Intralesional and Infusional Updates for Metastatic Melanoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Intralesional Therapy for in-Transit Metastases
2.1. Talimogene Laherparepvec
2.1.1. Talimogene Laherparepvec as a Monotherapy
2.1.2. Talimogene Laherparepvec in Combination with Other Treatment Modalities
2.2. Antibody-Cytokine Fusion Proteins
2.2.1. Interleukin-2
2.2.2. Daromun (L19IL2 and L19TNF)
2.3. PV-10
2.3.1. PV-10 as a Monotherapy
2.3.2. PV-10 in Combination with Other Treatment Modalities
2.4. Tavokinogene Telseplasmid with Electroporation
3. Isolated Limb Perfusion Therapy for in-Transit Metastases
4. Isolated Limb Infusion Therapy for in-Transit Metastases
Combination Therapies with ILP or ILI
5. Isolated Hepatic Perfusion for Uveal Melanoma Hepatic Metastases
6. Percutaneous Hepatic Perfusion for Uveal Melanoma Hepatic Metastases
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- American Cancer Society. Melanoma Skin Cancer Statistics. Available online: https://www.cancer.org/cancer/types/melanoma-skin-cancer/about/key-statistics.html (accessed on 12 February 2024).
- Arnold, M.; Singh, D.; Laversanne, M.; Vignat, J.; Vaccarella, S.; Meheus, F.; Cust, A.E.; de Vries, E.; Whiteman, D.C.; Bray, F. Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040. JAMA Dermatol. 2022, 158, 495–503. [Google Scholar] [CrossRef]
- Read, R.L.; Haydu, L.; Saw, R.P.; Quinn, M.J.; Shannon, K.; Spillane, A.J.; Stretch, J.R.; Scolyer, R.A.; Thompson, J.F. In-transit melanoma metastases: Incidence, prognosis, and the role of lymphadenectomy. Ann. Surg. Oncol. 2015, 22, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Huibers, A.; DePalo, D.K.; Perez, M.C.; Zager, J.S.; Olofsson Bagge, R. Isolated hyperthermic perfusions for cutaneous melanoma in-transit metastasis of the limb and uveal melanoma metastasis to the liver. Clin. Exp. Metastasis 2023. [Google Scholar] [CrossRef] [PubMed]
- Balch, C.M.; Gershenwald, J.E.; Soong, S.J.; Thompson, J.F.; Atkins, M.B.; Byrd, D.R.; Buzaid, A.C.; Cochran, A.J.; Coit, D.G.; Ding, S.; et al. Final version of 2009 AJCC melanoma staging and classification. J. Clin. Oncol. 2009, 27, 6199–6206. [Google Scholar] [CrossRef] [PubMed]
- Weide, B.; Faller, C.; Buttner, P.; Pflugfelder, A.; Leiter, U.; Eigentler, T.K.; Bauer, J.; Forschner, A.; Meier, F.; Garbe, C. Prognostic factors of melanoma patients with satellite or in-transit metastasis at the time of stage III diagnosis. PLoS ONE 2013, 8, e63137. [Google Scholar] [CrossRef] [PubMed]
- Blank, C.U.; Rozeman, E.A.; Fanchi, L.F.; Sikorska, K.; van de Wiel, B.; Kvistborg, P.; Krijgsman, O.; van den Braber, M.; Philips, D.; Broeks, A.; et al. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat. Med. 2018, 24, 1655–1661. [Google Scholar] [CrossRef]
- Tan, J.K.; Ho, V.C. Pooled analysis of the efficacy of bacille Calmette-Guerin (BCG) immunotherapy in malignant melanoma. J. Dermatol. Surg. Oncol. 1993, 19, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Agarwala, S.S.; Neuberg, D.; Park, Y.; Kirkwood, J.M. Mature results of a phase III randomized trial of bacillus Calmette-Guerin (BCG) versus observation and BCG plus dacarbazine versus BCG in the adjuvant therapy of American Joint Committee on Cancer Stage I-III melanoma (E1673): A trial of the Eastern Oncology Group. Cancer 2004, 100, 1692–1698. [Google Scholar] [PubMed]
- Ikić, D.; Spaventi, S.; Padovan, I.; Kusić, Z.; Cajkovac, V.; Ivanković, D.; Daković, N.; Nola, P. Local interferon therapy for melanoma patients. Int. J. Dermatol. 1995, 34, 872–874. [Google Scholar] [CrossRef] [PubMed]
- Chesney, J.; Puzanov, I.; Collichio, F.; Singh, P.; Milhem, M.M.; Glaspy, J.; Hamid, O.; Ross, M.; Friedlander, P.; Garbe, C.; et al. Randomized, Open-Label Phase II Study Evaluating the Efficacy and Safety of Talimogene Laherparepvec in Combination with Ipilimumab Versus Ipilimumab Alone in Patients with Advanced, Unresectable Melanoma. J. Clin. Oncol. 2018, 26, 1658–1667. [Google Scholar] [CrossRef]
