Genomic Newborn Screening for Pediatric Cancer Predisposition Syndromes: A Holistic Approach
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Background and Rationale—Newborn Screening
1.2. Qatar Newborn Screening Program
1.3. Newborn Screening Using Genomic Technologies
1.4. Pediatric Cancers—Global Incidence, Mortality, and Survival Rate
1.5. Genomic Medicine and Pediatric Cancer Predisposition Syndromes (CPSs)
1.6. Pediatric Cancers—Importance of Early Detection
1.7. Genomic Landscape of Pediatric Cancers
1.8. Autosomal Dominant Form of Cancer Predisposition Syndromes
Syndrome (Mode of Inheritance) | Gene(s) | Tumor Type |
---|---|---|
Ataxia-telangiectasia (AR) | ATM | leukemia, lymphoma |
Basal cell nevus syndrome (Gorlin syndrome) (AD) | PTCH, SUFU | medulloblastoma |
Beckwith–Wiedemann syndrome (AD) | CDKN1C, H19, IGF2, KNBQOT1 | Wilms tumor, neuroblastoma, hepatoblastoma, rhabdomyosarcoma |
Birt–Hogg–Dubé syndrome (AD) | FLCN | renal cell tumors |
Bloom syndrome (AR) | BLM, RecQL3 | oropharyngeal carcinoma, breast, colon carcinoma, osteosarcoma, leukemia, lymphoma, melanoma |
Bohring–Opitz syndrome (AD) | ASXL1 | medulloblastoma, Wilms tumor |
Congenital central hypoventilation Syndrome (AD) | PHOX2B | neuroblastoma, ganglioneuroma, ganglioneuroblastoma |
Constitutional mismatch repair deficiency (CMMRD) syndrome (AR) | MLH1, MSH2, MSH6, PMS2 | high-grade glioma, medulloblastoma |
Costello syndrome (AD) | HRAS | neuroblastoma, bladder carcinoma, rhabdomyosarcoma |
Cowden syndrome (AD) | PTEN | breast carcinoma, thyroid carcinoma, renal cancer, colorectal carcinoma, melanoma, endometrial tumors |
Dyskeratosis congenita (AD) | DKC1, TERC, TERT | squamous cell carcinoma, gastric carcinoma, myelodysplasia, leukemia |
Dysplastic nevus syndrome (AD) | CDKN2A and others | melanoma |
Fanconi anemia (AR) | FANCA, FANCC, FANCG | leukemia, hepatocellular, esophagus, head and neck, cervix, Wilms tumor, medulloblastoma, neuroblastoma, embryonal tumors |
Familial acute myeloid leukemia (AD) | RUNX1 | leukemia |
Familial adenomatous polyposis (AD) | APC | hepatoblastoma, medulloblastoma, papillary thyroid carcinoma, intestinal carcinoma, pancreatic adenocarcinoma, desmoid tumors |
Familial paraganglioma/pheochromocytoma (AD) | SDHB, SDHAF2, SDHC, SDHD | paraganglioma, pheochromocytoma, gastrointestinal stromal tumor |
Hereditary pleuropulmonary blastoma (AD) | DICER1 | pineoblastoma, meduloepithelioma, thyroid, nasal chondromesencymal hamartoma, pleuropulmonary blastoma, cystic nephroma, renal sarcoma, Wilms tumor, mesenchymal hamartoma, sertoli-leydig cell tumor, rhabdomyosarcoma |
Hereditary breast/ovarian cancer (AD) | BRCA1, BRCA2 | breast, ovarian, prostate, pancreatic |
Hereditary non-polyposis colon cancer (Lynch syndrome) (AD) | MLH1, MSH2, PMS2, MSH6 | colon, uterine, gastric, endometrial, small bowel, sebaceous gland |
Hyper parathyroid-Jaw tumor (AD) | CDC73 | parathyroid cancer, jaw ossifying fibroma, Wilms tumor, ovarian carcinoma |
Li Fraumeni syndrome (AD) | TP53, CHEK2 | leukemia, melanoma, glioma, choroid plexus carcinoma, breast carcinoma, Wilms tumor, adrenal carcinoma, osteosarcoma, soft tissue sarcomas |
Multiple endocrine neoplasia type 1 (AD) | MEN1 | parathyroid, pancreas, gastrinomas, insulinoma, carcinoid tumors |
Multiple endocrine neoplasia types 2A (AD) | RET | thyroid medulla, pheochromocytoma |
Mulibrey nanism (AR) | TRIM37 | thyroid carcinoma, Wilms tumor, renal papillary carcinoma, pheochromocytoma, ovarian carcinoma, endometrial adenocarcinoma |
Neurofibromatosis type 1 (AD) | NF1 | gliomas, gastrointestinal stromal tumor, dermal neurofibroma, malignant peripheral nerve sheath tumor, juvenile myelomonocytic leukemia |
Neurofibromatosis type 2 (AD) | NF2 | schwannomas, meningioma, ependymoma, retinal hamartoma |
Noonan syndrome (AD) | PTPN11, SOS1, RAF1, KRAS | dysembryoplastic neuroepithelial, neuroblastoma, leukemia, juvenile myelomonocytic leukemia |
Nijmegen breakage syndrome (AR) | NBS1 | lymphoma, leukemia |
Peutz–Jeghers syndrome (AD) | LKB1 | breast carcinoma, lung carcinoma, colon, pancreatic adenocarcinoma, ovarian carcinoma, sertoli cell tumor |
Proteus syndrome (AD) | AKT1 | parotid adenoma, ovarian cystadenoma |
Simpson–Golabi–Behmel syndrome (XLR) | GPC3 or GPC4 | medulloblastoma, Wilms tumor, neuroblastoma, hepatoblastoma |
Tuberous Sclerosis (AD) | TSC1, TSC2 | subependymal giant cell astrocytoma, Angiomyolipoma, renal cell carcinoma |
Retinoblastoma (RB) (AD) | RB1 | retinoblastoma, osteosarcoma, melanoma, pinealoblastoma, lung carcinoma |
Von Hippel–Lindau syndrome (AD) | VHL | renal cell carcinoma, pancreatic islet cell tumors, pheochromocytoma |
Werner syndrome (AR) | WRN | leukemia, melanoma, osteosarcoma, thyroid |
WAGR syndrome (AD) | WT1 | Wilms tumor |
Weaver syndrome (AD) | EZH2 | neuroblastoma |
Wiskott–Aldrich syndrome (XLR) | WASP | leukemia, lymphoma |
Xeroderma pigmentosum (AR) | DDB2, ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, POLH, XPA, XPC | basal cell and squamous cell skin cancers, melanoma, stomach, leukemia |
1.9. Aim of Pediatric CPS Screening Program
2. Overview of Pediatric Cancer Predisposition Syndromes
2.1. Common Genetic Syndromes Associated with Pediatric Cancer
2.2. Impact on Health and Development
2.3. Genetic Basis and Inheritance Patterns of Pediatric CPS
3. Screening Methodology
3.1. Selection Criteria for Screening
3.2. Ethical Considerations and Informed Consent
4. Panel of Genes for Screening
4.1. High-Risk Genes
4.2. Comprehensive Gene Panel Selection
4.3. Integration of Established and Emerging Genes
4.4. Considerations for Genetic Variants of Uncertain Significance (VUS)
4.5. Genomic Database for Childhood Cancers
5. Clinical Implications and Genetic Counseling
6. Cost-Effectiveness of Genomic Newborn Screening for CPS
7. Integration of Pediatric CPS Screening in the Healthcare System
- The selection of new conditions in NBS panels should rely on established criteria that have been published. The methods should be standardized, transparent, and open to public examination. Furthermore, the outcomes of the debates should be made available to the public.
- Parents should have access to information, ideally provided during pregnancy, that explains the diseases that will be tested for and the consequences of receiving a positive result. This will enable them to make an informed decision about whether to participate.
- Precise definitions of the illnesses being examined should be established before planning the screening process.
- Laboratories that have accreditation demonstrating compliance with international standards for laboratory performance should be chosen for screening.
- Key performance indicators (KPIs) about the complete NBS process—including blood sampling, transport conditions, blood spot quality, time to generate laboratory results, and referral of screen-positive cases should be measurable by laboratories and programs.
- Parents should have access to information when they are sent for clinical assistance. Their initial contact should be with a knowledgeable doctor who can provide support. If necessary, genetic counseling should also be offered.
- It is important to implement and consistently follow confirmatory testing with a brief and clearly defined time frame to alleviate parental anxiety and tension.
- Strategies for evaluating long-term outcome data ought to be established and duly documented.
- Adverse screening results should be duly informed to all parents and documented in the child’s medical record.
- Practices should be reviewed, and policies for accessing and storing residual blood spot samples should be established.
