Is 18F-FDG-PET/CT an Optimal Imaging Modality for Detecting Immune-Related Adverse Events after Immune-Checkpoint Inhibitor Therapy? Pros and Cons
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- -
- IrAEs diagnosed by 18F-FDG PET/CT
- -
- IrAEs caused by ICIs
- -
- ICI as treatment
- -
- If the pathology is not caused by ICI (irAEs caused by other forms of immunotherapy were rejected)
- -
- Article published before 2019
3. Immune Checkpoint Inhibitors
4. Malignancies Commonly Treated with ICIs
5. Molecular Response Assessment in FDG-PET in the Context of ICIs Treatment
6. IrAEs Caused by Immune Checkpoint Inhibitors and Their Manifestation in FDG-PET
6.1. General Endocrine
6.2. Hepatitis
6.3. Splenitis
6.4. Pancreatitis
6.5. Pneumonitis
6.6. Sarcoid-like Reaction
6.7. Gastritis
6.8. Esophagitis
6.9. Colitis
6.10. Nephritis
6.11. Myocarditis
6.12. Skin Reactions
6.13. Musculo-Skeletal
6.14. Soft Tissue irAEs
6.15. Encephalitis
irAE Type | Metabolic Activity and Patterns | Quantitative Data of Metabolic Patterns |
---|---|---|
Pneumonitis [7,11,29,54,55,79,81,82,83] |
| Mean SUVmax: 3.36 (±1.7); Predominantly bilateral presentation. |
Sarcoid-like reaction [6,10,11,83,90,91] |
| |
Nephritis [7,11,54,79,93,96] |
|
|
Colitis [11,29] |
| |
Arthritis [54,74,93,104,105,106] |
| |
Hypophysitis [55,56] |
| Incidence: 3.25–14.0% |
Pancreatitis [7,11,76,77,110] |
| |
Thyroiditis [6,56,58,59,60,65,66] |
| Peak thyroid 18F-FDG SUVmax uptake around day 142 |
Myocarditis [7,79,97,98] |
| |
Reactive splenomegaly [6,7,10,53,70,71,72] |
| |
Hepatitis [10] |
| healthy range: 1.3−1.4 |
Skin [7,103] |
| |
Gastritis [74] |
| |
Esophagitis [54] |
| |
Encephalitis [109] |
|
7. Pseudoprogression. Hyperprogression
8. Summary. Future Perspectives
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ohaegbulam, K.C.; Assal, A.; Lazar-Molnar, E.; Yao, Y.; Zang, X. Human Cancer Immunotherapy with Antibodies to the PD-1 and PD-L1 Pathway. Trends Mol. Med. 2015, 21, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Wherry, E.J. T Cell Exhaustion. Nat. Immunol. 2011, 12, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Cook, S.; Samuel, V.; Meyers, D.E.; Stukalin, I.; Litt, I.; Sangha, R.; Morris, D.G.; Heng, D.Y.C.; Pabani, A.; Dean, M.; et al. Immune-Related Adverse Events and Survival Among Patients with Metastatic NSCLC Treated with Immune Checkpoint Inhibitors. JAMA Netw. Open 2024, 7, E2352302. [Google Scholar] [CrossRef] [PubMed]
- Jansen, Y.; van der Veldt, A.A.M.; Awada, G.; Neyns, B. Anti-PD-1: When to Stop Treatment. Curr. Oncol. Rep. 2022, 24, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.C.; Gault, A.; Anderson, A.E.; Stewart, C.J.; Lamb, C.A.; Speight, R.A.; Rajan, N.; Plummer, R.; Pratt, A.G. Immune-Related Adverse Events in Checkpoint Blockade: Observations from Human Tissue and Therapeutic Considerations. Front. Immunol. 2023, 14, 1122430. [Google Scholar] [CrossRef] [PubMed]
- Schierz, J.H.; Sarikaya, I.; Wollina, U.; Unger, L.; Sarikaya, A. Immune Checkpoint Inhibitor–Related Adverse Effects and 18F-FDG PET/CT Findings. J. Nucl. Med. Technol. 2021, 49, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Berz, A.M.; Boughdad, S.; Vietti-Violi, N.; Digklia, A.; Dromain, C.; Dunet, V.; Duran, R. Imaging Assessment of Toxicity Related to Immune Checkpoint Inhibitors. Front. Immunol. 2023, 14, 1133207. [Google Scholar] [CrossRef] [PubMed]
- Haanen, J.; Obeid, M.; Spain, L.; Carbonnel, F.; Wang, Y.; Robert, C.; Lyon, A.R.; Wick, W.; Kostine, M.; Peters, S.; et al. Management of Toxicities from Immunotherapy: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-up. Ann. Oncol. 2022, 33, 1217–1238. [Google Scholar] [CrossRef] [PubMed]
- Barat, M.; Guegan-Bart, S.; Cottereau, A.-S.; Guillo, E.; Hoeffel, C.; Barret, M.; Gaujoux, S.; Dohan, A.; Soyer, P. CT, MRI and PET/CT Features of Abdominal Manifestations of Cutaneous Melanoma: A Review of Current Concepts in the Era of Tumor-Specific Therapies. Abdom. Radiol. 2021, 46, 2219–2235. [Google Scholar] [CrossRef] [PubMed]
- Manson, G.; Lemchukwu, A.C.; Mokrane, F.Z.; Lopci, E.; Aide, N.; Vercellino, L.; Houot, R.; Dercle, L. Interpretation of 2-[18F]FDG PET/CT in Hodgkin Lymphoma Patients Treated with Immune Checkpoint Inhibitors. Eur. Radiol. 2022, 32, 6536–6544. [Google Scholar] [CrossRef] [PubMed]
- Léger, M.A.; Routy, B.; Juneau, D. FDG PET/CT for Evaluation of Immunotherapy Response in Lung Cancer Patients. Semin. Nucl. Med. 2022, 52, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Shafqat, H.; Gourdin, T.; Sion, A. Immune-Related Adverse Events Are Linked with Improved Progression-Free Survival in Patients Receiving Anti-PD-1/PD-L1 Therapy. Semin. Oncol. 2018, 45, 156–163. [Google Scholar] [CrossRef]