- Algazi, A.; Bhatia, S.; Agarwala, S.; Molina, M.; Lewis, K.; Faries, M.; Fong, L.; Levine, L.P.; Franco, M.; Oglesby, A.; et al. Intratumoral delivery of tavokinogene telseplasmid yields systemic immune responses in metastatic melanoma patients. Ann. Oncol. 2020, 31, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Dummer, R.; Gyorki, D.E.; Hyngstrom, J.; Berger, A.C.; Conry, R.; Demidov, L.; Sharma, A.; Treichel, S.A.; Radcliffe, H.; Gorski, K.S.; et al. Neoadjuvant talimogene laherparepvec plus surgery versus surgery alone for resectable stage IIIB-IVM1a melanoma: A randomized, open-label, phase 2 trial. Nat. Med. 2021, 27, 1789–1796. [Google Scholar] [CrossRef]
- Gastman, B.; Robert, C.; Gogas, H.; Rutkowski, P.; Long, G.V.; Chaney, M.F.; Joshi, H.; Lin, Y.L.; Snyder, W.; Chesney, J.A. Primary analysis of a phase 2, open-label, multicenter trial of talimogene laherparepvec (T-VEC) plus pembrolizumab (pembro) for the treatment (Tx) of patients (pts) with advanced melanoma (MEL) who progressed on prior anti–PD-1 therapy: MASTERKEY-115. J. Clin. Oncol. 2022, 40, 9518. [Google Scholar] [CrossRef]
- Chesney, J.A.; Ribas, A.; Long, G.V.; Kirkwood, J.M.; Dummer, R.; Puzanov, I.; Hoeller, C.; Gajewski, T.F.; Gutzmer, R.; Rutkowski, P.; et al. Randomized, Double-Blind, Placebo-Controlled, Global Phase III Trial of Talimogene Laherparepvec Combined with Pembrolizumab for Advanced Melanoma. J. Clin. Oncol. 2023, 41, 528–540. [Google Scholar] [CrossRef] [PubMed]
- Tarhini, A.; Eroglu, Z.; Castellano, E.; Zager, J.S.; Gonzalez, R.J.; Sarnaik, A.; Cruse, C.W.; De Aquino, D.B.; Abraham, E.; Richards, A.; et al. Neoadjuvant (NeoAd) intratumoral (IT) TAVO-EP (plasmid IL-12 electro gene transfer) in combination with nivolumab (NIVO) for patients (pts) with operable locoregionally advanced melanoma. In Proceedings of the European Society for Medical Oncology Congress, Madrid, Spain, 20–24 October 2023. [Google Scholar]
- Kohlhapp, F.J.; Kaufman, H.L. Molecular pathways: Mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy. Clin. Cancer Res. 2016, 22, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Andtbacka, R.H.; Kaufman, H.L.; Collichio, F.; Amatruda, T.; Senzer, N.; Chesney, J.; Delman, K.A.; Spitler, L.E.; Puzanov, I.; Agarwala, S.S.; et al. Talimogene Laherparepvec Improves Durable Response Rate in Patients with Advanced Melanoma. J. Clin. Oncol. 2015, 33, 2780–2788. [Google Scholar] [CrossRef]
- Andtbacka, R.H.; Ross, M.; Puzanov, I.; Milhem, M.; Collichio, F.; Delman, K.A.; Amatruda, T.; Zager, J.S.; Cranmer, L.; Hsueh, E.; et al. Patterns of Clinical Response with Talimogene Laherparepvec (T-VEC) in Patients with Melanoma Treated in the OPTiM Phase III Clinical Trial. Ann. Surg. Oncol. 2016, 23, 4169–4177. [Google Scholar] [CrossRef]
- Perez, M.C.; Miura, J.T.; Naqvi, S.M.H.; Kim, Y.; Holstein, A.; Lee, D.; Sarnaik, A.A.; Zager, J.S. Talimogene Laherparepvec (TVEC) for the Treatment of Advanced Melanoma: A Single-Institution Experience. Ann. Surg. Oncol. 2018, 25, 3960–3965. [Google Scholar] [CrossRef] [PubMed]
- Kleemann, J.; Jäger, M.; Valesky, E.; Kippenberger, S.; Kaufmann, R.; Meissner, M. Real-World Experience of Talimogene Laherparepvec (T-VEC) in Old and Oldest-Old Patients with Melanoma: A Retrospective Single Center Study. Cancer Manag. Res. 2021, 13, 5699–5709. [Google Scholar] [CrossRef]
- Louie, R.J.; Perez, M.C.; Jajja, M.R.; Sun, J.; Collichio, F.; Delman, K.A.; Lowe, M.; Sarnaik, A.A.; Zager, J.S.; Ollila, D.W. Real-World Outcomes of Talimogene Laherparepvec Therapy: A Multi-Institutional Experience. J. Am. Coll. Surg. 2019, 228, 644–651. [Google Scholar] [CrossRef]
- Perez, M.C.; Zager, J.S.; Amatruda, T.; Conry, R.; Ariyan, C.; Desai, A.; Kirkwood, J.M.; Treichel, S.; Cohan, D.; Raskin, L. Observational study of talimogene laherparepvec use for melanoma in clinical practice in the United States (COSMUS-1). Melanoma Manag. 2019, 6, MMT19. [Google Scholar] [CrossRef] [PubMed]