8. Challenges and Limitations
9. Precision Medicine Approaches for Risk Stratification
10. Longitudinal Studies for Outcome Assessment
11. Future Prospects for Pediatric Cancer Screening Programs
12. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sweet-Cordero, E.A.; Biegel, J.A. The genomic landscape of pediatric cancers: Implications for diagnosis and treatment. Science 2019, 363, 1170–1175. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Liu, Y.; Liu, Y.; Alexandrov, L.B.; Edmonson, M.N.; Gawad, C.; Zhou, X.; Li, Y.; Rusch, M.C.; Easton, J. Pan-cancer genome and transcriptome analyses of 1699 paediatric leukaemias and solid tumours. Nature 2018, 555, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Walsh, M.F.; Wu, G.; Edmonson, M.N.; Gruber, T.A.; Easton, J.; Hedges, D.; Ma, X.; Zhou, X.; Yergeau, D.A. Germline mutations in predisposition genes in pediatric cancer. N. Engl. J. Med. 2015, 373, 2336–2346. [Google Scholar] [CrossRef] [PubMed]
- Newman, S.; Nakitandwe, J.; Kesserwan, C.A.; Azzato, E.M.; Wheeler, D.A.; Rusch, M.; Shurtleff, S.; Hedges, D.J.; Hamilton, K.V.; Foy, S.G. Genomes for kids: The scope of pathogenic mutations in pediatric cancer revealed by comprehensive DNA and RNA sequencing. Cancer Discov. 2021, 11, 3008–3027. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Muzny, D.M.; Xia, F.; Niu, Z.; Person, R.; Ding, Y.; Ward, P.; Braxton, A.; Wang, M.; Buhay, C. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA 2014, 312, 1870–1879. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Wang, H.; Gu, Y. Genome sequencing for newborn screening—An effective approach for tackling rare diseases. JAMA Netw. Open 2023, 6, e2331141. [Google Scholar] [CrossRef] [PubMed]
- Postema, F.A.; Hopman, S.M.; De Borgie, C.A.; Hammond, P.; Hennekam, R.C.; Merks, J.H.; Aalfs, C.M.; Anninga, J.K.; Berger, L.P.; Bleeker, F.E. Validation of a clinical screening instrument for tumour predisposition syndromes in patients with childhood cancer (TuPS): Protocol for a prospective, observational, multicentre study. BMJ Open 2017, 7, e013237. [Google Scholar] [CrossRef] [PubMed]
- Jongmans, M.C.; Loeffen, J.L.; Waanders, E.; Hoogerbrugge, P.M.; Ligtenberg, M.J.; Kuiper, R.P.; Hoogerbrugge, N. Recognition of genetic predisposition in pediatric cancer patients: An easy-to-use selection tool. Eur. J. Med. Genet. 2016, 59, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Goudie, C.; Witkowski, L.; Cullinan, N.; Reichman, L.; Schiller, I.; Tachdjian, M.; Armstrong, L.; Blood, K.A.; Brossard, J.; Brunga, L. Performance of the McGill interactive pediatric oncogenetic guidelines for identifying cancer predisposition syndromes. JAMA Oncol. 2021, 7, 1806–1814. [Google Scholar] [CrossRef]
- Goudie, C.; Cullinan, N.; Villani, A.; Mathews, N.; van Engelen, K.; Malkin, D.; Irwin, M.S.; Foulkes, W.D. Retrospective evaluation of a Decision-Support algorithm (MIPOGG) for genetic referrals for children with Neuroblastic tumors. Pediatr. Blood Cancer 2018, 65, e27390. [Google Scholar] [CrossRef]
- AM Postema, F.; MJ Hopman, S.; AJM de Borgie, C.; M Aalfs, C.; K Anninga, J.; Berger, L.; E Bleeker, F.; J Dommering, C.; Eijkelenburg, N.; Hammond, P. Clinical value of a screening tool for tumor predisposition syndromes in childhood cancer patients (TuPS). Fam. Cancer 2021, 20, 263–271. [Google Scholar] [CrossRef]
- Byrjalsen, A.; Hansen, T.V.; Stoltze, U.K.; Mehrjouy, M.M.; Barnkob, N.M.; Hjalgrim, L.L.; Mathiasen, R.; Lautrup, C.K.; Gregersen, P.A.; Hasle, H. Nationwide germline whole genome sequencing of 198 consecutive pediatric cancer patients reveals a high incidence of cancer prone syndromes. PLoS Genet. 2020, 16, e1009231. [Google Scholar] [CrossRef]
- Chan, S.H.; Chew, W.; Ishak, N.D.B.; Lim, W.K.; Li, S.-T.; Tan, S.H.; Teo, J.X.; Shaw, T.; Chang, K.; Chen, Y. Clinical relevance of screening checklists for detecting cancer predisposition syndromes in Asian childhood tumours. NPJ Genom. Med. 2018, 3, 30. [Google Scholar] [CrossRef] [PubMed]
- Brodeur, G.M.; Nichols, K.E.; Plon, S.E.; Schiffman, J.D.; Malkin, D. Pediatric cancer predisposition and surveillance: An overview, and a tribute to Alfred G. Knudson Jr. Clin. Cancer Res. 2017, 23, e1–e5. [Google Scholar] [CrossRef] [PubMed]
- Therrell Jr, B.L. US newborn screening policy dilemmas for the twenty-first century. Mol. Genet. Metab. 2001, 74, 64–74. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Sokolsky, T.; Wyman, S.K.; Reese, M.G.; Puffenberger, E.; Strauss, K.; Morton, H.; Parad, R.B.; Naylor, E.W. Development of DNA confirmatory and high-risk diagnostic testing for newborns using targeted next-generation DNA sequencing. Genet. Med. 2015, 17, 337–347. [Google Scholar] [CrossRef]
- Watson, M.S.; Lloyd-Puryear, M.A.; Howell, R.R. The progress and future of US newborn screening. Int. J. Neonatal Screen. 2022, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, R.; Bickel, H. The introduction of newborn screening for phenylketonuria: A personal history. Eur. J. Pediatr. 1996, 155, S4–S5. [Google Scholar] [CrossRef]
- Woerner, A.C.; Gallagher, R.C.; Vockley, J.; Adhikari, A.N. The use of whole genome and exome sequencing for newborn screening: Challenges and opportunities for population health. Front. Pediatr. 2021, 9, 663752. [Google Scholar] [CrossRef]
- Burke, W. Genetic tests: Clinical validity and clinical utility. Curr. Protoc. Hum. Genet. 2014, 81, 9.15.1–9.15.8. [Google Scholar] [CrossRef]
- Michelson, J. My diagnostic odyssey—A call to expand access to genomic testing for the next generation. Hastings Cent. Rep. 2018, 48, S32–S34. [Google Scholar] [CrossRef]
- Greaves, R.F.; Pitt, J.; McGregor, C.; Wall, M.; Christodoulou, J. Newborn bloodspot screening in the time of COVID-19. Genet. Med. 2021, 23, 1143–1150. [Google Scholar] [CrossRef]
- Cao, M.; Notini, L.; Ayres, S.; Vears, D.F. Australian healthcare professionals’ perspectives on the ethical and practical issues associated with genomic newborn screening. J. Genet. Couns. 2023, 32, 376–386. [Google Scholar] [CrossRef]
- Therrell, B.L.; Padilla, C.D.; Loeber, J.G.; Kneisser, I.; Saadallah, A.; Borrajo, G.J.; Adams, J. Current status of newborn screening worldwide: 2015. In Proceedings of the Seminars in Perinatology; WB Saunders: Philadelphia, PA, USA, 2015; pp. 171–187. [Google Scholar]
- Skrinska, V.; Khneisser, I.; Schielen, P.; Loeber, G. Introducing and expanding newborn screening in the MENA region. Int. J. Neonatal Screen 2020, 6, 12. [Google Scholar] [CrossRef]
- Cornel, M.C.; Rigter, T.; Jansen, M.E.; Henneman, L. Neonatal and carrier screening for rare diseases: How innovation challenges screening criteria worldwide. J. Community Genet. 2021, 12, 257–265. [Google Scholar] [CrossRef]
- Watson, M.S.; Mann, M.Y.; Lloyd-Puryear, M.A.; Rinaldo, P.; Howell, R.R. Newborn screening: Toward a uniform screening panel and system. Genet. Med. Off. J. Am. Coll. Med. Genet. 2006, 8, 1S–252S. [Google Scholar]
- Al-Dewik, N.; Al-Mureikhi, M.; Shahbeck, N.; Ali, R.; Al-Mesaifri, F.; Mahmoud, L.; Othman, A.; AlMulla, M.; Al Sulaiman, R.; Musa, S. Clinical genetics and genomic medicine in Qatar. Mol. Genet. Genom. Med. 2018, 6, 702. [Google Scholar] [CrossRef]
- Al-Dewik, N.; Ali, A.; Mahmoud, Y.; Shahbeck, N.; Ali, R.; Mahmoud, L.; Al-Mureikhi, M.; Al-Mesaifri, F.; Musa, S.; El-Akouri, K. Natural history, with clinical, biochemical, and molecular characterization of classical homocystinuria in the Qatari population. J. Inherit. Metab. Dis. 2019, 42, 818–830. [Google Scholar] [CrossRef]
- Al-Sadeq, D.W.; Thanassoulas, A.; Islam, Z.; Kolatkar, P.; Al-Dewik, N.; Safieh-Garabedian, B.; Nasrallah, G.K.; Nomikos, M. Pyridoxine non-responsive p. R336C mutation alters the molecular properties of cystathionine beta-synthase leading to severe homocystinuria phenotype. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2022, 1866, 130148. [Google Scholar]
- Gallego-Villar, L.; Hannibal, L.; Häberle, J.; Thöny, B.; Ben-Omran, T.; Nasrallah, G.; Dewik, A.-N.; Kruger, W.; Blom, H. Cysteamine revisited: Repair of arginine to cysteine mutations. J. Inherit. Metab. Dis. 2017, 40, 555–567. [Google Scholar] [CrossRef]
- Ismail, H.M.; Krishnamoorthy, N.; Al-Dewik, N.; Zayed, H.; Mohamed, N.A.; Giacomo, V.D.; Gupta, S.; Häberle, J.; Thöny, B.; Blom, H.J. In silico and in vivo models for Qatari-specific classical homocystinuria as basis for development of novel therapies. Hum. Mutat. 2019, 40, 230–240. [Google Scholar] [CrossRef]
- Al-Sadeq, D.W.; Conter, C.; Thanassoulas, A.; Al-Dewik, N.; Safieh-Garabedian, B.; Martínez-Cruz, L.A.; Nasrallah, G.K.; Astegno, A.; Nomikos, M. Biochemical and structural impact of two novel missense mutations in cystathionine β-synthase gene associated with homocystinuria. Biochem. J. 2024, 481, 569–585. [Google Scholar] [CrossRef]
- “Qatar Newborn Screening Program (2003 to 2023): Celebrating 20 Years Anniversary of a Life Saving Achievement with over 428,000 Babies Screened for Metabolic and Endocrine Diseases”. Hamad Medical Corporation. 20 December 2023. Available online: https://www.hamad.qa/EN/news/2023/December/Pages/Qatar-Newborn-Screening-Program.aspx (accessed on 3 April 2024).