- Hussaini, S.; Chehade, R.; Boldt, R.G.; Raphael, J.; Blanchette, P.; Maleki Vareki, S.; Fernandes, R. Association between Immune-Related Side Effects and Efficacy and Benefit of Immune Checkpoint Inhibitors—A Systematic Review and Meta-Analysis. Cancer Treat. Rev. 2021, 92, 102134. [Google Scholar] [CrossRef] [PubMed]
- Basudan, A.M. The Role of Immune Checkpoint Inhibitors in Cancer Therapy. Clin. Pract. 2023, 13, 22–40. [Google Scholar] [CrossRef]
- Twomey, J.D.; Zhang, B. Cancer Immunotherapy Update: FDA-Approved Checkpoint Inhibitors and Companion Diagnostics. AAPS J. 2021, 23, 39. [Google Scholar] [CrossRef]
- Mayoral, M.; Castañer, E.; Gallardo, X.; Andreu, M.; Dalmau, E.; Garcia, Y. Tumour Pseudoprogression during Nivolumab Immunotherapy for Lung Cancer. Radiología 2019, 61, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Aide, N.; Hicks, R.J.; Le Tourneau, C.; Lheureux, S.; Fanti, S.; Lopci, E. FDG PET/CT for Assessing Tumour Response to Immunotherapy: Report on the EANM Symposium on Immune Modulation and Recent Review of the Literature. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 238. [Google Scholar] [CrossRef] [PubMed]
- Spain, L.; Larkin, J.; Turajlic, S. New Survival Standards for Advanced Melanoma. Br. J. Cancer 2020, 122, 1275–1276. [Google Scholar] [CrossRef]
- Mouritzen, M.T.; Carus, A.; Ladekarl, M.; Meldgaard, P.; Nielsen, A.W.M.; Livbjerg, A.; Larsen, J.W.; Skuladottir, H.; Kristiansen, C.; Wedervang, K.; et al. Nationwide Survival Benefit after Implementation of First-Line Immunotherapy for Patients with Advanced Nsclc—Real World Efficacy. Cancers 2021, 13, 4846. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Rini, B.I.; McDermott, D.F.; Arén Frontera, O.; Hammers, H.J.; Carducci, M.A.; Salman, P.; Escudier, B.; Beuselinck, B.; Amin, A.; et al. Nivolumab plus Ipilimumab versus Sunitinib in First-Line Treatment for Advanced Renal Cell Carcinoma: Extended Follow-up of Efficacy and Safety Results from a Randomised, Controlled, Phase 3 Trial. Lancet Oncol. 2019, 20, 1370–1385. [Google Scholar] [CrossRef]
- Cohen, E.E.W.; Bell, R.B.; Bifulco, C.B.; Burtness, B.; Gillison, M.L.; Harrington, K.J.; Le, Q.T.; Lee, N.Y.; Leidner, R.; Lewis, R.L.; et al. The Society for Immunotherapy of Cancer Consensus Statement on Immunotherapy for the Treatment of Squamous Cell Carcinoma of the Head and Neck (HNSCC). J. Immunother. Cancer 2019, 7, 184. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Marandino, L.; Raggi, D.; Calareso, G.; Alessi, A.; Colecchia, M.; Martini, A.; Briganti, A.; Montorsi, F.; Madison, R.; Ross, J.S.; et al. Cabozantinib Plus Durvalumab in Patients with Advanced Urothelial Carcinoma After Platinum Chemotherapy: Safety and Preliminary Activity of the Open-Label, Single-Arm, Phase 2 ARCADIA Trial. Clin. Genitourin. Cancer 2021, 19, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Liberini, V.; Laudicella, R.; Capozza, M.; Huellner, M.W.; Burger, I.A.; Baldari, S.; Terreno, E.; Deandreis, D. The Future of Cancer Diagnosis, Treatment and Surveillance: A Systemic Review on Immunotherapy and Immuno-PET Radiotracers. Molecules 2021, 26, 2201. [Google Scholar] [CrossRef] [PubMed]
- Kawamata, A.; Sasada, S.; Emi, A.; Masumoto, N.; Kadoya, T. Monitoring of Programmed Cell Death Ligand-1 Blockade Using FDG PET/CT for Microsatellite Instability-High Metastatic Breast Cancer. Clin. Nucl. Med. 2022, 47, e252–e253. [Google Scholar] [CrossRef] [PubMed]
- Bryan, L.J.; Casulo, C.; Allen, P.B.; Smith, S.E.; Savas, H.; Dillehay, G.L.; Karmali, R.; Pro, B.; Kane, K.L.; Bazzi, L.A.; et al. Pembrolizumab Added to Ifosfamide, Carboplatin, and Etoposide Chemotherapy for Relapsed or Refractory Classic Hodgkin Lymphoma: A Multi-Institutional Phase 2 Investigator-Initiated Nonrandomized Clinical Trial. JAMA Oncol. 2023, 9, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Gulturk, I.; Yilmaz, M.; Tacar, S.Y.; Tural, D. Prognostic Importance of SUVmax Values Evaluated by 18F-FDG-PET/CT before Nivolumab Treatment in Patients with Metastatic Renal Cell Carcinoma. Q. J. Nucl. Med. Mol. 2023, 67, 223–229. [Google Scholar] [CrossRef]
- Verhoeff, S.R.; van de Donk, P.P.; Aarntzen, E.H.J.G.; Oosting, S.F.; Brouwers, A.H.; Miedema, I.H.C.; Voortman, J.; Menke-van der Houven van Oordt, W.C.; Boellaard, R.; Vriens, D.; et al. 89Zr-DFO-Durvalumab PET/CT Before Durvalumab Treatment in Patients with Recurrent or Metastatic Head and Neck Cancer. J. Nucl. Med. 2022, 63, 1523. [Google Scholar] [CrossRef] [PubMed]
- Iyalomhe, O.; Farwell, M.D. Immune PET Imaging. Radiol. Clin. N. Am. 2021, 59, 875. [Google Scholar] [CrossRef] [PubMed]