- Ressler, J.M.; Karasek, M.; Koch, L.; Silmbrod, R.; Mangana, J.; Latifyan, S.; Aedo-Lopez, V.; Kehrer, H.; Weihsengruber, F.; Koelblinger, P.; et al. Real-life use of talimogene laherparepvec (T-VEC) in melanoma patients in centers in Austria, Switzerland and Germany. J. Immunother. Cancer 2021, 9, e001701. [Google Scholar] [CrossRef] [PubMed]
- Stahlie, E.H.A.; Franke, V.; Zuur, C.L.; Klop, W.M.C.; van der Hiel, B.; Van de Wiel, B.A.; Wouters, M.; Schrage, Y.M.; van Houdt, W.J.; van Akkooi, A.C.J. T-VEC for stage IIIB-IVM1a melanoma achieves high rates of complete and durable responses and is associated with tumor load: A clinical prediction model. Cancer Immunol. Immunother. 2021, 70, 2291–2300. [Google Scholar] [CrossRef] [PubMed]
- Franke, V.; Stahlie, E.H.A.; van der Hiel, B.; van de Wiel, B.A.; Wouters, M.; van Houdt, W.J.; van Akkooi, A.C.J. Re-introduction of T-VEC Monotherapy in Recurrence Melanoma is Effective. J. Immunother. 2022, 45, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Carr, M.J.; Sun, J.; DePalo, D.; Rothermel, L.D.; Song, Y.; Straker, R.J.; Baecher, K.; Louie, R.J.; Stahlie, E.H.A.; Wright, G.P.; et al. Talimogene Laherparepvec (T-VEC) for the Treatment of Advanced Locoregional Melanoma after Failure of Immunotherapy: An International Multi-Institutional Experience. Ann. Surg. Oncol. 2022, 29, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Malvehy, J.; Samoylenko, I.; Schadendorf, D.; Gutzmer, R.; Grob, J.J.; Sacco, J.J.; Gorski, K.S.; Anderson, A.; Pickett, C.A.; Liu, K.; et al. Talimogene laherparepvec upregulates immune-cell populations in non-injected lesions: Findings from a phase II, multicenter, open-label study in patients with stage IIIB-IVM1c melanoma. J. Immunother. Cancer 2021, 9, e001621. [Google Scholar] [CrossRef]
- Puzanov, I.; Milhem, M.M.; Minor, D.; Hamid, O.; Li, A.; Chen, L.; Chastain, M.; Gorski, K.S.; Anderson, A.; Chou, J.; et al. Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB-IV melanoma. J. Clin. Oncol. 2016, 34, 2619–2626. [Google Scholar] [CrossRef]
- Chesney, J.A.; Puzanov, I.; Collichio, F.A.; Singh, P.; Milhem, M.M.; Glaspy, J.; Hamid, O.; Ross, M.; Friedlander, P.; Garbe, C.; et al. Talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone for advanced melanoma: 5-year final analysis of a multicenter, randomized, open-label, phase II trial. J. Immunother. Cancer 2023, 11, e006270. [Google Scholar] [CrossRef]
- Ribas, A.; Dummer, R.; Puzanov, I.; VanderWalde, A.; Andtbacka, R.H.I.; Michielin, O.; Olszanski, A.J.; Malvehy, J.; Cebon, J.; Fernandez, E.; et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 2017, 170, 1109–1119. [Google Scholar] [CrossRef]
- Long, G.; Dummer, R.; Johnson, D.; Michielin, O.; Martin-Algarra, S.; Treichel, S.; Chan, E.; Diede, S.; Ribas, A. 429 Long-term analysis of MASTERKEY-265 phase 1b trial of talimogene laherparepvec (T-VEC) plus pembrolizumab in patients with unresectable stage IIIB-IVM1c melanoma. J. Immunother. Cancer 2020, 8, A261. [Google Scholar] [CrossRef]
- Rohaan, M.W.; Stahlie, E.H.A.; Franke, V.; Zijlker, L.P.; Wilgenhof, S.; van der Noort, V.; van Akkooi, A.C.J.; Haanen, J.B.A.G. Neoadjuvant nivolumab+T-VEC combination therapy for resectable early stage or metastatic (IIIB-IVM1a) melanoma with injectable disease: Study protocol of the NIVEC trial. BMC Cancer 2022, 22, 851. [Google Scholar] [CrossRef] [PubMed]
- Boyd, K.U.; Wehrli, B.M.; Temple, C.L. Intra-lesional interleukin-2 for the treatment of in-transit melanoma. J. Surg. Oncol. 2011, 104, 711–717. [Google Scholar] [CrossRef]
- Byers, B.A.; Temple-Oberle, C.F.; Hurdle, V.; McKinnon, J.G. Treatment of in-transit melanoma with intra-lesional interleukin-2: A systematic review. J. Surg. Oncol. 2014, 110, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Schrama, D.; Reisfeld, R.A.; Becker, J.C. Anitbody targeted drugs as cancer therapeutics. Nat. Rev. Drug Discov. 2006, 5, 147–159. [Google Scholar] [CrossRef]