- Qoronfleh, M.W.; Chouchane, L.; Mifsud, B.; Al Emadi, M.; Ismail, S. The Future of Medicine, healthcare innovation through precision medicine: Policy case study of Qatar. Life Sci. Soc. Policy 2020, 16, 12. [Google Scholar] [CrossRef]
- Ibrahim, F.; Velayutham, D.; Alsharshani, M.; AlAlami, U.; AlDewik, M.; Abuarja, T.; Al Rifai, H.; Al-Dewik, N.I. Studying carrier frequency of spinal muscular atrophy in the State of Qatar and comparison to other ethnic groups: Pilot study. Mol. Genet. Genom. Med. 2023, 11, e2184. [Google Scholar] [CrossRef]
- Rodriguez-Flores, J.L.; Messai-Badji, R.; Robay, A.; Temanni, R.; Syed, N.; Markovic, M.; Al-Khayat, E.; Qafoud, F.; Nawaz, Z.; Badii, R. The QChip1 knowledgebase and microarray for precision medicine in Qatar. NPJ Genom. Med. 2022, 7, 3. [Google Scholar] [CrossRef]
- Johnston, J.; Lantos, J.D.; Goldenberg, A.; Chen, F.; Parens, E.; Koenig, B.A.; Ethics, N.; Board, P.A. Sequencing newborns: A call for nuanced use of genomic technologies. Hastings Cent. Rep. 2018, 48, S2–S6. [Google Scholar] [CrossRef]
- Chen, T.; Fan, C.; Huang, Y.; Feng, J.; Zhang, Y.; Miao, J.; Wang, X.; Li, Y.; Huang, C.; Jin, W. Genomic sequencing as a first-tier screening test and outcomes of newborn screening. JAMA Netw. Open 2023, 6, e2331162. [Google Scholar] [CrossRef]
- Wojcik, M.H.; Wierenga, K.J.; Rodan, L.H.; Sahai, I.; Ferdinandusse, S.; Genetti, C.A.; Towne, M.C.; Peake, R.W.; James, P.M.; Beggs, A.H. Beta-ketothiolase deficiency presenting with metabolic stroke after a normal newborn screen in two individuals. In JIMD Reports; Springer: Berlin/Heidelberg, Germany, 2017; Volume 39, pp. 45–54. [Google Scholar]
- Botkin, J.R.; Rothwell, E. Whole genome sequencing and newborn screening. Curr. Genet. Med. Rep. 2016, 4, 1–6. [Google Scholar] [CrossRef]
- Holm, I.A.; Agrawal, P.B.; Ceyhan-Birsoy, O.; Christensen, K.D.; Fayer, S.; Frankel, L.A.; Genetti, C.A.; Krier, J.B.; LaMay, R.C.; Levy, H.L. The BabySeq project: Implementing genomic sequencing in newborns. BMC Pediatr. 2018, 18, 225. [Google Scholar] [CrossRef]
- Stark, Z.; Scott, R.H. Genomic newborn screening for rare diseases. Nat. Rev. Genet. 2023, 24, 755–766. [Google Scholar] [CrossRef]
- Wojcik, M.H.; Zhang, T.; Ceyhan-Birsoy, O.; Genetti, C.A.; Lebo, M.S.; Yu, T.W.; Parad, R.B.; Holm, I.A.; Rehm, H.L.; Beggs, A.H. Discordant results between conventional newborn screening and genomic sequencing in the BabySeq Project. Genet. Med. 2021, 23, 1372–1375. [Google Scholar] [CrossRef] [PubMed]
- Ceyhan-Birsoy, O.; Murry, J.B.; Machini, K.; Lebo, M.S.; Timothy, W.Y.; Fayer, S.; Genetti, C.A.; Schwartz, T.S.; Agrawal, P.B.; Parad, R.B. Interpretation of genomic sequencing results in healthy and ill newborns: Results from the BabySeq Project. Am. J. Hum. Genet. 2019, 104, 76–93. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, A.N.; Gallagher, R.C.; Wang, Y.; Currier, R.J.; Amatuni, G.; Bassaganyas, L.; Chen, F.; Kundu, K.; Kvale, M.; Mooney, S.D. The role of exome sequencing in newborn screening for inborn errors of metabolism. Nat. Med. 2020, 26, 1392–1397. [Google Scholar] [CrossRef] [PubMed]
- Furnier, S.M.; Durkin, M.S.; Baker, M.W. Translating molecular technologies into routine newborn screening practice. Int. J. Neonatal Screen. 2020, 6, 80. [Google Scholar] [CrossRef] [PubMed]
- Veldman, A.; Kiewiet, M.B.; Heiner-Fokkema, M.R.; Nelen, M.R.; Sinke, R.J.; Sikkema-Raddatz, B.; Voorhoeve, E.; Westra, D.; Dollé, M.E.; Schielen, P.C. Towards next-generation sequencing (NGS)-based newborn screening: A technical study to prepare for the challenges ahead. Int. J. Neonatal Screen. 2022, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Wallace, S.E.; Bean, L.J. Educational materials—Genetic testing: Current approaches.GeneReviews® [Internet]. 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279899/ (accessed on 3 April 2024).
- Huang, X.; Wu, D.; Zhu, L.; Wang, W.; Yang, R.; Yang, J.; He, Q.; Zhu, B.; You, Y.; Xiao, R. Application of a next-generation sequencing (NGS) panel in newborn screening efficiently identifies inborn disorders of neonates. Orphanet J. Rare Dis. 2022, 17, 66. [Google Scholar] [CrossRef] [PubMed]
- Remec, Z.I.; Trebusak Podkrajsek, K.; Repic Lampret, B.; Kovac, J.; Groselj, U.; Tesovnik, T.; Battelino, T.; Debeljak, M. Next-generation sequencing in newborn screening: A review of current state. Front. Genet. 2021, 12, 662254. [Google Scholar] [CrossRef]
- Qoronfleh, M.W. Pathway to excellence in cancer care: Learning from Qatar’s experience. Precis. Med. Sci. 2020, 9, 51–61. [Google Scholar] [CrossRef]
- Cunningham, R.M.; Walton, M.A.; Carter, P.M. The major causes of death in children and adolescents in the United States. N. Engl. J. Med. 2018, 379, 2468–2475. [Google Scholar] [CrossRef]
- Steliarova-Foucher, E.; Colombet, M.; Ries, L.A.; Moreno, F.; Dolya, A.; Bray, F.; Hesseling, P.; Shin, H.Y.; Stiller, C.A.; Bouzbid, S. International incidence of childhood cancer, 2001–10: A population-based registry study. Lancet Oncol. 2017, 18, 719–731. [Google Scholar] [CrossRef]
- Johnston, W.; Erdmann, F.; Newton, R.; Steliarova-Foucher, E.; Schüz, J.; Roman, E. Childhood cancer: Estimating regional and global incidence. Cancer Epidemiol. 2021, 71, 101662. [Google Scholar] [CrossRef] [PubMed]
- Siegel, D.A.; Richardson, L.C.; Henley, S.J.; Wilson, R.J.; Dowling, N.F.; Weir, H.K.; Tai, E.W.; Buchanan Lunsford, N. Pediatric cancer mortality and survival in the United States, 2001–2016. Cancer 2020, 126, 4379–4389. [Google Scholar] [CrossRef] [PubMed]
- Curtin, S.C.; Miniño, A.M.; Anderson, R.N. Declines in Cancer Death Rates among Children and Adolescents in the United States, 1999–2014; National Center for Health Statistics: Atlanta, GA, USA, 2016. [Google Scholar]
- Zwaan, C.M.; Kolb, E.A.; Reinhardt, D.; Abrahamsson, J.; Adachi, S.; Aplenc, R.; De Bont, E.S.; De Moerloose, B.; Dworzak, M.; Gibson, B.E. Collaborative efforts driving progress in pediatric acute myeloid leukemia. J. Clin. Oncol. 2015, 33, 2949. [Google Scholar] [CrossRef] [PubMed]
- Monsalve, J.; Kapur, J.; Malkin, D.; Babyn, P.S. Imaging of cancer predisposition syndromes in children. Radiographics 2011, 31, 263–280. [Google Scholar] [CrossRef] [PubMed]
- Kratz, C.P.; Jongmans, M.C.; Cavé, H.; Wimmer, K.; Behjati, S.; Guerrini-Rousseau, L.; Milde, T.; Pajtler, K.W.; Golmard, L.; Gauthier-Villars, M. Predisposition to cancer in children and adolescents. Lancet Child Adolesc. Health 2021, 5, 142–154. [Google Scholar] [CrossRef] [PubMed]
- Fiala, E.M.; Jayakumaran, G.; Mauguen, A.; Kennedy, J.A.; Bouvier, N.; Kemel, Y.; Fleischut, M.H.; Maio, A.; Salo-Mullen, E.E.; Sheehan, M. Prospective pan-cancer germline testing using MSK-IMPACT informs clinical translation in 751 patients with pediatric solid tumors. Nat. Cancer 2021, 2, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Futreal, P.A.; Coin, L.; Marshall, M.; Down, T.; Hubbard, T.; Wooster, R.; Rahman, N.; Stratton, M.R. A census of human cancer genes. Nat. Rev. Cancer 2004, 4, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Shlien, A.; Tabori, U.; Marshall, C.R.; Pienkowska, M.; Feuk, L.; Novokmet, A.; Nanda, S.; Druker, H.; Scherer, S.W.; Malkin, D. Excessive genomic DNA copy number variation in the Li–Fraumeni cancer predisposition syndrome. Proc. Natl. Acad. Sci. USA 2008, 105, 11264–11269. [Google Scholar] [CrossRef]
- Shlien, A.; Malkin, D. Copy number variations and cancer susceptibility. Curr. Opin. Oncol. 2010, 22, 55–63. [Google Scholar] [CrossRef]
- Rahman, N. Mainstreaming genetic testing of cancer predisposition genes. Clin. Med. 2014, 14, 436. [Google Scholar] [CrossRef]
- Yeh, J.M.; Stout, N.K.; Chaudhry, A.; Christensen, K.D.; Gooch, M.; McMahon, P.M.; O’Brien, G.; Rehman, N.; Zawatsky, C.L.B.; Green, R.C. Universal newborn genetic screening for pediatric cancer predisposition syndromes: Model-based insights. Genet. Med. 2021, 23, 1366–1371. [Google Scholar] [CrossRef]
- Hawkes, N. Cancer survival data emphasise importance of early diagnosis. BMJ 2019, 364, l408. [Google Scholar] [CrossRef]
- World Health Organization. Cancer Control: Knowledge into Action: WHO Guide for Effective Programmes; World Health Organization: Geneva, Switzerland, 2007; Volume 2. [Google Scholar]
- World Health Organization. Geneva, Switzerland. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer-in-children (accessed on 13 March 2024).