- Keam, S.J. Toripalimab: First Global Approval. Drugs 2019, 79, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Kang, C. Retifanlimab: First Approval. Drugs 2023, 83, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Nagasaka, M. Spotlight on Cemiplimab-Rwlc in the Treatment of Non-Small Cell Lung Cancer (NSCLC): Focus on Patient Selection and Considerations. Cancer Manag. Res. 2023, 15, 627. [Google Scholar] [CrossRef] [PubMed]
- Keam, S.J. Tremelimumab: First Approval. Drugs 2023, 83, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Romero, D. Cemiplimab Is a New Option in BCC. Nat. Rev. Clin. Oncol. 2021, 18, 400. [Google Scholar] [CrossRef] [PubMed]
- Romero, D. Benefit with Cemiplimab in Cervical Cancer. Nat. Rev. Clin. Oncol. 2022, 19, 220. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, K. Cemiplimab Shines for Recurrent Cervical Cancer. Cancer 2022, 128, 2050–2051. [Google Scholar] [CrossRef] [PubMed]
- Markham, A. Dostarlimab: First Approval. Drugs 2021, 81, 1213–1219. [Google Scholar] [CrossRef] [PubMed]
- Tawbi, H.A.; Schadendorf, D.; Lipson, E.J.; Ascierto, P.A.; Matamala, L.; Castillo Gutiérrez, E.; Rutkowski, P.; Gogas, H.J.; Lao, C.D.; De Menezes, J.J.; et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma. N. Engl. J. Med. 2022, 386, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Hamid, O.; Lewis, K.D.; Weise, A.M.; McKean, M.; Papadopoulos, K.P.; Crown, J.; Thomas, S.S.; Girda, E.; Kaczmar, J.M.; Kim, K.B.; et al. Significant Durable Response with Fianlimab (Anti-LAG-3) and Cemiplimab (Anti-PD-1) in Advanced Melanoma: Post Adjuvant PD-1 Analysis. J. Clin. Oncol. 2023, 41, 9501. [Google Scholar] [CrossRef]
- Kobe, C.; Goergen, H.; Baues, C.; Kuhnert, G.; Voltin, C.A.; Zijlstra, J.; Hoekstra, O.; Mettler, J.; Drzezga, A.; Engert, A.; et al. Outcome-Based Interpretation of Early Interim PET in Advanced-Stage Hodgkin Lymphoma. Blood 2018, 132, 2273–2279. [Google Scholar] [CrossRef] [PubMed]
- Riedl, C.C.; Pinker, K.; Ulaner, G.A.; Ong, L.T.; Baltzer, P.; Jochelson, M.S.; McArthur, H.L.; Gönen, M.; Dickler, M.; Weber, W.A. Comparison of FDG-PET/CT and Contrast-Enhanced CT for Monitoring Therapy Response in Patients with Metastatic Breast Cancer. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 1428. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Ling, X.; Zhang, L.; Tang, Y.; Xiao, Z.; Cheng, Y.; Guo, B.; Gong, J.; Huang, L.; Xu, H. Comparison of RECIST, EORTC Criteria and PERCIST for Evaluation of Early Response to Chemotherapy in Patients with Non-Small-Cell Lung Cancer. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 1945–1953. [Google Scholar] [CrossRef] [PubMed]
- Yanagawa, M.; Tatsumi, M.; Miyata, H.; Morii, E.; Tomiyama, N.; Watabe, T.; Isohashi, K.; Kato, H.; Shimosegawa, E.; Yamasaki, M.; et al. Evaluation of Response to Neoadjuvant Chemotherapy for Esophageal Cancer: PET Response Criteria in Solid Tumors Versus Response Evaluation Criteria in Solid Tumors. J. Nucl. Med. 2012, 53, 872–880. [Google Scholar] [CrossRef]
- Ding, Q.; Cheng, X.; Yang, L.; Zhang, Q.; Chen, J.; Li, T.; Shi, H. PET/CT Evaluation of Response to Chemotherapy in Non-Small Cell Lung Cancer: PET Response Criteria in Solid Tumors (PERCIST) versus Response Evaluation Criteria in Solid Tumors (RECIST). J. Thorac. Dis. 2014, 6, 677. [Google Scholar] [CrossRef] [PubMed]
- Koshkin, V.S.; Bolejack, V.; Schwartz, L.H.; Wahl, R.L.; Chugh, R.; Reinke, D.K.; Zhao, B.; Joo, H.O.; Patel, S.R.; Schuetze, S.M.; et al. Assessment of Imaging Modalities and Response Metrics in Ewing Sarcoma: Correlation with Survival. J. Clin. Oncol. 2016, 34, 3680. [Google Scholar] [CrossRef] [PubMed]
- Wahl, R.L.; Jacene, H.; Kasamon, Y.; Lodge, M.A. From RECIST to PERCIST: Evolving Considerations for PET Response Criteria in Solid Tumors. J. Nucl. Med. 2009, 50, 122S. [Google Scholar] [CrossRef] [PubMed]
- Joo Hyun, O.; Wahl, R.L. PERCIST in Perspective. Nucl. Med. Mol. Imaging 2018, 52, 1. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.Y.; Lipson, E.J.; Im, H.J.; Rowe, S.P.; Gonzalez, E.M.; Blackford, A.; Chirindel, A.; Pardoll, D.M.; Topalian, S.L.; Wahl, R.L. Prediction of Response to Immune Checkpoint Inhibitor Therapy Using Early-Time-Point 18F-FDG PET/CT Imaging in Patients with Advanced Melanoma. J. Nucl. Med. 2017, 58, 1421–1428. [Google Scholar] [CrossRef] [PubMed]
- Anwar, H.; Sachpekidis, C.; Winkler, J.; Kopp-Schneider, A.; Haberkorn, U.; Hassel, J.C.; Dimitrakopoulou-Strauss, A. Absolute Number of New Lesions on 18F-FDG PET/CT Is More Predictive of Clinical Response than SUV Changes in Metastatic Melanoma Patients Receiving Ipilimumab. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 376–383. [Google Scholar] [CrossRef]
- Ito, K.; Teng, R.; Schöder, H.; Humm, J.L.; Ni, A.; Michaud, L.; Nakajima, R.; Yamashita, R.; Wolchok, J.D.; Weber, W.A. 18F-FDG PET/CT for Monitoring of Ipilimumab Therapy in Patients with Metastatic Melanoma. J. Nucl. Med. 2019, 60, 335. [Google Scholar] [CrossRef] [PubMed]