- Weide, B.; Eigentler, T.K.; Pflugfelder, A.; Zelba, H.; Martens, A.; Pawelec, G.; Giovannoni, L.; Ruffini, P.A.; Elia, G.; Neri, D.; et al. Intralesional treatment of stage III metastatic melanoma patients with L19-IL2 results in sustained clinical and systemic immunologic responses. Cancer Immunol. Res. 2014, 2, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Halin, C.; Gafner, V.; Villani, M.E.; Borsi, L.; Berndt, A.; Kosmehl, H.; Zardi, L.; Neri, D. Synergistic therapeutic effects of a tumor targeting antibody fragment, fused to interleukin 12 and to tumor necrosis factor alpha. Cancer Res. 2003, 63, 3202–3210. [Google Scholar] [PubMed]
- Danielli, R.; Patuzzo, R.; Di Giacomo, A.M.; Gallino, G.; Maurichi, A.; Di Florio, A.; Cutaia, O.; Lazzeri, A.; Fazio, C.; Miracco, C.; et al. Intralesional administration of L19-IL2/L19-TNF in stage III or stage IVM1a melanoma patients: Results of a phase II study. Cancer Immunol. Immunother. 2015, 64, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Miura, J.T.; Zager, J.S. Neo-DREAM study investigating Daromun for the treatment of clinical stage IIIB/C melanoma. Future Oncol. 2019, 15, 3665–3674. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.F.; Hersey, P.; Wachter, E. Chemoablation of metastatic melanoma using intralesional Rose Bengal. Melanoma Res. 2008, 18, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, H.; Zhang, X.; Gillespie, S.; Wachter, E.; Hersey, P. Rose Bengal induces dual modes of cell death in melanoma cells and has clinical activity against melanoma. Melanoma Res. 2006, 16, S8. [Google Scholar] [CrossRef]
- Liu, H.; Innamarato, P.P.; Kodumudi, K.; Weber, A.; Nemoto, S.; Robinson, J.L.; Crago, G.; McCardle, T.; Royster, E.; Sarnaik, A.A.; et al. Intralesional rose bengal in melanoma elicits tumor immunity via activation of dendritic cells by the release of high mobility group box 1. Oncotarget 2016, 7, 37893–37905. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.F.; Agarwala, S.S.; Smithers, B.M.; Ross, M.I.; Scoggins, C.R.; Coventry, B.J.; Neuhaus, S.J.; Minor, D.R.; Singer, J.M.; Wachter, E.A. Phase 2 Study of Intralesional PV-10 in Refractory Metastatic Melanoma. Ann. Surg. Oncol. 2015, 22, 2135–2142. [Google Scholar] [CrossRef]
- Thompson, J.F.; Saw, R.P.M.; Dalton, J.M.; Stretch, J.R.; Spillane, A.J.; Osborne, N.S.; Williams, G.J.; Lo, S.N. Treatment of in-transit melanoma metastases using intralesional PV-10. Melanoma Res. 2021, 31, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Lippey, J.; Bousounis, R.; Behrenbruch, C.; McKay, B.; Spillane, J.; Henderson, M.A.; Speakman, D.; Gyorki, D.E. Intralesional PV-10 for In-Transit Melanoma—A Single-Center Experience. J. Surg. Oncol. 2016, 114, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Read, T.A.; Smith, A.; Thomas, J.; David, M.; Foote, M.; Wagels, M.; Barbour, A.; Smithers, B.M. Intralesional PV-10 for the treatment of in-transit melanoma metastases-Results of a prospective, non-randomized, single center study. J. Surg. Oncol. 2018, 117, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Foote, M.; Read, T.; Thomas, J.; Wagels, M.; Burmeister, B.; Smithers, B.M. Results of a phase II, open-label, non-comparative study of intralesional PV-10 followed by radiotherapy for the treatment of in-transit or metastatic melanoma. J. Surg. Oncol. 2017, 115, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Weber, A.; Morse, J.; Kodumudi, K.; Scott, E.; Mullinax, J.; Sarnaik, A.A.; Pilon-Thomas, S. T cell mediated immunity after combination therapy with intralesional PV-10 and blockade of the PD-1/PDL1 pathway in a murine melanoma model. PLoS ONE 2018, 13, e0196033. [Google Scholar] [CrossRef] [PubMed]
- Agarwala, S.S.; Ross, M.I.; Zager, J.S.; Shirai, K.; Essner, R.; Smithers, B.M.; Atkinson, V.; Wachter, E.A. Phase 1b study of PV-10 and anti-PD-1 in advanced cutaneous melanoma. J. Clin. Oncol. 2019, 37, 9559. [Google Scholar] [CrossRef]
- Zager, J.S.; Sarnaik, A.A.; Pilon-Thomas, S.; Beatty, M.; Han, D.; Lu, G.; Agarwala, S.S.; Ross, M.I.; Shirai, K.; Essner, R. Response for combination of PV-10 autolytic immunotherapy and immune checkpoint blockade in checkpoint-refractory patients. J. Transl. Med. 2021, 19. Available online: https://www.provectusbio.com/media/docs/Zager_et_al.-MelanomaBridge-2020-Notes.pdf (accessed on 1 April 2024).
- Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 2003, 3, 133–146. [Google Scholar]
- Greaney, S.K.; Algazi, A.P.; Tsai, K.K.; Takamura, K.T.; Chen, L.; Twitty, C.G.; Zhang, L.; Paciorek, A.; Pierce, R.H.; Le, M.H.; et al. Intratumoral plasmid IL-12 electroporation therapy in advanced melanoma patients induces systemic and intratumoral T cell responses. Cancer Immunol. Res. 2020, 8, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Canton, D.A.; Shirley, S.; Wright, J.; Connolly, R.; Burkart, C.; Mukhopadhyay, A.; Twitty, C.; Qattan, K.E.; Campbell, J.S.; Le, M.H.; et al. Melanoma treatment with intratumoral electroporation of tavokinogene telseplasmid (pIL-12, tavokinogene telseplasmid). Immunotherapy 2017, 9, 1309–1321. [Google Scholar] [CrossRef] [PubMed]
- Algazi, A.P.; Twitty, C.G.; Tsai, K.K.; Le, M.; Pierce, R.; Browning, E.; Hermiz, R.; Canton, D.A.; Bannavong, D.; Oglesby, A.; et al. Phase II Trial of IL-12 Plasmid Transfection and PD-1 Blockade in Immunologically Quiescent Melanoma. Clin. Cancer Res. 2020, 26, 2827–2837. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Penas, P.; Carlino, M.S.; Tsai, K.K.; Atkinson, V.G.; Shaheen, M.; Thomas, S.; Mihalcioiu, C.; Van Hagen, T.; Roberts-Thompson, R.; Haydon, A.; et al. Durable responses and immune activation with intratumoral electroportation of pIL-12 plus pembrolizumab in actively progressing anti-PD-1 refractory advanced melanoma: KEYNOTE 695 interim data. In Proceedings of the Society for Immunotherapy of Cancer Annual Meeting, Virtual, 11–14 November 2020. [Google Scholar]
- Creech, O., Jr.; Krementz, E.T.; Ryan, R.F.; Winblad, J.N. Chemotherapy of cancer: Regional perfusion utilizing an extracorporeal circuit. Ann. Surg. 1958, 148, 616–632. [Google Scholar] [CrossRef] [PubMed]
- DePalo, D.K.; Zager, J.S. Isolated Limb Infusion for Limb-Threatening, Unresectable Sarcoma: Past Progress, Current Applications, and Future Directions. J. Clin. Med. 2023, 12, 4036. [Google Scholar] [CrossRef] [PubMed]
- Olofsson, R.; Mattsson, J.; Lindner, P. Long-term follow-up of 163 consecutive patients treated with isolated limb perfusion for in-transit metastases of malignant melanoma. Int. J. Hyperth. 2013, 29, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Ramirez, D.; de la Cruz-Merino, L.; Ferrandiz, L.; Villegas-Portero, R.; Nieto-Garcia, A. Isolated limb perfusion for malignant melanoma: Systematic review on effectiveness and safety. Oncologist 2010, 15, 416–427. [Google Scholar] [CrossRef] [PubMed]
- Belgrano, V.; Pettersson, J.; Nilsson, J.A.; Mattsson, J.; Katsarelias, D.; Olofsson Bagge, R. Response and Toxicity of Repeated Isolated Limb Perfusion (re-ILP) for Patients with In-Transit Metastases of Malignant Melanoma. Ann. Surg. Oncol. 2019, 26, 1055–1062. [Google Scholar] [CrossRef] [PubMed]
- Davies, E.J.; Reijers, S.J.M.; Van Akkooi, A.C.J.; Van Houdt, W.J.; Hayes, A.J. Isolated limb perfusion for locally advanced melanoma in the immunotherapy era. Eur. J. Surg. Oncol. 2022, 48, 1288–1292. [Google Scholar] [CrossRef]
- Holmberg, C.J.; Mattsson, J.; Olofsson Bagge, R. Effects of the Introduction of Modern Immunotherapy on the Outcome of Isolated Limb Perfusion for Melanoma In-Transit Metastases. Cancers 2023, 15, 472. [Google Scholar] [CrossRef]
- Koops, H.S.; Vaglini, M.; Suciu, S.; Kroon, B.B.; Thompson, J.F.; Gohl, J.; Eggermont, A.M.; Di Filippo, F.; Krementz, E.T.; Ruiter, D.; et al. Prophylactic isolated limb perfusion for localized, high-risk limb melanoma: Results of a multicenter randomized phase III trial. European Organization for Research and Treatment of Cancer Malignant Melanoma Cooperative Group Protocol 18832, the World Health Organization Melanoma Program Trial 15, and the North American Perfusion Group Southwest Oncology Group-8593. J. Clin. Oncol. 1998, 16, 2906–2912. [Google Scholar] [CrossRef] [PubMed]
- Olofsson Bagge, R.; Mattsson, J.; Hafström, L. Regional hyperthermic perfusion with melphalan after surgery for recurrent malignant melanoma of the extremities--long-term follow-up of a randomised trial. Int. J. Hyperth. 2014, 30, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.F.; Kam, P.C.; Waugh, R.C.; Harman, C.R. Isolated limb infusion with cytotoxic agents: A simple alternative to isolated limb perfusion. Semin. Surg. Oncol. 1998, 14, 238–247. [Google Scholar] [CrossRef]