- Singh, E.; Naidu, G.; Davies, M.-A.; Bohlius, J. HIV-associated malignancies in children. Curr. Opin. HIV AIDS 2017, 12, 77–83. [Google Scholar] [CrossRef]
- Indolfi, G.; Easterbrook, P.; Dusheiko, G.; Siberry, G.; Chang, M.-H.; Thorne, C.; Bulterys, M.; Chan, P.-L.; El-Sayed, M.H.; Giaquinto, C. Hepatitis B virus infection in children and adolescents. Lancet Gastroenterol. Hepatol. 2019, 4, 466–476. [Google Scholar] [CrossRef]
- Strahm, B.; Malkin, D. Hereditary cancer predisposition in children: Genetic basis and clinical implications. Int. J. Cancer 2006, 119, 2001–2006. [Google Scholar] [CrossRef]
- Pakakasama, S.; Tomlinson, G.E. Genetic predisposition and screening in pediatric cancer. Pediatr. Clin. 2002, 49, 1393–1413. [Google Scholar] [CrossRef] [PubMed]
- Garber, J.E.; Offit, K. Hereditary cancer predisposition syndromes. J. Clin. Oncol. 2005, 23, 276–292. [Google Scholar] [CrossRef]
- Mody, R.J.; Wu, Y.-M.; Lonigro, R.J.; Cao, X.; Roychowdhury, S.; Vats, P.; Frank, K.M.; Prensner, J.R.; Asangani, I.; Palanisamy, N. Integrative clinical sequencing in the management of refractory or relapsed cancer in youth. JAMA 2015, 314, 913–925. [Google Scholar] [CrossRef] [PubMed]
- Parsons, D.W.; Roy, A.; Yang, Y.; Wang, T.; Scollon, S.; Bergstrom, K.; Kerstein, R.A.; Gutierrez, S.; Petersen, A.K.; Bavle, A. Diagnostic yield of clinical tumor and germline whole-exome sequencing for children with solid tumors. JAMA Oncol. 2016, 2, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Blaney, S.M.; Adamson, P.C.; Helman, L. Pizzo and Poplack’s Pediatric Oncology, 8th ed.; Wolters Kluwer Health: Philadelphia, PA, USA, 2021. [Google Scholar]
- Al-Sarhani, H.; Gottumukkala, R.V.; Grasparil, A.D.S.; Tung, E.L.; Gee, M.S.; Greer, M.-L.C. Screening of cancer predisposition syndromes. Pediatr. Radiol. 2022, 52, 401–417. [Google Scholar] [CrossRef]
- Nakano, Y.; Rabinowicz, R.; Malkin, D. Genetic predisposition to cancers in children and adolescents. Curr. Opin. Pediatr. 2023, 35, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Gharehzadehshirazi, A.; Zarejousheghani, M.; Falahi, S.; Joseph, Y.; Rahimi, P. Biomarkers and Corresponding Biosensors for Childhood Cancer Diagnostics. Sensors 2023, 23, 1482. [Google Scholar] [CrossRef] [PubMed]
- Gröbner, S.N.; Worst, B.C.; Weischenfeldt, J.; Buchhalter, I.; Kleinheinz, K.; Rudneva, V.A.; Johann, P.D.; Balasubramanian, G.P.; Segura-Wang, M.; Brabetz, S. The landscape of genomic alterations across childhood cancers. Nature 2018, 555, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Pui, C.-H.; Gajjar, A.J.; Kane, J.R.; Qaddoumi, I.A.; Pappo, A.S. Challenging issues in pediatric oncology. Nat. Rev. Clin. Oncol. 2011, 8, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Downing, J.R.; Wilson, R.K.; Zhang, J.; Mardis, E.R.; Pui, C.-H.; Ding, L.; Ley, T.J.; Evans, W.E. The pediatric cancer genome project. Nat. Genet. 2012, 44, 619–622. [Google Scholar] [CrossRef] [PubMed]
- Huether, R.; Dong, L.; Chen, X.; Wu, G.; Parker, M.; Wei, L.; Ma, J.; Edmonson, M.N.; Hedlund, E.K.; Rusch, M.C. The landscape of somatic mutations in epigenetic regulators across 1000 paediatric cancer genomes. Nat. Commun. 2014, 5, 3630. [Google Scholar] [CrossRef] [PubMed]
- Akhavanfard, S.; Padmanabhan, R.; Yehia, L.; Cheng, F.; Eng, C. Comprehensive germline genomic profiles of children, adolescents and young adults with solid tumors. Nat. Commun. 2020, 11, 2206. [Google Scholar] [CrossRef] [PubMed]
- Capasso, M.; Montella, A.; Tirelli, M.; Maiorino, T.; Cantalupo, S.; Iolascon, A. Genetic predisposition to solid pediatric cancers. Front. Oncol. 2020, 10, 590033. [Google Scholar] [CrossRef] [PubMed]
- Kong, A.; Frigge, M.L.; Masson, G.; Besenbacher, S.; Sulem, P.; Magnusson, G.; Gudjonsson, S.A.; Sigurdsson, A.; Jonasdottir, A.; Jonasdottir, A. Rate of de novo mutations and the importance of father’s age to disease risk. Nature 2012, 488, 471–475. [Google Scholar] [CrossRef]
- Campbell, C.D.; Eichler, E.E. Properties and rates of germline mutations in humans. Trends Genet. 2013, 29, 575–584. [Google Scholar] [CrossRef]
- Miller, B.; Messias, E.; Miettunen, J.; Alaräisänen, A.; Järvelin, M.-R.; Koponen, H.; Räsänen, P.; Isohanni, M.; Kirkpatrick, B. Meta-analysis of paternal age and schizophrenia risk in male versus female offspring. Schizophr. Bull. 2011, 37, 1039–1047. [Google Scholar] [CrossRef]
- Rashed, W.M.; Marcotte, E.L.; Spector, L.G. Germline de novo mutations as a cause of childhood cancer. JCO Precis. Oncol. 2022, 6, e2100505. [Google Scholar] [CrossRef] [PubMed]
- Friend, S.H.; Bernards, R.; Rogelj, S.; Weinberg, R.A.; Rapaport, J.M.; Albert, D.M.; Dryja, T.P. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 1986, 323, 643–646. [Google Scholar] [CrossRef] [PubMed]
- MacCarthy, A.; Bayne, A.; Draper, G.; Eatock, E.; Kroll, M.; Stiller, C.; Vincent, T.; Hawkins, M.; Jenkinson, H.; Kingston, J. Non-ocular tumours following retinoblastoma in Great Britain 1951 to 2004. Br. J. Ophthalmol. 2009, 93, 1159–1162. [Google Scholar] [CrossRef]
- Musarella, M.A.; Gallie, B.L. A simplified scheme for genetic counseling in retinoblastoma. J. Pediatr. Ophthalmol. Strabismus 1987, 24, 124–125. [Google Scholar] [CrossRef] [PubMed]
- Kamihara, J.; Bourdeaut, F.; Foulkes, W.D.; Molenaar, J.J.; Mossé, Y.P.; Nakagawara, A.; Parareda, A.; Scollon, S.R.; Schneider, K.W.; Skalet, A.H. Retinoblastoma and neuroblastoma predisposition and surveillance. Clin. Cancer Res. 2017, 23, e98–e106. [Google Scholar] [CrossRef] [PubMed]
- Kleihues, P.; Schäuble, B.; zur Hausen, A.; Estève, J.; Ohgaki, H. Tumors associated with p53 germline mutations: A synopsis of 91 families. Am. J. Pathol. 1997, 150, 1. [Google Scholar] [PubMed]
- Mai, P.L.; Best, A.F.; Peters, J.A.; DeCastro, R.M.; Khincha, P.P.; Loud, J.T.; Bremer, R.C.; Rosenberg, P.S.; Savage, S.A. Risks of first and subsequent cancers among TP53 mutation carriers in the National Cancer Institute Li-Fraumeni syndrome cohort. Cancer 2016, 122, 3673–3681. [Google Scholar] [CrossRef]
- Tallis, E.; Scollon, S.; Ritter, D.; Plon, S. Evolution of germline TP53 variant classification in children with cancer. Cancer Genet. 2022, 264, 29–32. [Google Scholar] [CrossRef]
- Diessner, B.J.; Pankratz, N.; Hooten, A.J.; Mirabello, L.; Sarver, A.L.; Mills, L.J.; Malkin, D.; Kelley, A.C.; Spector, L.G. Nearly half of TP53 germline variants predicted to be pathogenic in patients with osteosarcoma are de novo: A report from the Children’s Oncology Group. JCO Precis. Oncol. 2020, 4, 1187–1195. [Google Scholar] [CrossRef]
- Renaux-Petel, M.; Charbonnier, F.; Théry, J.-C.; Fermey, P.; Lienard, G.; Bou, J.; Coutant, S.; Vezain, M.; Kasper, E.; Fourneaux, S. Contribution of de novo and mosaic TP53 mutations to Li-Fraumeni syndrome. J. Med. Genet. 2018, 55, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Ercan, A.B.; Aronson, M.; Fernandez, N.R.; Chang, Y.; Levine, A.; Liu, Z.A.; Negm, L.; Edwards, M.; Bianchi, V.; Stengs, L. Clinical and biological landscape of constitutional mismatch-repair deficiency syndrome: An International Replication Repair Deficiency Consortium cohort study. Lancet Oncol. 2024, 25, 668–682. [Google Scholar] [CrossRef] [PubMed]
- Ghorbanoghli, Z.; van Kouwen, M.; Versluys, B.; Bonnet, D.; Devalck, C.; Tinat, J.; Januszkiewicz-Lewandowska, D.; Costas, C.C.; Cottereau, E.; Hardwick, J.C. High yield of surveillance in patients diagnosed with constitutional mismatch repair deficiency. J. Med. Genet. 2023, 60, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Althoff, K.; Beckers, A.; Bell, E.; Nortmeyer, M.; Thor, T.; Sprüssel, A.; Lindner, S.; De Preter, K.; Florin, A.; Heukamp, L.C. A Cre-conditional MYCN-driven neuroblastoma mouse model as an improved tool for preclinical studies. Oncogene 2015, 34, 3357–3368. [Google Scholar] [CrossRef] [PubMed]
- London, W.; Castleberry, R.; Matthay, K.; Look, A.; Seeger, R.; Shimada, H.; Thorner, P.; Brodeur, G.; Maris, J.; Reynolds, C. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children’s Oncology Group. J. Clin. Oncol. 2005, 23, 6459–6465. [Google Scholar] [CrossRef] [PubMed]