- Goldfarb, L.; Duchemann, B.; Chouahnia, K.; Zelek, L.; Soussan, M. Monitoring Anti-PD-1-Based Immunotherapy in Non-Small Cell Lung Cancer with FDG PET: Introduction of IPERCIST. EJNMMI Res. 2019, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Lopci, E.; Meignan, M. Deauville Score: The Phoenix Rising from Ashes. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1043–1045. [Google Scholar] [CrossRef] [PubMed]
- Prigent, K.; Lasnon, C.; Ezine, E.; Janson, M.; Coudrais, N.; Joly, E.; Césaire, L.; Stefan, A.; Depontville, M.; Aide, N. Assessing Immune Organs on 18F-FDG PET/CT Imaging for Therapy Monitoring of Immune Checkpoint Inhibitors: Inter-Observer Variability, Prognostic Value and Evolution during the Treatment Course of Melanoma Patients. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2573–2585. [Google Scholar] [CrossRef] [PubMed]
- Sachpekidis, C.; Hassel, J.C.; Dimitrakopoulou-Strauss, A. Adverse Effects under Immune Checkpoint Inhibitors on [18F]FDG PET/CT Imaging. Q. J. Nucl. Med. Mol. Imaging 2022, 66, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Kichloo, A.; Albosta, M.; Dahiya, D.; Guidi, J.C.; Aljadah, M.; Singh, J.; Shaka, H.; Wani, F.; Kumar, A.; Lekkala, M. Systemic Adverse Effects and Toxicities Associated with Immunotherapy: A Review. World J. Clin. Oncol. 2021, 12, 150. [Google Scholar] [CrossRef] [PubMed]
- Galligan, A.; Wallace, R.; Krishnamurthy, B.; Kay, T.W.H.; Sachithanandan, N.; Chiang, C.; Sandhu, S.; Hicks, R.J.; Iravani, A. Increased Thyroidal Activity on Routine FDG-PET/CT after Combination Immune Checkpoint Inhibition: Temporal Associations with Clinical and Biochemical Thyroiditis. Cancers 2023, 15, 5803. [Google Scholar] [CrossRef] [PubMed]
- Bacanovic, S.; Burger, I.A.; Stolzmann, P.; Hafner, J.; Huellner, M.W. Ipilimumab-Induced Adrenalitis: A Possible Pitfall in 18F-FDG-PET/CT. Clin. Nucl. Med. 2015, 40, e518–e519. [Google Scholar] [CrossRef] [PubMed]
- Zhan, L.; Feng, H.F.; Liu, H.Q.; Guo, L.T.; Chen, C.; Yao, X.L.; Sun, S.R. Immune Checkpoint Inhibitors-Related Thyroid Dysfunction: Epidemiology, Clinical Presentation, Possible Pathogenesis, and Management. Front. Endocrinol. 2021, 12, 649863. [Google Scholar] [CrossRef] [PubMed]
- Iwama, S.; Kobayashi, T.; Yasuda, Y.; Arima, H. Immune Checkpoint Inhibitor-Related Thyroid Dysfunction. Best Pract. Res. Clin. Endocrinol. Metab. 2022, 36, 101660. [Google Scholar] [CrossRef] [PubMed]
- Nobashi, T.; Baratto, L.; Reddy, S.A.; Srinivas, S.; Toriihara, A.; Hatami, N.; Yohannan, T.K.; Mittra, E. Predicting Response to Immunotherapy by Evaluating Tumors, Lymphoid Cell-Rich Organs, and Immune-Related Adverse Events Using FDG-PET/CT. Clin. Nucl. Med. 2019, 44, e272–e279. [Google Scholar] [CrossRef] [PubMed]
- Delivanis, D.A.; Gustafson, M.P.; Bornschlegl, S.; Merten, M.M.; Kottschade, L.; Withers, S.; Dietz, A.B.; Ryder, M. Pembrolizumab-Induced Thyroiditis: Comprehensive Clinical Review and Insights into Underlying Involved Mechanisms. J. Clin. Endocrinol. Metab. 2017, 102, 2770–2780. [Google Scholar] [CrossRef] [PubMed]
- Califaretti, E.; Dall’Armellina, S.; Rovera, G.; Finessi, M.; Deandreis, D. The Role of PET/CT in Thyroid Autoimmune Diseases. Q. J. Nucl. Med. Mol. Imaging 2022, 66, 218–228. [Google Scholar] [CrossRef]
- Sharma, R. Hypothyroidism After Use of Immune Checkpoint Inhibitor Therapy in Patient with Graves’ Disease: Cure? JCEM Case Rep. 2023, 1, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Wills, B.; Brahmer, J.R.; Naidoo, J. Treatment of Complications from Immune Checkpoint Inhibition in Patients with Lung Cancer. Curr. Treat. Options Oncol. 2018, 19, 46. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, J.; Yang, X.; Zhao, H.; Huo, L. Pembrolizumab Exacerbates Thyroid Diseases Shown on FDG PET/CT. Clin. Nucl. Med. 2020, 45, 1010–1012. [Google Scholar] [CrossRef]
- Hotta, M.; Sonni, I.; Benz, M.R.; Gafita, A.; Bahri, S.; Shuch, B.M.; Yu, R.; Liu, S.T.; Czernin, J.; Calais, J. 68Ga-FAPI-46 and 18F-FDG PET/CT in a Patient with Immune-Related Thyroiditis Induced by Immune Checkpoint Inhibitors. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3736–3737. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.; Issa, M.; Parikh, A.; Monk, P.; Yin, M.; Mortazavi, A.; Yang, Y. Calcitriol-Mediated Hypercalcemia as an Immune-Related Adverse Event in a Patient Receiving Nivolumab and Ipilimumab for Metastatic Renal Cell Carcinoma, Case Report. BMC Urol. 2021, 21, 51. [Google Scholar] [CrossRef] [PubMed]
- Dhanasekaran, M.; Sandooja, R.; Higgins, A.S.; Simha, V. Marked Hypoleptinemia Precedes Overt Fat Loss in Immune Checkpoint Inhibitor-Induced Acquired Generalized Lipodystrophy. JCEM Case Rep. 2023, 1, luad025. [Google Scholar] [CrossRef]