- Carr, M.J.; Sun, J.; Zager, J.S. Isolated limb infusion: Institutional protocol and implementation. J. Surg. Oncol. 2020, 122, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Miura, J.T.; Kroon, H.M.; Beasley, G.M.; Mullen, D.; Farrow, N.E.; Mosca, P.J.; Lowe, M.C.; Farley, C.R.; Kim, Y.; Naqvi, S.M.H.; et al. Long-Term Oncologic Outcomes after Isolated Limb Infusion for Locoregionally Metastatic Melanoma: An International Multicenter Analysis. Ann. Surg. Oncol. 2019, 26, 2486–2494. [Google Scholar] [CrossRef] [PubMed]
- Teras, J.; Kroon, H.M.; Miura, J.T.; Kenyon-Smith, T.; Beasley, G.M.; Mullen, D.; Farrow, N.E.; Mosca, P.J.; Lowe, M.C.; Farley, C.R.; et al. International Multicenter Experience of Isolated Limb Infusion for In-Transit Melanoma Metastases in Octogenarian and Nonagenarian Patients. Ann. Surg. Oncol. 2020, 27, 1420–1429. [Google Scholar] [CrossRef] [PubMed]
- Beasley, G.M.; Petersen, R.P.; Yoo, J.; McMahon, N.; Aloia, T.; Petros, W.; Sanders, G.; Cheng, T.Y.; Pruitt, S.K.; Seigler, H.; et al. Isolated limb infusion for in-transit malignant melanoma of the extremity: A well-tolerated but less effective alternative to hyperthermic isolated limb perfusion. Ann. Surg. Oncol. 2008, 15, 2195–2205. [Google Scholar] [CrossRef] [PubMed]
- Dossett, L.A.; Ben-Shabat, I.; Olofsson Bagge, R.; Zager, J.S. Clinical Response and Regional Toxicity Following Isolated Limb Infusion Compared with Isolated Limb Perfusion for In-Transit Melanoma. Ann. Surg. Oncol. 2016, 23, 2330–2335. [Google Scholar] [CrossRef] [PubMed]
- Kroon, H.M.; Lin, D.Y.; Kam, P.C.; Thompson, J.F. Safety and efficacy of isolated limb infusion with cytotoxic drugs in elderly patients with advanced locoregional melanoma. Ann. Surg. 2009, 249, 1008–1013. [Google Scholar] [CrossRef]
- Muilenburg, D.J.; Beasley, G.M.; Thompson, Z.J.; Lee, J.H.; Tyler, D.S.; Zager, J.S. Burden of disease predicts response to isolated limb infusion with melphalan and actinomycin D in melanoma. Ann. Surg. Oncol. 2015, 22, 482–488. [Google Scholar] [CrossRef]
- Raymond, A.K.; Beasley, G.M.; Broadwater, G.; Augustine, C.K.; Padussis, J.C.; Turley, R.; Peterson, B.; Seigler, H.; Pruitt, S.K.; Tyler, D.S. Current trends in regional therapy for melanoma: Lessons learned from 225 regional chemotherapy treatments between 1995 and 2010 at a single institution. J Am Coll Surg 2011, 213, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Ariyan, C.E.; Brady, M.S.; Siegelbaum, R.H.; Hu, J.; Bello, D.M.; Rand, J.; Fisher, C.; Lefkowitz, R.A.; Panageas, K.S.; Pulitzer, M.; et al. Robust Antitumor Responses Result from Local Chemotherapy and CTLA-4 Blockade. Cancer Immunol. Res. 2018, 6, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Kujala, E.; Makitie, T.; Kivela, T. Very long-term prognosis of patients with malignant uveal melanoma. Invest. Ophthalmol. Vis. Sci. 2003, 44, 4651–4659. [Google Scholar] [CrossRef] [PubMed]
- Collaborative Ocular Melanoma Study, G. Assessment of metastatic disease status at death in 435 patients with large choroidal melanoma in the Collaborative Ocular Melanoma Study (COMS): COMS report no. 15. Arch. Ophthalmol. 2001, 119, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Lane, A.M.; Kim, I.K.; Gragoudas, E.S. Survival Rates in Patients after Treatment for Metastasis from Uveal Melanoma. JAMA Ophthalmol. 2018, 136, 981–986. [Google Scholar] [CrossRef] [PubMed]
- Harbour, J.W.; Onken, M.D.; Roberson, E.D.; Duan, S.; Cao, L.; Worley, L.A.; Council, M.L.; Matatall, K.A.; Helms, C.; Bowcock, A.M. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 2010, 330, 1410–1413. [Google Scholar] [CrossRef] [PubMed]
- Carr, M.J.; Sun, J.; Cohen, J.B.; Liu, J.; Serdiuk, A.A.; Stewart, S.R.; Doobay, N.; Duclos, A.; Seal, D.A.; Choi, J.; et al. Over 12 Years Single Institutional Experience Performing Percutaneous Hepatic Perfusion for Unresectable Liver Metastases. Cancer Control 2020, 27, 1073274820983019. [Google Scholar] [CrossRef] [PubMed]
- Ausman, R.K.; Aust, J.B. Isolated perfusion of the liver with HN2. Surg. Forum 1960, 10, 77–79. [Google Scholar]
- Libutti, S.K.; Barlett, D.L.; Fraker, D.L.; Alexander, H.R. Technique and results of hyperthermic isolated hepatic perfusion with tumor necrosis factor and melphalan for the treatment of unresectable hepatic malignancies. J. Am. Coll. Surg. 2000, 191, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shabat, I.; Hansson, C.; Sternby Eilard, M.; Cahlin, C.; Rizell, M.; Lindner, P.; Mattsson, J.; Olofsson Bagge, R. Isolated hepatic perfusion as a treatment for liver metastases of uveal melanoma. J. Vis. Exp. 2015, 95, 52490. [Google Scholar] [CrossRef]
