Exosomal Serum Biomarkers as Predictors for Laryngeal Carcinoma †
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods and Materials
2.1. Patients
2.2. Three-Step Study Design
2.2.1. Serum Collection
2.2.2. Serum Pool Groups
2.2.3. Exosome Purification from Serum
2.2.4. Multiplexed Proteomic Array of Serum Pool Exosomes
2.2.5. Validation of Selected Proteomic Results by Enzyme-Linked-Immunosorbent-Assay (ELISA)
2.2.6. Analysis of IGFBP7 and ANXA1 in Tissue
Tissue Analysis by Immunohistochemistry (IHC)
Tissue Protein Extraction
Validation via Western Blots (WB)
2.3. Statistical Analysis
3. Results
3.1. Demographics
3.2. Identification of IGFBP7 and Annexin A1 as Promising Differentially Expressed Exosomal Proteins Using a Highly Multiplexed Proteomic Array Analysis
3.3. Identification and Validation Cohort Show Matching Results for IGFBP7 and Annexin A1
3.4. Analysis of IGFBP7 and ANXA1 in Tissue
3.4.1. Immunohistochemical Patterns for IGFBP7 and Annexin A1
3.4.2. Validation of Proteomic Results Using Western Blots
4. Discussion
4.1. Tissue Results for IGFBP7 and ANXA1
4.2. ELISA Results for IGFBP7 Matching Previous Findings in LSCC
4.3. Potential Influence of Comorbidities on IGFBP7 Expression
4.4. ELISA Results of ANXA1 Show Opposing Data for Exosomes and Serum
4.5. Differences in ANXA1 Expression between Exosomes and Serum
4.6. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mourad, M.; Jetmore, T.; Jategaonkar, A.A.; Moubayed, S.; Moshier, E.; Urken, M.L. Epidemiological Trends of Head and Neck Cancer in the United States: A SEER Population Study HHS Public Access. J. Oral. Maxillofac. Surg. 2017, 75, 2562–2572. [Google Scholar] [CrossRef] [PubMed]
- Raitiola, H.; Pukander, J.; Laippala, P. Glottic and Supraglottic Laryngeal Carcinoma: Differences in Epidemiology. Acta Oto-Laryngol. 1999, 119, 847–851. [Google Scholar]
- Coskun, H.; Mendenhall, W.M.; Rinaldo, A.; Rodrigo, J.P.; Suárez, C.; Strojan, P.; López, F.; Mondin, V.; Saba, N.F.; Shaha, A.R.; et al. Prognosis of Subglottic Carcinoma: Is It Really Worse? Head Neck 2019, 41, 511–521. [Google Scholar] [CrossRef]
- Zeng, W.; Li, Y.; Lu, E.; Ma, M. CYP1A1 Rs1048943 and Rs4646903 Polymorphisms Associated with Laryngeal Cancer Susceptibility among Asian Populations: A Meta-Analysis. J. Cell. Mol. Med. 2016, 20, 287–293. [Google Scholar] [CrossRef]
- Waldfahrer, F.; Hauptmann, B.; Iro, H. Die Halslymphknotenmetastasierung Des Glottischen Larynxkarzinoms Lymph Node Metastasis of Glottic Laryngeal Carcinoma. TumorDiagnostik Ther. 2005, 26, 73–77. [Google Scholar] [CrossRef]
- Van Dijk, B.A.C.; Karim-Kos, H.E.; Coebergh, J.W.; Marres, H.A.M.; De Vries, E. Progress against Laryngeal Cancer in the Netherlands between 1989 and 2010. Int. J. Cancer 2014, 134, 674–681. [Google Scholar] [CrossRef] [PubMed]
- Cossu, A.M.; Mosca, L.; Zappavigna, S.; Misso, G.; Bocchetti, M.; de Micco, F.; Quagliuolo, L.; Porcelli, M.; Caraglia, M.; Boccellino, M. Long Non-Coding RNAs as Important Biomarkers in Laryngeal Cancer and Other Head and Neck Tumours. Int. J. Mol. Sci. 2019, 20, 3444. [Google Scholar] [CrossRef]
- Robert-Koch-Institut. Krebs in Deutschland Für 2015/2016; Robert Koch Institut: Berlin, Germany, 2016; Volume 160. [Google Scholar]
- Obid, R.; Redlich, M.; Tomeh, C. The Treatment of Laryngeal Cancer. Oral. Maxillofac. Surg. Clin. N. Am. 2019, 31, 1–11. [Google Scholar] [CrossRef]
- Forastiere, A.A.; Wolf, G.T.; Ismaila, N. Use of Larynx Preservation Strategies in the Treatment of Laryngeal Cancer American Society of Clinical Oncology Clinical Practice Guideline Update Summary. J. Oncol. Pract. 2017, 14, 123–128. [Google Scholar] [CrossRef]