- Anderson, M.A.; Kurra, V.; Bradley, W.; Kilcoyne, A.; Mojtahed, A.; Lee, S.I. Abdominal Immune-Related Adverse Events: Detection on Ultrasonography, CT, MRI and 18F-Fluorodeoxyglucose Positron Emission Tomography. Br. J. Radiol. 2021, 94, 20200663. [Google Scholar] [CrossRef]
- Jennings, J.J.; Mandaliya, R.; Nakshabandi, A.; Lewis, J.H. Hepatotoxicity induced by immune checkpoint inhibitors: A comprehensive review including current and alternative management strategies. Expert Opin Drug Metab Toxicol. 2019, 15, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Callahan, J.; Keyaerts, M.; Neyns, B.; Mangana, J.; Aberle, S.; Herschtal, A.; Fullerton, S.; Milne, D.; Iravani, A.; et al. 18F-FDG PET/CT Based Spleen to Liver Ratio Associates with Clinical Outcome to Ipilimumab in Patients with Metastatic Melanoma. Cancer Imaging 2020, 20, 36. [Google Scholar] [CrossRef] [PubMed]
- Seban, R.D.; Nemer, J.S.; Marabelle, A.; Yeh, R.; Deutsch, E.; Ammari, S.; Moya-Plana, A.; Mokrane, F.Z.; Gartrell, R.D.; Finkel, G.; et al. Prognostic and Theranostic 18F-FDG PET Biomarkers for Anti-PD1 Immunotherapy in Metastatic Melanoma: Association with Outcome and Transcriptomics. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2298–2310. [Google Scholar] [CrossRef] [PubMed]
- Holzgreve, A.; Taugner, J.; Käsmann, L.; Müller, P.; Tufman, A.; Reinmuth, N.; Li, M.; Winkelmann, M.; Unterrainer, L.M.; Nieto, A.E.; et al. Metabolic Patterns on [18F]FDG PET/CT in Patients with Unresectable Stage III NSCLC Undergoing Chemoradiotherapy ± Durvalumab Maintenance Treatment. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 2466–2476. [Google Scholar] [CrossRef] [PubMed]
- Gandy, N.; Arshad, M.A.; Wallitt, K.L.; Dubash, S.; Khan, S.; Barwick, T.D. Immunotherapy-Related Adverse Effects on 18F-FDG PET/CT Imaging. Br. J. Radiol 2020, 93, 20190832. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shi, Y.; Liu, X.; Zhang, D.; Zhang, H.; Chen, M.; Xu, Y.; Zhao, J.; Zhong, W.; Wang, M. Clinical Characteristics and Outcomes of Immune Checkpoint Inhibitor-Induced Diabetes Mellitus. Transl. Oncol. 2022, 24, 101473. [Google Scholar] [CrossRef]
- Das, J.P.; Postow, M.A.; Friedman, C.F.; Do, R.K.; Halpenny, D.F. Imaging Findings of Immune Checkpoint Inhibitor Associated Pancreatitis. Eur. J. Radiol. 2020, 131, 109250. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wu, C.; Chen, X.; Ma, L.; Zhang, X.; Chen, J.; Liao, X.; Liu, M. PET/CT Molecular Imaging in the Era of Immune-Checkpoint Inhibitors Therapy. Front. Immunol. 2022, 13, 1049043. [Google Scholar] [CrossRef] [PubMed]
- Hoadley, A.; Sandanayake, N.; Long, G.V. Atrophic Exocrine Pancreatic Insufficiency Associated with Anti-PD1 Therapy. Ann. Oncol. 2017, 28, 434–435. [Google Scholar] [CrossRef] [PubMed]
- Aide, N.; Iravani, A.; Prigent, K.; Kottler, D.; Alipour, R.; Hicks, R.J. PET/CT Variants and Pitfalls in Malignant Melanoma. Cancer Imaging 2022, 22, 3. [Google Scholar] [CrossRef] [PubMed]
- Gomatou, G.; Tzilas, V.; Kotteas, E.; Syrigos, K.; Bouros, D. Immune Checkpoint Inhibitor-Related Pneumonitis. Respiration 2021, 99, 932–942. [Google Scholar] [CrossRef] [PubMed]
- Nishino, M.; Ramaiya, N.H.; Awad, M.M.; Sholl, L.M.; Maattala, J.A.; Taibi, M.; Hatabu, H.; Ott, P.A.; Armand, P.F.; Hodi, F.S. PD-1 Inhibitor-Related Pneumonitis in Advanced Cancer Patients: Radiographic Patterns and Clinical Course. Clin. Cancer Res. 2016, 22, 6051. [Google Scholar] [CrossRef] [PubMed]
- Pozzessere, C.; Lazor, R.; Jumeau, R.; Peters, S.; Prior, J.O.; Beigelman-Aubry, C. Imaging Features of Pulmonary Immune-Related Adverse Events. J. Thorac. Oncol. 2021, 16, 1449–1460. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.Y.; Huff, D.T.; Jeraj, R.; Albertini, M.R. FDG PET/CT for Assessment of Immune Therapy: Opportunities and Understanding Pitfalls. Semin. Nucl. Med. 2020, 50, 518. [Google Scholar] [CrossRef] [PubMed]
- Remon, J.; Soria, J.C.; Peters, S. Early and Locally Advanced Non-Small-Cell Lung Cancer: An Update of the ESMO Clinical Practice Guidelines Focusing on Diagnosis, Staging, Systemic and Local Therapy. Ann. Oncol. 2021, 32, 1637–1642. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, L.E.; Kerr, K.M.; Menis, J.; Mok, T.S.; Nestle, U.; Passaro, A.; Peters, S.; Planchard, D.; Smit, E.F.; Solomon, B.J.; et al. Non-Oncogene-Addicted Metastatic Non-Small-Cell Lung Cancer: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2023, 34, 358–376. [Google Scholar] [CrossRef] [PubMed]