- Grover, A.; Alexander, H.R., Jr. The past decade of experience with isolated hepatic perfusion. Oncologist 2004, 9, 653–664. [Google Scholar] [CrossRef]
- Ben-Shabat, I.; Belgrano, V.; Ny, L.; Nilsson, J.; Lindner, P.; Olofsson Bagge, R. Long-Term Follow-Up Evaluation of 68 Patients with Uveal Melanoma Liver Metastases Treated with Isolated Hepatic Perfusion. Ann. Surg. Oncol. 2016, 23, 1327–1334. [Google Scholar] [CrossRef]
- Olofsson, R.; Cahlin, C.; All-Ericsson, C.; Hashimi, F.; Mattsson, J.; Rizell, M.; Lindner, P. Isolated hepatic perfusion for ocular melanoma metastasis: Registry data suggests a survival benefit. Ann. Surg. Oncol. 2014, 21, 466–472. [Google Scholar] [CrossRef]
- Olofsson Bagge, R.; Nelson, A.; Shafazand, A.; All-Eriksson, C.; Cahlin, C.; Elander, N.; Helgadottir, H.; Kiilgaard, J.F.; Kinhult, S.; Ljuslinder, I.; et al. Isolated Hepatic Perfusion with Melphalan for Patients with Isolated Uveal Melanoma Liver Metastases: A Multicenter, Randomized, Open-Label, Phase III Trial (the SCANDIUM Trial). J. Clin. Oncol. 2023, 41, 3042–3050. [Google Scholar] [CrossRef] [PubMed]
- Zager, J.S.; Orloff, M.; Francesco, F.P.; Choi, J.; Eschelman, D.; Glazer, E.S.; Reddy, S.A.; Ejaz, A.; Howard, J.H.; Richtig, E.; et al. Melphalan/Hepatic Delivery System for Hepatic-Dominant Ocular Melanoma. Ann. Surg. Oncol. 2024, accepted for publication. [Google Scholar]
- Curley, S.A.; Byrd, D.R.; Newman, R.A.; Carrasco, C.H.; Cromeens, D.; Ellis, H.J.; Chase, J.; Dougherty, T.; Wright, K.; Bodden, W.; et al. Hepatic arterial infusion chemotherapy with complete hepatic venous isolation and extracorporeal chemofiltration: A feasibility study of a novel system. Anticancer Drugs 1991, 2, 175–183. [Google Scholar] [CrossRef]
- Ku, Y.; Saitoh, M.; Nishiyama, H.; Fujiwara, S.; Iwasaki, T.; Ohyanagi, H.; Saitoh, Y. [Extracorporeal adriamycin-removal following hepatic artery infusion: Use of direct hemoperfusion combined with veno-venous bypass]. Nihon Geka Gakkai Zasshi 1989, 90, 1758–1764. [Google Scholar]
- Pingpank, J.F.; Libutti, S.K.; Chang, R.; Wood, B.J.; Neeman, Z.; Kam, A.W.; Figg, W.D.; Zhai, S.; Beresneva, T.; Seidel, G.D.; et al. Phase I study of hepatic arterial melphalan infusion and hepatic venous hemofiltration using percutaneously placed catheters in patients with unresectable hepatic malignancies. J. Clin. Oncol. 2005, 23, 3465–3474. [Google Scholar] [CrossRef]
- Forster, M.R.; Rashid, O.M.; Perez, M.C.; Choi, J.; Chaudhry, T.; Zager, J.S. Chemosaturation with percutaneous hepatic perfusion for unresectable metastatic melanoma or sarcoma to the liver: A single institution experience. J. Surg. Oncol. 2014, 109, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.S.; Zager, J.; Faries, M.; Alexander, H.R.; Royal, R.E.; Wood, B.; Choi, J.; McCluskey, K.; Whitman, E.; Agarwala, S.; et al. Results of a Randomized Controlled Multicenter Phase III Trial of Percutaneous Hepatic Perfusion Compared with Best Available Care for Patients with Melanoma Liver Metastases. Ann. Surg. Oncol. 2016, 23, 1309–1319. [Google Scholar] [CrossRef]
- Karydis, I.; Gangi, A.; Wheater, M.J.; Choi, J.; Wilson, I.; Thomas, K.; Pearce, N.; Takhar, A.; Gupta, S.; Hardman, D.; et al. Percutaneous hepatic perfusion with melphalan in uveal melanoma: A safe and effective treatment modality in an orphan disease. J. Surg. Oncol. 2018, 117, 1170–1178. [Google Scholar] [CrossRef] [PubMed]
- Artzner, C.; Mossakowski, O.; Hefferman, G.; Grosse, U.; Hoffmann, R.; Forschner, A.; Eigentler, T.; Syha, R.; Grozinger, G. Chemosaturation with percutaneous hepatic perfusion of melphalan for liver-dominant metastatic uveal melanoma: A single center experience. Cancer Imaging 2019, 19, 31. [Google Scholar] [CrossRef] [PubMed]
- Zager, J.S.; Orloff, M.M.; Ferrucci, P.F.; Glazer, E.S.; Ejaz, A.; Richtig, E.; Ochsenreither, S.; Lowe, M.C.; Reddy, S.A.; Beasley, G.; et al. FOCUS phase 3 trial results: Percutaneous hepatic perfusion (PHP) with melphalan for patients with ocular melanoma liver metastases (PHP-OCM-301/301A). J. Clin. Oncol. 2022, 40, 9510. [Google Scholar] [CrossRef]
- Bethlehem, M.S.; Katsarelias, D.; Olofsson Bagge, R. Meta-Analysis of Isolated Hepatic Perfusion and Percutaneous Hepatic Perfusion as a Treatment for Uveal Melanoma Liver Metastases. Cancers 2021, 13, 4726. [Google Scholar] [CrossRef] [PubMed]