- Huang, G.J.; Luo, M.S.; Chen, G.P.; Fu, M.Y. MiRNA–MRNA Crosstalk in Laryngeal Squamous Cell Carcinoma Based on the TCGA Database. Eur. Arch. Oto-Rhino-Laryngol. 2018, 275, 751–759. [Google Scholar] [CrossRef]
- Thurnher, D.; Erovic, B.M.; Frommlet, F.; Brannath, W.; Ehrenberger, K.; Jansen, B.; Selzer, E.; Grasl, M.C. Challenging a Dogma—Surgery Yields Superior Long-Term Results for T1a Squamous Cell Carcinoma of the Glottic Larynx Compared to Radiotherapy. Eur. J. Surg. Oncol. 2008, 34, 692–698. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, M.; Bisogno, A.; Scarpa, A.; D’Urso, A.; Marra, P.; Colacurcio, V.; De Luca, P.; Ralli, M.; Cassandro, E.; Cassandro, C. Biomarkers of Laryngeal Squamous Cell Carcinoma: A Review. Ann. Diagn. Pathol. 2021, 54, 151787. [Google Scholar] [CrossRef] [PubMed]
- Rey, J.; Tobias, S.; Monson, K.; Gupta, N.; Macdougall, H.; Glaholm, J.; Hutchison, I.; Kadalayil, L.; Hackshaw, A. Chemoradiotherapy for Locally Advanced Head and Neck Cancer: 10-Year Follow-up of the UK Head and Neck (UKHAN1) Trial. Lancet Oncol. 2010, 11, 66–74. [Google Scholar] [CrossRef]
- Sepiashvili, L.; Hui, A.; Ignatchenko, V.; Shi, W.; Su, S.; Xu, W.; Huang, S.H.; O’Sullivan, B.; Waldron, J.; Irish, J.C.; et al. Potentially Novel Candidate Biomarkers for Head and Neck Squamous Cell Carcinoma Identified Using an Integrated Cell Line-Based Discovery Strategy. Mol. Cell. Proteom. 2012, 11, 1404–1415. [Google Scholar] [CrossRef] [PubMed]
- Tonack, S.; Aspinall-O’Dea, M.; Jenkins, R.E.; Elliot, V.; Murray, S.; Lane, C.S.; Kitteringham, N.R.; Neoptolemos, J.P.; Costello, E. A Technically Detailed and Pragmatic Protocol for Quantitative Serum Proteomics Using ITRAQ. J. Proteom. 2009, 73, 352–356. [Google Scholar] [CrossRef]
- Raposo, G.; Stoorvogel, W. Extracellular Vesicles: Exosomes, Microvesicles, and Friends. J. Cell Biol. 2013, 200, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Simons, M.; Raposo, G. Exosomes—Vesicular Carriers for Intercellular Communication. Curr. Opin. Cell Biol. 2009, 21, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-Mediated Transfer of MRNAs and MicroRNAs Is a Novel Mechanism of Genetic Exchange between Cells. Nat. Cell Biol. 2007, 9, 654–659. [Google Scholar] [CrossRef]
- Qin, J.; Xu, Q. Functions and Applications of Exosomes. Acta Pol. Pharm. Drug Res. 2014, 71, 537–543. [Google Scholar]
- Hoshino, A.; Costa-Silva, B.; Shen, T.L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.; Di Giannatale, A.; Ceder, S.; et al. Tumour Exosome Integrins Determine Organotropic Metastasis. Nature 2015, 527, 329. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Kano, M.; Akutsu, Y.; Hanari, N.; Hoshino, I.; Murakami, K.; Usui, A.; Suito, H.; Takahashi, M.; Otsuka, R.; et al. Quantification of Plasma Exosome Is a Potential Prognostic Marker for Esophageal Squamous Cell Carcinoma. Oncol. Rep. 2016, 36, 2535–2543. [Google Scholar] [CrossRef] [PubMed]
- Rider, M.A.; Hurwitz, S.N.; Meckes, D.G. ExtraPEG: A polyethylene glycol-based method for enrichment of extracellular vesicles. Sci. Rep. 2016, 6, 23978. [Google Scholar] [CrossRef]
- Zhang, Y.; Bi, J.; Huang, J.; Tang, Y.; Du, S.; Li, P. Exosome: A review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. In International Journal of Nanomedicine; Dove Medical Press Ltd.: London, UK, 2020; Volume 15, pp. 6917–6934. [Google Scholar] [CrossRef]
- Steuer, C.E.; El-Deiry, M.; Parks, J.R.; Higgins, K.A.; Saba, N.F. An Update on Larynx Cancer. CA Cancer J. Clin. 2017, 67, 31–50. [Google Scholar] [CrossRef]