- Louis, C.U.; Shohet, J.M. Neuroblastoma: Molecular pathogenesis and therapy. Annu. Rev. Med. 2015, 66, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Takita, J. Molecular basis and clinical features of neuroblastoma. JMA J. 2021, 4, 321–331. [Google Scholar] [PubMed]
- Namayandeh, S.M.; Khazaei, Z.; Najafi, M.L.; Goodarzi, E.; Moslem, A. Global leukemia in children 0–14 statistics 2018, incidence and mortality and Human Development Index (HDI): GLOBOCAN sources and methods. Asian Pac. J. Cancer Prev. 2020, 21, 1487. [Google Scholar] [CrossRef]
- Tebbi, C.K. Etiology of acute leukemia: A review. Cancers 2021, 13, 2256. [Google Scholar] [CrossRef]
- Stieglitz, E.; Loh, M.L. Genetic predispositions to childhood leukemia. Ther. Adv. Hematol. 2013, 4, 270–290. [Google Scholar] [CrossRef]
- Fearnhead, N.S.; Britton, M.P.; Bodmer, W.F. The abc of apc. Hum. Mol. Genet. 2001, 10, 721–733. [Google Scholar] [CrossRef] [PubMed]
- Kadiyska, T.; Todorov, T.; Bichev, S.; Vazharova, R.; Nossikoff, A.; Savov, A.; Mitev, V. APC promoter 1B deletion in familial polyposis—Implications for mutation-negative families. Clin. Genet. 2014, 85, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Bisgaard, M.L.; Fenger, K.; Bülow, S.; Niebuhr, E.; Mohr, J. Familial adenomatous polyposis (FAP): Frequency, penetrance, and mutation rate. Hum. Mutat. 1994, 3, 121–125. [Google Scholar] [CrossRef]
- Jansen, A.M.L.; Goel, A. Mosaicism in patients with colorectal cancer or polyposis syndromes: A systematic review. Clin. Gastroenterol. Hepatol. 2020, 18, 1949–1960. [Google Scholar] [CrossRef] [PubMed]
- Koirala, D.P.; Shrestha, B.M.; Shrestha, S.; Bhatta, S.; Kharel, S.; Tiwari, S.B.; Karn, V.; Bhatta, O.P. Symptomatic familial adenomatous polyposis in an adolescent: A case report. Int. J. Surg. Case Rep. 2021, 84, 106118. [Google Scholar] [CrossRef] [PubMed]
- Half, E.; Bercovich, D.; Rozen, P. Familial adenomatous polyposis. Orphanet J. Rare Dis. 2009, 4, 22. [Google Scholar] [CrossRef] [PubMed]
- Ghalayani, P.; Saberi, Z.; Sardari, F. Neurofibromatosis type I (von Recklinghausen’s disease): A family case report and literature review. Dent. Res. J. 2012, 9, 483. [Google Scholar]
- Shearer, P.; Parham, D.; Kovnar, E.; Kun, L.; Rao, B.; Lobe, T.; Pratt, C. Neurofibromatosis type I and malignancy: Review of 32 pediatric cases treated at a single institution. Med. Pediatr. Oncol. 1994, 22, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Gutmann, D.H.; Geist, R.T.; Rose, K.; Wallin, G.; Moley, J.F. Loss of neurofibromatosis type I (NFI) gene expression in pheochromocytomas from patients without NFI. Genes Chromosomes Cancer 1995, 13, 104–109. [Google Scholar] [CrossRef]
- Adil, A.; Koritala, T.; Munakomi, S.; Singh, A.K. Neurofibromatosis type 1. In StatPearls [Internet]; StatPearls Publishing: St. Petersburg, FL, USA, 2023. [Google Scholar]
- Campen, C.J.; Gutmann, D.H. Optic pathway gliomas in neurofibromatosis type 1. J. Child Neurol. 2018, 33, 73–81. [Google Scholar] [CrossRef]
- Matsui, I.; Tanimura, M.; Kobayashi, N.; Sawada, T.; Nagahara, N.; Akatsuka, J.I. Neurofibromatosis type 1 and childhood cancer. Cancer 1993, 72, 2746–2754. [Google Scholar] [CrossRef] [PubMed]
- Brodeur, G.M. The NF1 gene in myelopoiesis and childhood myelodysplastic syndromes. N. Engl. J. Med. 1994, 330, 637–639. [Google Scholar] [CrossRef] [PubMed]
- Pruteanu, D.P.; Olteanu, D.E.; Cosnarovici, R.; Mihut, E.; Nagy, V. Genetic predisposition in pediatric oncology. Med. Pharm. Rep. 2020, 93, 323. [Google Scholar] [CrossRef] [PubMed]
- Cullinan, N.; Schiller, I.; Di Giuseppe, G.; Mamun, M.; Reichman, L.; Cacciotti, C.; Wheaton, L.; Caswell, K.; Di Monte, B.; Gibson, P. Utility of a cancer predisposition screening tool for predicting subsequent malignant neoplasms in childhood cancer survivors. J. Clin. Oncol. 2021, 39, 3207–3216. [Google Scholar] [CrossRef] [PubMed]
- Rednam, S.P. Updates on progress in cancer screening for children with hereditary cancer predisposition syndromes. Curr. Opin. Pediatr. 2019, 31, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Saletta, F.; Dalla Pozza, L.; Byrne, J.A. Genetic causes of cancer predisposition in children and adolescents. Transl. Pediatr. 2015, 4, 67. [Google Scholar] [PubMed]
- Hanington, L.; Walker, L.; Wilson, S. Paediatric cancer predisposition syndromes in the genomic age. Paediatr. Child Health 2022, 32, 184–190. [Google Scholar] [CrossRef]
- Kagami, L.; Baldino, S.; MacFarland, S.P. Childhood Cancer Predisposition: An Overview for the General Pediatrician. Pediatr. Ann. 2022, 51, e15–e21. [Google Scholar] [CrossRef] [PubMed]
- Johns, C.; Kline, C.; Solomon, D.; Mueller, S.; Banerjee, A.; Gupta, N.; Reddy, A. TBIO-12. Screening for Cancer Predisposition Syndromes in Pediatric Neuro-Oncology Patients: A Single Institution Experience. Neuro-Oncology 2022, 24, i185. [Google Scholar] [CrossRef]
- Gillespie, N.J.; Van Mater, D. Genitourinary manifestations of hereditary cancer predisposition syndromes in children. Transl. Androl. Urol. 2020, 9, 2331. [Google Scholar] [CrossRef]
- Al Shanbari, N.; Alharthi, A.; Bakry, S.M.; Alzahrani, M.; Alhijjy, M.M.; Mirza, H.A.; Almutairi, M.; Ekram, S.N. Knowledge of Cancer Genetics and the Importance of Genetic Testing: A Public Health Study. Cureus 2023, 15, e43016. [Google Scholar] [CrossRef] [PubMed]
- Alba-Pavón, P.; Alaña, L.; Gutierrez-Jimeno, M.; García-Obregón, S.; Imízcoz, T.; Panizo, E.; González-Urdiales, P.; Echebarria-Barona, A.; Lopez Almaraz, R.; Zaldumbide, L. Identification of germline cancer predisposition variants in pediatric sarcoma patients from somatic tumor testing. Sci. Rep. 2023, 13, 2959. [Google Scholar] [CrossRef] [PubMed]
- Stoltze, U.K.; Foss-Skiftesvik, J.; van Overeem Hansen, T.; Byrjalsen, A.; Sehested, A.; Scheie, D.; Stamm Mikkelsen, T.; Rasmussen, S.; Bak, M.; Okkels, H. Genetic predisposition and evolutionary traces of pediatric cancer risk: A prospective 5-year population-based genome sequencing study of children with CNS tumors. Neuro-Oncology 2023, 25, 761–773. [Google Scholar] [CrossRef] [PubMed]
- Downie, L.; Halliday, J.; Lewis, S.; Amor, D.J. Principles of genomic newborn screening programs: A systematic review. JAMA Netw. Open 2021, 4, e2114336. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, S.; Dikow, N.; Pfister, S.M.; Pajtler, K.W. Cancer predisposition in pediatric neuro-oncology—Practical approaches and ethical considerations. Neuro-Oncol. Pract. 2021, 8, 526–538. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, U.A.; Bienias, M.; Zinke, C.; Prazenicova, M.; Lohse, J.; Jahn, A.; Menzel, M.; Langanke, J.; Walter, C.; Wagener, R. A clinical screening tool to detect genetic cancer predisposition in pediatric oncology shows high sensitivity but can miss a substantial percentage of affected children. Genet. Med. 2023, 25, 100875. [Google Scholar] [CrossRef] [PubMed]
- Sahai, I.; Marsden, D. Newborn screening. Crit. Rev. Clin. Lab. Sci. 2009, 46, 55–82. [Google Scholar] [CrossRef] [PubMed]
- Berry, S.A. Newborn screening. Clin. Perinatol. 2015, 42, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Pourfarzam, M.; Zadhoush, F. Newborn screening for inherited metabolic disorders; news and views. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2013, 18, 801. [Google Scholar]
- Committee on Bioethics; Committee on Genetics; The American College of Medical Genetics; Genomics Social; Ethical; Legal Issues Committee; Fallat, M.E.; Katz, A.L.; Mercurio, M.R.; Moon, M.R.; et al. Ethical and policy issues in genetic testing and screening of children. Pediatrics 2013, 131, 620–622. [Google Scholar]
- Ghaly, M.; El Akoum, M.; Alkuraya, F.; Al-Shafai, M.; Al-Abdulla, S.A.; Fakhro, K.; ben Omran, T. Islamic Ethics and the Healthcare of Children in the Genetics Era; WISH: Doha, Qatar, 2022; Available online: https://wish.org.qa/reports/islamic-ethics-and-the-healthcare-of-children-in-the-genetics-era/ (accessed on 25 March 2024).