- Dingemans, A.M.C.; Früh, M.; Ardizzoni, A.; Besse, B.; Faivre-Finn, C.; Hendriks, L.E.; Lantuejoul, S.; Peters, S.; Reguart, N.; Rudin, C.M.; et al. Small-Cell Lung Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2021, 32, 839. [Google Scholar] [CrossRef] [PubMed]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Durvalumab after Chemoradiotherapy in Stage III Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, J.; Nishino, M.; Patel, S.P.; Shankar, B.; Rekhtman, N.; Illei, P.; Camus, P. Immune-Related Pneumonitis After Chemoradiotherapy and Subsequent Immune Checkpoint Blockade in Unresectable Stage III Non–Small-Cell Lung Cancer. Clin. Lung Cancer 2020, 21, e435–e444. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Wang, J.; Zhang, T.; Zhou, Z.; Deng, L.; Wang, X.; Wang, W.; Liu, W.; Tang, W.; Wang, Z.; et al. Comprehensive Pneumonitis Profile of Thoracic Radiotherapy Followed by Immune Checkpoint Inhibitor and Risk Factors for Radiation Recall Pneumonitis in Lung Cancer. Front. Immunol. 2022, 13, 918787. [Google Scholar] [CrossRef] [PubMed]
- Tulbah, R.I.; Rowe, S.P.; Solnes, L.B.; Javadi, M.S. Nivolumab-Associated Pulmonary and Bone Sarcoidosis in a Patient with Melanoma of Unknown Primary. Clin. Nucl. Med. 2019, 44, E519–E521. [Google Scholar] [CrossRef] [PubMed]
- Malaty, S.; Bastian, C.M.; Ramirez-Cibes, I.; Shahlapour, M.; Dhillon, W. Pembrolizumab-Induced Sarcoid-Like Reaction: FDG-PET Scan Interpretation in the Era of Immunotherapy. Cureus 2020, 12, e9449. [Google Scholar] [CrossRef] [PubMed]
- Van Willigen, W.W.; Gerritsen, W.R.; Aarntzen, E.H.J.G. 18F-FDG PET/CT of Multiorgan Sarcoid-Like Reaction during Anti-PD-1 Treatment for Melanoma. Clin. Nucl. Med. 2019, 44, 905–906. [Google Scholar] [CrossRef] [PubMed]
- Humbert, O.; Bauckneht, M.; Gal, J.; Paquet, M.; Chardin, D.; Rener, D.; Schiazza, A.; Genova, C.; Schiappa, R.; Zullo, L.; et al. Prognostic Value of Immunotherapy-Induced Organ Inflammation Assessed on 18FDG PET in Patients with Metastatic Non-Small Cell Lung Cancer. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3878. [Google Scholar] [CrossRef] [PubMed]
- Huff, D.T.; Ferjancic, P.; Namías, M.; Emamekhoo, H.; Perlman, S.B.; Jeraj, R. Image Intensity Histograms as Imaging Biomarkers: Application to Immune-Related Colitis. Biomed. Phys. Eng. Express 2021, 7, 065019. [Google Scholar] [CrossRef] [PubMed]
- Lang, N.; Dick, J.; Slynko, A.; Schulz, C.; Dimitrakopoulou-Strauss, A.; Sachpekidis, C.; Enk, A.H.; Hassel, J.C. Clinical Significance of Signs of Autoimmune Colitis in 18F-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography of 100 Stage-IV Melanoma Patients. Immunotherapy 2019, 11, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Awiwi, M.O.; Abudayyeh, A.; Abdel-Wahab, N.; Diab, A.; Gjoni, M.; Xu, G.; Vikram, R.; Elsayes, K. Imaging Features of Immune Checkpoint Inhibitor-Related Nephritis with Clinical Correlation: A Retrospective Series of Biopsy-Proven Cases. Eur. Radiol. 2023, 33, 2227–2238. [Google Scholar] [CrossRef] [PubMed]
- Arponen, O.; Skyttä, T. Immune Checkpoint Inhibitor-Induced Myocarditis Not Visible with Cardiac Magnetic Resonance Imaging but Detected with PET-CT: A Case Report. Acta Oncol. 2020, 59, 490–492. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.Y.; Lee, M.; Kang, C.; Wong, V.C.K.; Mansberg, R. Atypical Metastatic Lung Cancer of the Right Ventricle on FDG PET/CT. Radiol. Case Rep. 2021, 16, 3569. [Google Scholar] [CrossRef] [PubMed]
- Ederhy, S.; Devos, P.; Pinna, B.; Funck-Brentano, E.; Abbar, B.; Fenioux, C.; Cohen, A.A.; Moslehi, J.; Bretagne, M.; Allenbach, Y.; et al. 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Imaging for the Diagnosis of Immune Checkpoint Inhibitor-Associated Myocarditis. Arch. Cardiovasc. Dis. 2022, 115, 114–116. [Google Scholar] [CrossRef] [PubMed]
- Nensa, F.; Kloth, J.; Tezgah, E.; Poeppel, T.D.; Heusch, P.; Goebel, J.; Nassenstein, K.; Schlosser, T. Feasibility of FDG-PET in Myocarditis: Comparison to CMR Using Integrated PET/MRI. J. Nucl. Cardiol. 2018, 25, 785–794. [Google Scholar] [CrossRef]
- Cao, T.; Zhou, X.; Wu, X.; Zou, Y. Cutaneous Immune-Related Adverse Events to Immune Checkpoint Inhibitors: From Underlying Immunological Mechanisms to Multi-Omics Prediction. Front. Immunol. 2023, 14, 1207544. [Google Scholar] [CrossRef]
- Seban, R.D.; Vermersch, C.; Champion, L.; Bonsang, B.; Roger, A.; Ghidaglia, J. Immune-Related Erythema Nodosum Mimicking in Transit Melanoma Metastasis on [18F]-FDG PET/CT. Diagnostics 2021, 11, 747. [Google Scholar] [CrossRef] [PubMed]
- Priya, S.; Graham, M. “Eye-Black” Sign Secondary to Nivolumab Immunotherapy. Clin. Nucl. Med. 2020, 45, 217–219. [Google Scholar] [CrossRef] [PubMed]
- Ponce, A.; Frade-Sosa, B.; Sarmiento-Monroy, J.C.; Sapena, N.; Ramírez, J.; Azuaga, A.B.; Morlà, R.; Ruiz-Esquide, V.; Cañete, J.D.; Sanmartí, R.; et al. Imaging Findings in Patients with Immune Checkpoint Inhibitor-Induced Arthritis. Diagnostics 2022, 12, 1961. [Google Scholar] [CrossRef] [PubMed]