Year | Type | Treatment | Population | Cohort Size | Outcomes | |
---|---|---|---|---|---|---|
NCT01740297 [11] | 2018 | Phase 2 | IT T-VEC with ipilimumab verse ipilimumab alone | Unresectable stage IIIB-IV melanoma | Intervention arm N = 98, control arm N = 100 | ORR 39% vs. 18%; PFS 13.5 months vs. 6.4 months |
NCT01502293 [12] | 2020 | Phase 2 | IT tavo-EP | Stage III/IV melanoma | N = 28 | ORR 35.7%; CR 17.9%; median PFS 3.7 months; median OS 29.7 months; 46% had regression of at least one non-injected lesion |
NCT02211131 [13] | 2021 | Phase 2 | Neoadjuvant IT T-VEC with surgery vs. surgery alone | Resectable stage IIIB-IVM1a melanoma | Intervention arm N = 76, control arm N = 74 | 2-year RFS 29.5% vs. 16.5%; 2-year OS 88.9% vs. 77.4% |
NCT04068181 [14] | 2022 *, ongoing | Phase 2 | IT T-VEC with pembrolizumab | Stage III/IV melanoma with previous progression/recurrence on anti-PD-1 therapy | Primary resistance cohort N = 26, acquired resistance N = 15, early recurrence N = 15, delayed recurrence N = 15 | ORR 0%, 6.7%, 40%, and 46.7%, respectively, on preliminary analysis |
NCT02263508 [15] | 2023 | Phase 3 | IT T-VEC with pembrolizumab versus IT placebo with pembrolizumab | Unresectable stage IIIB-IVM1c melanoma | Intervention arm N = 346, control arm N = 346 | ORR 48.6% vs. 41.3%; no difference in OS or PFS |
NCT04526730 [16] | 2023 *, ongoing | Phase 2 | Neoadjuvant IT tavo-EP with nivolumab | Resectable stage III/IV melanoma | N = 17 | ORR 60%; CR 20%; major PR 78.6% |
NCT04330430 | Ongoing | Phase 2 | Neoadjuvant IT T-VEC and nivolumab | Resectable stage IIIB-IVM1a melanoma | ||
NCT03842943 | Ongoing | Phase 2 | Neoadjuvant intranodal T-VEC with pembrolizumab | Clinically node-positive melanoma | ||
NCT02819843 | Ongoing | Phase 2 | IT T-VEC with or without radiotherapy | Melanoma, Merkel cell carcinoma, and other solit tumor skin metastases | ||
NCT03555032 | Ongoing | Phase 2 | ILP and IT T-VEC | Stage IIIB-IVM1b melanoma | ||
NCT02076646 | Ongoing | Phase 2 | IT T-VEC with dacarbazine versus dacarbazine alone | Stage IVM1a-b melanoma | ||
NCT02557321 | Ongoing | Phase 2 | IT PV-10 with pembrolizumab | Unresectable stage IIIB-IVM1c melanoma | ||
NCT02557321 | Ongoing | Phase 2 | IT PV-10 with pembrolizumab verse pembrolizumab alone | Unresectable stage III/IV melanoma | ||
NCT03567889 | Ongoing | Phase 3 | Neoadjuvant Daromun and surgery and adjuvant IC immune therapy compared to surgery and adjvuant IC immune therapy alone | Stage IIIB/C melanoma | ||
NCT02938299 | Ongoing | Phase 3 | Neoadjuvant Daromun with surgery versus surgery alone | Stage IIIB/C melanoma | ||
NCT03132675 | Ongoing | Phase 2 | Tavo-EP with pembrolizumab | Immune-refractory stage III/IV melanoma |
Isolated Limb Perfusion (ILP) | Isolated Limb Infusion (ILI) | |
---|---|---|
Technique | Open operative vascular exposure | Percutaneous vascular catheterization |
3-h operative duration | 1.5-h operative duration | |
60-min perfusion time | 20–30-min infusion time | |
Heart–lung machine needed | Heart–lung machine not needed | |
Fluoroscopy not needed | Fluoroscopy needed | |
General anesthesia | Regional anesthesia possible | |
TNF-alpha | TNF-alpha not used | |
Leakage monitoring recommended | No leakage monitoring | |
Repeatable | Repeatable | |
Outcomes | ||
Wieberdink grade IV toxicity | 3–4% | 0–1% |
Overall response rate | 80–81% | 43–53% |
Complete response rate | 55–57% | 24–50% |
Median overall survival | 33–40 months | 32–46 months |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dugan, M.M.; Shannon, A.B.; DePalo, D.K.; Perez, M.C.; Zager, J.S. Intralesional and Infusional Updates for Metastatic Melanoma. Cancers 2024, 16, 1957. https://doi.org/10.3390/cancers16111957
Dugan MM, Shannon AB, DePalo DK, Perez MC, Zager JS. Intralesional and Infusional Updates for Metastatic Melanoma. Cancers. 2024; 16(11):1957. https://doi.org/10.3390/cancers16111957
Chicago/Turabian StyleDugan, Michelle M., Adrienne B. Shannon, Danielle K. DePalo, Matthew C. Perez, and Jonathan S. Zager. 2024. "Intralesional and Infusional Updates for Metastatic Melanoma" Cancers 16, no. 11: 1957. https://doi.org/10.3390/cancers16111957
APA StyleDugan, M. M., Shannon, A. B., DePalo, D. K., Perez, M. C., & Zager, J. S. (2024). Intralesional and Infusional Updates for Metastatic Melanoma. Cancers, 16(11), 1957. https://doi.org/10.3390/cancers16111957