- Wahab, A.A.; Al Thani, G.; Dawod, S.; Kambouris, M.; Al Hamed, M. Heterogeneity of the cystic fibrosis phenotype in a large kindred family in Qatar with cystic fibrosis mutation (I1234V). J. Trop. Pediatr. 2001, 47, 110–112. [Google Scholar] [CrossRef] [PubMed]
- De Sanctis, V. Multidisciplinary care of haemoglobinopathies in Qatar. Acta Bio-Medica Atenei Parm. 2018, 89, 7081. [Google Scholar]
- Albagshi, M.H.; Alomran, S.; Sloma, S.; Albagshi, M.; Alsuweel, A.; AlKhalaf, H. Prevalence of glucose-6-phosphate dehydrogenase deficiency among children in Eastern Saudi Arabia. Cureus 2020, 12, e11235. [Google Scholar] [CrossRef] [PubMed]
- Alsaeed, E.S.; Farhat, G.N.; Assiri, A.M.; Memish, Z.; Ahmed, E.M.; Saeedi, M.Y.; Al-Dossary, M.F.; Bashawri, H. Distribution of hemoglobinopathy disorders in Saudi Arabia based on data from the premarital screening and genetic counseling program, 2011–2015. J. Epidemiol. Glob. Health 2017, 7, S41–S47. [Google Scholar] [CrossRef] [PubMed]
- Jastaniah, W.; Aljefri, A.; Ayas, M.; Alharbi, M.; Alkhayat, N.; Al-Anzi, F.; Yassin, F.; Alkasim, F.; Alharbi, Q.; Abdullah, S. Prevalence of hereditary cancer susceptibility syndromes in children with cancer in a highly consanguineous population. Cancer Epidemiol. 2018, 55, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Zafar, A.; Khan, M.J.; Naeem, A. MDM2-an indispensable player in tumorigenesis. Mol. Biol. Rep. 2023, 50, 6871–6883. [Google Scholar] [CrossRef] [PubMed]
- Wagener, R.; Taeubner, J.; Walter, C.; Yasin, L.; Alzoubi, D.; Bartenhagen, C.; Attarbaschi, A.; Classen, C.-F.; Kontny, U.; Hauer, J. Comprehensive germline-genomic and clinical profiling in 160 unselected children and adolescents with cancer. Eur. J. Hum. Genet. 2021, 29, 1301–1311. [Google Scholar] [CrossRef] [PubMed]
- Bakhuizen, J.J.; Hopman, S.M.; Bosscha, M.I.; Dommering, C.J.; van den Heuvel-Eibrink, M.M.; Hol, J.A.; Kester, L.A.; Koudijs, M.J.; Langenberg, K.P.; Loeffen, J.L. Assessment of cancer predisposition syndromes in a national cohort of children with a neoplasm. JAMA Netw. Open 2023, 6, e2254157. [Google Scholar] [CrossRef]
- Bilyalov, A.; Nikolaev, S.; Shigapova, L.; Khatkov, I.; Danishevich, A.; Zhukova, L.; Smolin, S.; Titova, M.; Lisica, T.; Bodunova, N. Application of Multigene Panels Testing for Hereditary Cancer Syndromes. Biology 2022, 11, 1461. [Google Scholar] [CrossRef]
- Shahani, S.A.; Marcotte, E.L. Landscape of germline cancer predisposition mutations testing and management in pediatrics: Implications for research and clinical care. Front. Pediatr. 2022, 10, 1011873. [Google Scholar] [CrossRef]
- Byrjalsen, A.; Diets, I.J.; Bakhuizen, J.; van Overeem Hansen, T.; Schmiegelow, K.; Gerdes, A.-M.; Stoltze, U.; Kuiper, R.P.; Merks, J.H.; Wadt, K. Selection criteria for assembling a pediatric cancer predisposition syndrome gene panel. Fam. Cancer 2021, 20, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.; Meyn, M.; Shuman, C.; Shaul, R.Z.; Mantella, L.; Szego, M.; Bowdin, S.; Monfared, N.; Hayeems, R. Parents perspectives on whole genome sequencing for their children: Qualified enthusiasm? J. Med. Ethics 2017, 43, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Lynce, F.; Isaacs, C. How far do we go with genetic evaluation? Gene, panel, and tumor testing. Am. Soc. Clin. Oncol. Educ. Book 2016, 36, e72–e78. [Google Scholar] [CrossRef] [PubMed]
- Rehm, H.L. A new era in the interpretation of human genomic variation. Genet. Med. 2017, 19, 1092–1095. [Google Scholar] [CrossRef] [PubMed]
- Millot, G.A.; Carvalho, M.A.; Caputo, S.M.; Vreeswijk, M.P.; Brown, M.A.; Webb, M.; Rouleau, E.; Neuhausen, S.L.; Hansen, T.V.O.; Galli, A. A guide for functional analysis of BRCA1 variants of uncertain significance. Hum. Mutat. 2012, 33, 1526–1537. [Google Scholar] [CrossRef]
- Guidugli, L.; Carreira, A.; Caputo, S.M.; Ehlen, A.; Galli, A.; Monteiro, A.N.; Neuhausen, S.L.; Hansen, T.V.; Couch, F.J.; Vreeswijk, M.P. Functional assays for analysis of variants of uncertain significance in BRCA 2. Hum. Mutat. 2014, 35, 151–164. [Google Scholar] [CrossRef]
- Gasperini, M.; Starita, L.; Shendure, J. The power of multiplexed functional analysis of genetic variants. Nat. Protoc. 2016, 11, 1782–1787. [Google Scholar] [CrossRef]
- Minion, L.E.; Dolinsky, J.S.; Chase, D.M.; Dunlop, C.L.; Chao, E.C.; Monk, B.J. Hereditary predisposition to ovarian cancer, looking beyond BRCA1/BRCA2. Gynecol. Oncol. 2015, 137, 86–92. [Google Scholar] [CrossRef]
- Ricker, C.; Culver, J.O.; Lowstuter, K.; Sturgeon, D.; Sturgeon, J.D.; Chanock, C.R.; Gauderman, W.J.; McDonnell, K.J.; Idos, G.E.; Gruber, S.B. Increased yield of actionable mutations using multi-gene panels to assess hereditary cancer susceptibility in an ethnically diverse clinical cohort. Cancer Genet. 2016, 209, 130–137. [Google Scholar] [CrossRef]
- Susswein, L.R.; Marshall, M.L.; Nusbaum, R.; Vogel Postula, K.J.; Weissman, S.M.; Yackowski, L.; Vaccari, E.M.; Bissonnette, J.; Booker, J.K.; Cremona, M.L. Pathogenic and likely pathogenic variant prevalence among the first 10,000 patients referred for next-generation cancer panel testing. Genet. Med. 2016, 18, 823–832. [Google Scholar] [CrossRef]
- Lumish, H.S.; Steinfeld, H.; Koval, C.; Russo, D.; Levinson, E.; Wynn, J.; Duong, J.; Chung, W.K. Impact of panel gene testing for hereditary breast and ovarian cancer on patients. J. Genet. Couns. 2017, 26, 1116–1129. [Google Scholar] [CrossRef] [PubMed]
- Carrozzo, R.; Lodi, M.; Di Giannatale, A.; Cipri, S.; Rosignoli, C.; Giovannoni, I.; Stracuzzi, A.; Rizza, T.; Montante, C.; Agolini, E. Case report: A safeguard in the sea of variants of uncertain significance: A case study on child with high risk neuroblastoma and acute myeloid leukemia. Front. Oncol. 2024, 13, 1324013. [Google Scholar]
- Volchenboum, S.L.; Cox, S.M.; Heath, A.; Resnick, A.; Cohn, S.L.; Grossman, R. Data commons to support pediatric cancer research. Am. Soc. Clin. Oncol. Educ. Book 2017, 37, 746–752. [Google Scholar] [CrossRef]
- Hankey, B.F.; Ries, L.A.; Edwards, B.K. The surveillance, epidemiology, and end results program: A national resource. Cancer Epidemiol. Biomark. Prev. 1999, 8, 1117–1121. [Google Scholar]
- McLeod, C.; Gout, A.M.; Zhou, X.; Thrasher, A.; Rahbarinia, D.; Brady, S.W.; Macias, M.; Birch, K.; Finkelstein, D.; Sunny, J. St. Jude Cloud: A pediatric cancer genomic data-sharing ecosystem. Cancer Discov. 2021, 11, 1082–1099. [Google Scholar] [CrossRef] [PubMed]
- Cooper, G.M.; Shendure, J. Needles in stacks of needles: Finding disease-causal variants in a wealth of genomic data. Nat. Rev. Genet. 2011, 12, 628–640. [Google Scholar] [CrossRef] [PubMed]
- Levy, H.L. Newborn screening: The genomic challenge. Mol. Genet. Genom. Med. 2014, 2, 81. [Google Scholar] [CrossRef] [PubMed]
- Kuhlen, M.; Taeubner, J.; Brozou, T.; Wieczorek, D.; Siebert, R.; Borkhardt, A. Family-based germline sequencing in children with cancer. Oncogene 2019, 38, 1367–1380. [Google Scholar] [CrossRef] [PubMed]
- Mirabello, L.; Zhu, B.; Koster, R.; Karlins, E.; Dean, M.; Yeager, M.; Gianferante, M.; Spector, L.G.; Morton, L.M.; Karyadi, D. Frequency of pathogenic germline variants in cancer-susceptibility genes in patients with osteosarcoma. JAMA Oncol. 2020, 6, 724–734. [Google Scholar] [CrossRef]
- McGlynn, J.A.; Langfelder-Schwind, E. Bridging the gap between scientific advancement and real-world application: Pediatric genetic counseling for common syndromes and single-gene disorders. Cold Spring Harb. Perspect. Med. 2020, 10, a036640. [Google Scholar] [CrossRef]