- Sachpekidis, C.; Kopp-Schneider, A.; Hakim-Meibodi, L.; Dimitrakopoulou-Strauss, A.; Hassel, J.C. 18F-FDG PET/CT Longitudinal Studies in Patients with Advanced Metastatic Melanoma for Response Evaluation of Combination Treatment with Vemurafenib and Ipilimumab. Melanoma Res. 2019, 29, 178–186. [Google Scholar] [CrossRef]
- Bayat, M.; Doroudinia, A.; Karam, M.B.; Mehrian, P. FDG PET/CT in Immune-Related Arthritis in a Patient Treated with Nivolumab. Clin. Nucl. Med. 2023, 48, 271–272. [Google Scholar] [CrossRef] [PubMed]
- Cappelli, L.C.; Gutierrez, A.K.; Bingham, C.O.; Shah, A.A. Rheumatic and Musculoskeletal Immune-Related Adverse Events Due to Immune Inhibitors: A Systematic Review of the Literature. Arthritis Care Res. 2017, 69, 1751–1763. [Google Scholar] [CrossRef] [PubMed]
- Minutoli, F.; Parisi, S.; Laudicella, R.; Pergolizzi, S.; Baldari, S. 18F-FDG PET/CT Imaging of Immune Checkpoint Inhibitor-Related “Retroperitoneal Panniculitis”. Clin. Nucl. Med. 2022, 47, e39–e40. [Google Scholar] [CrossRef] [PubMed]
- Amrane, K.; Le Meur, C.; Thuillier, P.; Alemany, P.; Niel, C.; Renault, D.; Abgral, R. Case Report: Eosinophilic Fasciitis Induced by Pembrolizumab with High FDG Uptake on 18F-FDG-PET/CT. Front. Med. 2022, 9, 1078560. [Google Scholar] [CrossRef]
- Das, J.P.; Halpenny, D.; Do, R.K.; Ulaner, G.A. Focal Immunotherapy-Induced Pancreatitis Mimicking Metastasis on FDG PET/CT. Clin. Nucl. Med. 2019, 44, 836–837. [Google Scholar] [CrossRef] [PubMed]
- Mönch, S.; Heimer, M.M.; Winkelmann, M.; Guertler, A.; Schlaak, M.; Tufman, A.; Ben Khaled, N.; de Toni, E.; Westphalen, C.B.; von Bergwelt-Baildon, M.; et al. Patterns of Pseudoprogression across Different Cancer Entities Treated with Immune Checkpoint Inhibitors. Cancer Imaging 2023, 23, 58. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, O.; Kaira, K.; Hashimoto, K.; Kagamu, H. Detection of Pseudoprogression with [18F]-FDG-PET in a Patient with Pulmonary Large Cell Neuroendocrine Carcinoma Who Received Anti-PD-1 Treatment. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1268–1270. [Google Scholar] [CrossRef] [PubMed]
- Tutino, F.; Giovannini, E.; Chiola, S.; Giovacchini, G.; Ciarmiello, A. Assessment of Response to Immunotherapy in Patients with Hodgkin Lymphoma: Towards Quantifying Changes in Tumor Burden Using FDG-PET/CT. J. Clin. Med. 2023, 12, 3498. [Google Scholar] [CrossRef] [PubMed]
- Mauri, D.; Tsiouris, S.; Gkoura, S.; Gazouli, I.; Ntellas, P.; Amylidis, A.; Kampletsas, L.; Fotopoulos, A. Is There a Role for Gallium-67 SPECT in Distinguishing Progression and Pseudoprogresion in Oncologic Patients Receiving Immunotherapy? Cancer Treat. Res. Commun. 2021, 28, 100441. [Google Scholar] [CrossRef] [PubMed]
- Frelaut, M.; Le Tourneau, C.; Borcoman, E. Hyperprogression under Immunotherapy. Int. J. Mol. Sci. 2019, 20, 2674. [Google Scholar] [CrossRef] [PubMed]
- Castello, A.; Rossi, S.; Mazziotti, E.; Toschi, L.; Lopci, E. Hyperprogressive Disease in Patients with Non–Small Cell Lung Cancer Treated with Checkpoint Inhibitors: The Role of 18F-FDG PET/CT. J. Nucl. Med. 2020, 61, 821–826. [Google Scholar] [CrossRef]
- Champiat, S.; Dercle, L.; Ammari, S.; Massard, C.; Hollebecque, A.; Postel-Vinay, S.; Chaput, N.; Eggermont, A.; Marabelle, A.; Soria, J.C.; et al. Hyperprogressive Disease Is a New Pattern of Progression in Cancer Patients Treated by Anti-PD-1/PD-L1. Clin. Cancer Res. 2017, 23, 1920–1928. [Google Scholar] [CrossRef] [PubMed]
- Saâda-Bouzid, E.; Defaucheux, C.; Karabajakian, A.; Coloma, V.P.; Servois, V.; Paoletti, X.; Even, C.; Fayette, J.; Guigay, J.; Loirat, D.; et al. Hyperprogression during Anti-PD-1/PD-L1 Therapy in Patients with Recurrent and/or Metastatic Head and Neck Squamous Cell Carcinoma. Ann. Oncol. 2017, 28, 1605–1611. [Google Scholar] [CrossRef]
- Kato, S.; Goodman, A.; Walavalkar, V.; Barkauskas, D.A.; Sharabi, A.; Kurzrock, R. Hyperprogressors after Immunotherapy: Analysis of Genomic Alterations Associated with Accelerated Growth Rate. Clin. Cancer Res. 2017, 23, 4242–4250. [Google Scholar] [CrossRef] [PubMed]
- Gabryś, H.S.; Basler, L.; Burgermeister, S.; Hogan, S.; Ahmadsei, M.; Pavic, M.; Bogowicz, M.; Vuong, D.; Tanadini-Lang, S.; Förster, R.; et al. PET/CT Radiomics for Prediction of Hyperprogression in Metastatic Melanoma Patients Treated with Immune Checkpoint Inhibitors. Front. Oncol. 2022, 12, 977822. [Google Scholar] [CrossRef]
- Iravani, A.; Hicks, R.J. Imaging the Cancer Immune Environment and Its Response to Pharmacologic Intervention, Part 2: The Role of Novel PET Agents. J. Nucl. Med. 2020, 61, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Girard, A.; Vila Reyes, H.; Shaish, H.; Grellier, J.F.; Dercle, L.; Salaün, P.Y.; Delcroix, O.; Rouanne, M. The Role of 18F-FDG PET/CT in Guiding Precision Medicine for Invasive Bladder Carcinoma. Front. Oncol. 2020, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wu, J.; Zhao, Y.; Zhang, J.; Zhang, X.; Wu, C.; Zhang, Z.; Guo, Z. Immune-Related Adverse Event-Related Adrenal Insufficiency Mediates Immune Checkpoint Inhibitors Efficacy in Cancer Treatment. Cancer Manag. Res. 2024, 16, 151–161. [Google Scholar] [CrossRef]
