jaeger, E., Stoppler, M. C., Jin, Z., & Chakrabarti, S. (2024). Frequency of Common and Uncommon BRAF Alterations among Colorectal and Non-Colorectal Gastrointestinal Malignancies. Cancers, 16(10), 1823. https://doi.org/10.3390/cancers16101823