- Godley, L.A.; Shimamura, A. Genetic predisposition to hematologic malignancies: Management and surveillance. Blood J. Am. Soc. Hematol. 2017, 130, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Stoll, J.; Kupfer, S.S. Risk assessment and genetic testing for inherited gastrointestinal syndromes. Gastroenterol. Hepatol. 2019, 15, 462. [Google Scholar]
- Mittendorf, K.F.; Knerr, S.; Kauffman, T.L.; Lindberg, N.M.; Anderson, K.P.; Feigelson, H.S.; Gilmore, M.J.; Hunter, J.E.; Joseph, G.; Kraft, S.A. Systemic barriers to risk-reducing interventions for hereditary cancer syndromes: Implications for health care inequities. JCO Precis. Oncol. 2021, 5, 1709–1718. [Google Scholar] [CrossRef] [PubMed]
- Venier, R.E.; Grubs, R.E.; Kessler, E.; Cooper, K.L.; Bailey, K.M.; Meade, J. Evaluation of barriers to referral for cancer predisposition syndromes in pediatric oncology patients in the United States. J. Genet. Couns. 2022, 31, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Anis, A.H.; Cromwell, I.; Mohammadi, T.; Schrader, K.A.; Lucas, J.; Armour, C.M.; Clausen, M.; Bombard, Y.; Regier, D.A. Health-care practitioners’ preferences for the return of secondary findings from next-generation sequencing: A discrete choice experiment. Genet. Med. 2020, 22, 2011–2019. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S. A scoping review of global guidelines for the disclosure of secondary genomic findings to inform the establishment of guidelines in China. China CDC Wkly. 2022, 4, 697. [Google Scholar] [PubMed]
- Sanford Kobayashi, E.; Waldman, B.; Engorn, B.M.; Perofsky, K.; Allred, E.; Briggs, B.; Gatcliffe, C.; Ramchandar, N.; Gold, J.J.; Doshi, A. Cost efficacy of rapid whole genome sequencing in the pediatric intensive care unit. Front. Pediatr. 2022, 9, 809536. [Google Scholar] [CrossRef] [PubMed]
- Tak, C.R.; Biltaji, E.; Kohlmann, W.; Maese, L.; Hainaut, P.; Villani, A.; Malkin, D.; Sherwin, C.M.; Brixner, D.I.; Schiffman, J.D. Cost-effectiveness of early cancer surveillance for patients with Li–Fraumeni syndrome. Pediatr. Blood Cancer 2019, 66, e27629. [Google Scholar] [CrossRef]
- Lunke, S.; Bouffler, S.E.; Downie, L.; Caruana, J.; Amor, D.J.; Archibald, A.; Bombard, Y.; Christodoulou, J.; Clausen, M.; De Fazio, P. Prospective cohort study of genomic newborn screening: BabyScreen+ pilot study protocol. BMJ Open 2024, 14, e081426. [Google Scholar] [CrossRef]
- Vears, D.F.; Savulescu, J.; Christodoulou, J.; Wall, M.; Newson, A.J. Are we ready for whole population genomic sequencing of asymptomatic newborns? Pharmacogenom. Pers. Med. 2023, 16, 681–691. [Google Scholar] [CrossRef]
- Comitani, F.; Nash, J.O.; Cohen-Gogo, S.; Chang, A.I.; Wen, T.T.; Maheshwari, A.; Goyal, B.; Tio, E.S.; Tabatabaei, K.; Mayoh, C. Diagnostic classification of childhood cancer using multiscale transcriptomics. Nat. Med. 2023, 29, 656–666. [Google Scholar] [CrossRef] [PubMed]
- Oberg, J.A.; Glade Bender, J.L.; Sulis, M.L.; Pendrick, D.; Sireci, A.N.; Hsiao, S.J.; Turk, A.T.; Dela Cruz, F.S.; Hibshoosh, H.; Remotti, H. Implementation of next generation sequencing into pediatric hematology-oncology practice: Moving beyond actionable alterations. Genome Med. 2016, 8, 133. [Google Scholar] [CrossRef] [PubMed]
- Wise, J. Genome sequencing of children promises a new era in oncology. BMJ Br. Med. J. 2019, 364, l105. [Google Scholar] [CrossRef] [PubMed]
- Meade, C.; Bonhomme, N.F. Newborn screening: Adapting to advancements in whole-genome sequencing. Clin. OMICs 2014, 1, 14–17. [Google Scholar] [CrossRef]
- Waisbren, S.E.; Albers, S.; Amato, S.; Ampola, M.; Brewster, T.G.; Demmer, L.; Eaton, R.B.; Greenstein, R.; Korson, M.; Larson, C. Effect of expanded newborn screening for biochemical genetic disorders on child outcomes and parental stress. JAMA 2003, 290, 2564–2572. [Google Scholar] [CrossRef] [PubMed]
- Scarpa, M.; Bonham, J.R.; Dionisi-Vici, C.; Prevot, J.; Pergent, M.; Meyts, I.; Mahlaoui, N.; Schielen, P.C. Newborn screening as a fully integrated system to stimulate equity in neonatal screening in Europe. Lancet Reg. Health Eur. 2022, 13, 100311. [Google Scholar] [CrossRef] [PubMed]
- Ersig, A.L.; Jaja, C.; Tluczek, A. Call to Action for Advancing Equitable Genomic Newborn Screening. Public Health Genom. 2023, 26, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Bick, D.; Ahmed, A.; Deen, D.; Ferlini, A.; Garnier, N.; Kasperaviciute, D.; Leblond, M.; Pichini, A.; Rendon, A.; Satija, A. Newborn screening by genomic sequencing: Opportunities and challenges. Int. J. Neonatal Screen. 2022, 8, 40. [Google Scholar] [CrossRef] [PubMed]
- Gaikwad, S.; Ganvir, S.; Uke, P.; Ganvir, S.P. Newborn Screening in Developing Countries: The Need of the Hour. Cureus 2024, 16, e59572. [Google Scholar] [CrossRef]
- Ross, L.F.; Saal, H.M.; David, K.L.; Anderson, R.R.; Pediatrics, A.A.o. Technical report: Ethical and policy issues in genetic testing and screening of children. Genet. Med. 2013, 15, 234–245. [Google Scholar] [CrossRef]
- Bredenoord, A.L.; de Vries, M.C.; Van Delden, H. The right to an open future concerning genetic information. Am. J. Bioeth. 2014, 14, 21–23. [Google Scholar] [CrossRef] [PubMed]
- Frankel, L.A.; Pereira, S.; McGuire, A.L. Potential psychosocial risks of sequencing newborns. Pediatrics 2016, 137, S24–S29. [Google Scholar] [CrossRef] [PubMed]
- Fatumo, S.; Chikowore, T.; Choudhury, A.; Ayub, M.; Martin, A.R.; Kuchenbäcker, K. Diversity in Genomic Studies: A Roadmap to Address the Imbalance. Nat. Med. 2022, 28, 243. [Google Scholar] [CrossRef] [PubMed]
- Cahaney, C.; Dhir, A.; Ghosh, T. Role of Precision Medicine in Pediatric Oncology. Pediatr. Ann. 2022, 51, e8–e14. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, M. Risk stratifying MDS in the time of precision medicine. Hematology 2022, 2022, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Rossini, L.; Durante, C.; Bresolin, S.; Opocher, E.; Marzollo, A.; Biffi, A. Diagnostic strategies and algorithms for investigating cancer predisposition syndromes in children presenting with malignancy. Cancers 2022, 14, 3741. [Google Scholar] [CrossRef] [PubMed]
- Berlanga, P.; Pierron, G.; Lacroix, L.; Chicard, M.; Adam de Beaumais, T.; Marchais, A.; Harttrampf, A.C.; Iddir, Y.; Larive, A.; Soriano Fernandez, A. The European MAPPYACTS trial: Precision medicine program in pediatric and adolescent patients with recurrent malignancies. Cancer Discov. 2022, 12, 1266–1281. [Google Scholar] [CrossRef] [PubMed]
- Van Tilburg, C.M.; Pfaff, E.; Pajtler, K.W.; Langenberg, K.P.; Fiesel, P.; Jones, B.C.; Balasubramanian, G.P.; Stark, S.; Johann, P.D.; Blattner-Johnson, M. The pediatric precision oncology INFORM registry: Clinical outcome and benefit for patients with very high-evidence targets. Cancer Discov. 2021, 11, 2764–2779. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.; Mayoh, C.; Lau, L.M.; Khuong-Quang, D.-A.; Pinese, M.; Kumar, A.; Barahona, P.; Wilkie, E.E.; Sullivan, P.; Bowen-James, R. Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer. Nat. Med. 2020, 26, 1742–1753. [Google Scholar] [CrossRef]
- Parsons, D.W.; Janeway, K.A.; Patton, D.R.; Winter, C.L.; Coffey, B.; Williams, P.M.; Roy-Chowdhuri, S.; Tsongalis, G.J.; Routbort, M.; Ramirez, N.C. Actionable tumor alterations and treatment protocol enrollment of pediatric and young adult patients with refractory cancers in the National Cancer Institute–Children’s Oncology Group pediatric MATCH trial. J. Clin. Oncol. 2022, 40, 2224. [Google Scholar] [CrossRef]