- Lopci, E.; Hicks, R.J.; Dimitrakopoulou-Strauss, A.; Dercle, L.; Iravani, A.; Seban, R.D.; Sachpekidis, C.; Humbert, O.; Gheysens, O.; Glaudemans, A.W.J.M.; et al. Joint EANM/SNMMI/ANZSNM Practice Guidelines/Procedure Standards on Recommended Use of [18F]FDG PET/CT Imaging during Immunomodulatory Treatments in Patients with Solid Tumors Version 1.0. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2323–2341. [Google Scholar] [CrossRef] [PubMed]
- Abenavoli, E.M.; Linguanti, F.; Calabretta, R.; Delgado Bolton, R.C.; Berti, V.; Lopci, E. Clinical Application of ImmunoPET Targeting Checkpoint Inhibitors. Cancers 2023, 15, 5675. [Google Scholar] [CrossRef] [PubMed]
Ipilimumab | Nivolumab | Pembrolizumab | Atezolizumab | Durvalumab | Avelumab | Cemiplimab | Dostarlimab | Retifanlimab | Toripalimab | Tremelimumab | Relatlimab | Fianlimab | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Melanoma | X | X | X | X | X | X | X | ||||||
Merkel cell carcinoma | X | X | X | ||||||||||
NSCLC | X | X | X | X | X | X | X | ||||||
SCLC | X | X | X | X | |||||||||
Renal carcinoma | X | X | X | ||||||||||
Squamous cell carcinoma of head and neck | X | X | X | X | |||||||||
Urothelial carcinoma | X | X | X | X | X | ||||||||
Hepatocellular carcinoma | X | X | X | ||||||||||
Triple negative breast cancer | X | ||||||||||||
MSI-H or dMMR CRC | X | X | X | X | |||||||||
Hodgkin lymphoma | X | X | |||||||||||
BCC | X | ||||||||||||
CSCC | X | ||||||||||||
Cervical cancer | X | X | |||||||||||
Endometrial cancer | X | ||||||||||||
Nasopharyngeal carcinoma | X | ||||||||||||
ESCC | X | X | |||||||||||
Pleural mesothelioma | X | X |
Pros | Cons |
---|---|
Early Detection of irAEs—18F-FDG PET/CT can identify early signs of inflammation and metabolic changes sometimes indicating irAEs [13]. | High Costs and Accessibility—The procedure is expensive and may not be accessible in all healthcare settings, which could limit its regular use [17]. |
Comprehensive Coverage—This imaging modality can monitor multiple organs simultaneously, crucial as irAEs can affect various systems, including the endocrine glands, liver, lungs, and more [122]. | Challenges in Differentiation—It can be difficult to distinguish between signs of irAEs and tumor progression or other non-cancerous conditions, potentially leading to diagnostic ambiguity [7]. |
Sensitive in Monitoring Progression and Response—Besides detecting irAEs, 18F-FDG PET/CT is also highly effective in monitoring disease progression and response to therapy, which is essential for adjusting treatment plans [11]. | Radiation Exposure—As with any imaging technique that involves radiation, there is an inherent risk of exposure, which must be managed, especially in scenarios requiring multiple follow-ups [18]. |
Predictive Insights—Changes in FDG uptake patterns may provide predictive insights into treatment efficacy and patient outcomes, contributing to personalized treatment strategies [10]. | Premature discontinuation of treatment—False-positive results with PET could potentially lead to an unnecessary cessation of ICI [13]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karlsen, W.; Akily, L.; Mierzejewska, M.; Teodorczyk, J.; Bandura, A.; Zaucha, R.; Cytawa, W. Is 18F-FDG-PET/CT an Optimal Imaging Modality for Detecting Immune-Related Adverse Events after Immune-Checkpoint Inhibitor Therapy? Pros and Cons. Cancers 2024, 16, 1990. https://doi.org/10.3390/cancers16111990
Karlsen W, Akily L, Mierzejewska M, Teodorczyk J, Bandura A, Zaucha R, Cytawa W. Is 18F-FDG-PET/CT an Optimal Imaging Modality for Detecting Immune-Related Adverse Events after Immune-Checkpoint Inhibitor Therapy? Pros and Cons. Cancers. 2024; 16(11):1990. https://doi.org/10.3390/cancers16111990
Chicago/Turabian StyleKarlsen, William, Lin Akily, Monika Mierzejewska, Jacek Teodorczyk, Artur Bandura, Renata Zaucha, and Wojciech Cytawa. 2024. "Is 18F-FDG-PET/CT an Optimal Imaging Modality for Detecting Immune-Related Adverse Events after Immune-Checkpoint Inhibitor Therapy? Pros and Cons" Cancers 16, no. 11: 1990. https://doi.org/10.3390/cancers16111990
APA StyleKarlsen, W., Akily, L., Mierzejewska, M., Teodorczyk, J., Bandura, A., Zaucha, R., & Cytawa, W. (2024). Is 18F-FDG-PET/CT an Optimal Imaging Modality for Detecting Immune-Related Adverse Events after Immune-Checkpoint Inhibitor Therapy? Pros and Cons. Cancers, 16(11), 1990. https://doi.org/10.3390/cancers16111990