- Villani, A.; Davidson, S.; Kanwar, N.; Lo, W.W.; Li, Y.; Cohen-Gogo, S.; Fuligni, F.; Edward, L.-M.; Light, N.; Layeghifard, M. The clinical utility of integrative genomics in childhood cancer extends beyond targetable mutations. Nat. Cancer 2023, 4, 203–221. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.; Hu, Z.; Bush, L.W.; Cope, H.; Holm, I.A.; Kingsmore, S.F.; Wilhelm, K.; Scharfe, C.; Brower, A. NBSTRN tools to advance newborn screening research and support newborn screening stakeholders. Int. J. Neonatal Screen. 2023, 9, 63. [Google Scholar] [CrossRef] [PubMed]
- Brower, A.; Chan, K.; Hartnett, M.; Taylor, J. The longitudinal pediatric data resource: Facilitating longitudinal collection of health information to inform clinical care and guide newborn screening efforts. Int. J. Neonatal Screen. 2021, 7, 37. [Google Scholar] [CrossRef] [PubMed]
- Yehia, L.; Plitt, G.; Tushar, A.M.; Joo, J.; Burke, C.A.; Campbell, S.C.; Heiden, K.; Jin, J.; Macaron, C.; Michener, C.M. Longitudinal analysis of cancer risk in children and adults with germline PTEN variants. JAMA Netw. Open 2023, 6, e239705. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, A.C.; Spurdle, A.B.; Sinilnikova, O.M.; Healey, S.; Pooley, K.A.; Schmutzler, R.K.; Versmold, B.; Engel, C.; Meindl, A.; Arnold, N. Common breast cancer-predisposition alleles are associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. Am. J. Hum. Genet. 2008, 82, 937–948. [Google Scholar] [CrossRef]
- Murphy, A.J.; Cheng, C.; Williams, J.; Shaw, T.I.; Pinto, E.M.; Dieseldorff-Jones, K.; Brzezinski, J.; Renfro, L.A.; Tornwall, B.; Huff, V. Genetic and epigenetic features of bilateral Wilms tumor predisposition in patients from the Children’s Oncology Group AREN18B5-Q. Nat. Commun. 2023, 14, 8006. [Google Scholar] [CrossRef]
Data Sharing Initiative | Organization | Data Domain | Data Source Description | Website |
---|---|---|---|---|
Cancer Research Data Commons (TARGET) | National Cancer Institute (US NCI) | Pediatric Oncology (Medical registries) | Therapeutically Applicable Research to Generate Effective Treatments (TARGET) consortium for clinical trials in childhood and adolescent cancer research | https://www.cancer.gov/research/nci-role/bioinformatics/cancer-research-data-ecosystem-infographic (accessed on 10 March 2024) |
Cancer Research Data Commons (Genomic Data Commons) | National Cancer Institute (US NCI) | Pediatric oncology (Clinical Genomics) | To harmonize NCI’s cancer genomics data, including processing clinical genomics data also developing data models for clinical data and biospecimens | https://gdc.cancer.gov/ (accessed on 10 March 2024) |
Childhood Cancer Research Network (EveryChild) | Children’s Oncology Group (COG) | Pediatric oncology (Clinical data registries) | Medical registries of pediatric cancer data registered with Children’s Oncology Group (COG) | http://projecteverychild.org/ (accessed on 7 March 2024) |
Kids First Data Resource Center (DRC) | Gabriella Miller Kids First Data Resource Center (Kids First DRC) program | Pediatric oncology (Clinical genomics) | Six partner studies, institutions, and consortia. Kids first data are functionally equivalent to other extensive genomic efforts such as Genotype-Tissue Expression (GTeX) and NCI Genomic Data Commons | https://kidsfirstdrc.org (accessed on 7 March 2024) |
European Cancer Information System | Knowledge Centre on Cancer (European Commission) | Pediatric Oncology (Demographics of Europe) | ECIS brings data together from Europe to better monitor trends and outcomes for different diagnostic groups of childhood cancer | https://ecis.jrc.ec.europa.eu/index.php (accessed on 10 April 2024) |
National Program of Cancer Registries (Pediatric and Young Adult Early Case Capture Program) | Centers for Disease Control (US CDC) | Pediatric Oncology (Clinical data registries) | Cancer registries of US population within 30 days of diagnosis | https://www.cdc.gov/cancer/npcr/index.htm (accessed on 21 March 2024) |
NCI-COG Pediatric MATCH (Molecular Analysis for Therapy Choice) | National Cancer Institute and Children’s Oncology Group | Pediatric Oncology (Clinical genomics data registries) | Precision medicine program for pediatric cancer patients using clinical data from COG consortium | https://www.cancer.gov/about-cancer/treatment/clinical-trials/nci-supported/pediatric-match (accessed on 21 March 2024) |
PeCan (St. Jude Cloud) | St. Jude’s Hospital | Pediatric Oncology (Clinical Genomics) | Curated data from ~900 pediatric cancer samples at St. Jude and collaborators | https://pecan.stjude.cloud/ (accessed on 21 March 2024) |
Pediatric Cancer Data Commons (PCDC) | University of Chicago and partners | Pediatric oncology (Clinical data registries) | • International Neuroblastoma Risk Group—INRG), International Soft-Tissue Sarcoma Consortium—INSTRuCT, Malignant Germ Cell International Consortium—MaGIC, and acute myelogenous leukemia • TARGET • Nationwide Children’s Biopathology Center | http://commons.cri.uchicago.edu (accessed on 11 March 2024) |
St. Jude CARES | St Jude’s Hospital | Pediatric oncology (Clinical data registries) | Hospital-based pediatric cancer registration system for low- and middle-income countries | https://www.stjude.org/global/sjcares/registry.html (accessed on 11 March 2024) |
St. Jude Cloud | St. Jude’s Hospital | Pediatric Oncology (Clinical Genomics) | Genomics data from pediatric cancer patients diagnosed and treated at St. Jude | https://www.stjude.cloud/ (accessed on 11 March 2024) |
Treehouse Childhood Cancer Initiative | University of California, Santa Cruz | Pediatric Oncology (Clinical Genomics) | Publicly available gene expression data from >10 K pediatric tumor samples by combined efforts of nine hospitals and consortia | https://treehousegenomics.soe.ucsc.edu/explore-our-data/ (accessed on 18 March 2024) |
UNderstand CANcer (UNCAN.eu) | European Union | Pediatric Oncology (Cancer Research) | UNCAN.eu is an initiative from European Union to support the creation of a sustainable platform to connect cancer research across member states | https://uncan.eu/ (accessed on 10 April 2024) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linga, B.G.; Mohammed, S.G.A.A.; Farrell, T.; Rifai, H.A.; Al-Dewik, N.; Qoronfleh, M.W. Genomic Newborn Screening for Pediatric Cancer Predisposition Syndromes: A Holistic Approach. Cancers 2024, 16, 2017. https://doi.org/10.3390/cancers16112017
Linga BG, Mohammed SGAA, Farrell T, Rifai HA, Al-Dewik N, Qoronfleh MW. Genomic Newborn Screening for Pediatric Cancer Predisposition Syndromes: A Holistic Approach. Cancers. 2024; 16(11):2017. https://doi.org/10.3390/cancers16112017
Chicago/Turabian StyleLinga, BalaSubramani Gattu, Sawsan G. A. A. Mohammed, Thomas Farrell, Hilal Al Rifai, Nader Al-Dewik, and M. Walid Qoronfleh. 2024. "Genomic Newborn Screening for Pediatric Cancer Predisposition Syndromes: A Holistic Approach" Cancers 16, no. 11: 2017. https://doi.org/10.3390/cancers16112017
APA StyleLinga, B. G., Mohammed, S. G. A. A., Farrell, T., Rifai, H. A., Al-Dewik, N., & Qoronfleh, M. W. (2024). Genomic Newborn Screening for Pediatric Cancer Predisposition Syndromes: A Holistic Approach. Cancers, 16(11), 2017. https://doi.org/10.3390/cancers16112017