- Mueller, S.K.; Nocera, A.L.; Dillon, S.T.; Gu, X.; Wendler, O.; Otu, H.H.; Libermann, T.A.; Bleier, B.S. Noninvasive Exosomal Proteomic Biosignatures, Including Cystatin SN, Peroxiredoxin-5, and Glycoprotein VI, Accurately Predict Chronic Rhinosinusitis with Nasal Polyps. Int. Forum Allergy Rhinol. 2019, 9, 177–186. [Google Scholar] [CrossRef]
- Tamura, K.; Yoshie, M.; Hashimoto, K.; Tachikawa, E. Inhibitory Effect of Insulin-like Growth Factor-Binding Protein-7 (IGFBP7) on in Vitro Angiogenesis of Vascular Endothelial Cells in the Rat Corpus Luteum. J. Reprod. Dev. 2014, 60, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xi, Y.; Zhu, G.; Jia, J.; Huang, H.; Liu, Y.; Guo, Y.; Liu, L. Downregulated IGFBP7 Facilitates Liver Metastasis by Modulating Epithelial-mesenchymal Transition in Colon Cancer. Oncol. Rep. 2019, 42, 1935–1945. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Lin, Z.; Lin, X.; Lu, J.; Wang, N.; Huang, S.; Wang, Y.; Zhu, Y.; Shen, Y.; Jiang, J.; et al. IGFBP7 Contributes to Epithelial-Mesenchymal Transition of HPAEpiC Cells in Response to Radiation. J. Cell Biochem. 2019, 120, 12500–12507. [Google Scholar] [CrossRef]
- Cai, X.; Wang, L.; Wang, X.; Hou, F. Silence of IGFBP7 Suppresses Apoptosis and Epithelial Mesenchymal Transformation of High Glucose Induced-Podocytes. Exp. Ther. Med. 2018, 16, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.; Nagalla, S.R.; Yamanaka, Y.; Kim, H.S.; Wilson, E.; Rosenfeld, R.G. Synthesis and Characterization of Insulin-like Growth Factor-Binding Protein (IGFBP)-7: Recombinant Human Mac25 Protein Specifically Binds IGF-I and -II. J. Biol. Chem. 1996, 271, 30322–30325. [Google Scholar] [CrossRef]
- Smith, E.; Ruszkiewicz, A.R.; Jamieson, G.G.; Drew, P.A. IGFBP7 Is Associated with Poor Prognosis in Oesophageal Adenocarcinoma and Is Regulated by Promoter DNA Methylation. Br. J. Cancer 2014, 110, 775–782. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhao, R.; Song, C.; Wang, H.; Rong, J.; Wang, F.; Yan, L.; Song, Y.; Xie, Y. Increased IGFBP7 Expression Correlates with Poor Prognosis and Immune Infiltration in Gastric Cancer. J. Cancer 2021, 12, 1343–1355. [Google Scholar] [CrossRef]
- Huang, X.; Hong, C.; Peng, Y.; Yang, S.; Huang, L.; Liu, C.; Chen, L.; Chu, L.; Xu, L.; Xu, Y. The Diagnostic Value of Serum IGFBP7 in Patients with Esophageal Squamous Cell Carcinoma. J. Cancer 2019, 10, 2687–2693. [Google Scholar] [CrossRef]
- Chen, D.; Yoo, B.K.; Santhekadur, P.K.; Gredler, R.; Bhutia, S.K.; Das, S.K.; Fuller, C.; Su, Z.Z.; Fisher, P.B.; Sarkar, D. Insulin-like Growth Factor-Binding Protein-7 Functions as a Potential Tumor Suppressor in Hepatocellular Carcinoma. Clin. Cancer Res. 2011, 17, 6693–6701. [Google Scholar] [CrossRef]
- Chen, Y.; Cui, T.; Knösel, T.; Yang, L.; Zöller, K.; Petersen, I. IGFBP7 Is a P53 Target Gene Inactivated in Human Lung Cancer by DNA Hypermethylation. Lung Cancer 2011, 73, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Okamura, J.; Huang, Y.; Moon, D.; Brait, M.; Chang, X.; Kim, M.S. Downregulation of Insulin-like Growth Factorbinding Protein 7 in Cisplatin-Resistant Non-Small Cell Lung Cancer. Cancer Biol. Ther. 2012, 13, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Pacyna-Gengelbach, M.; Ye, F.; Knösel, T.; Lund, P.; Deutschmann, N.; Schlüns, K.; Kotb, W.F.M.A.; Sers, C.; Yasumoto, H.; et al. Insulin-like Growth Factor Binding Protein-Related Protein I (IGFBP-RP1) Has Potential Tumour-Suppressive Activity in Human Lung Cancer. J. Pathol. 2007, 211, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, L.; Murphy, T.M.; Barrett, C.; Loftus, B.; Thornhill, J.; Lawler, M.; Hollywood, D.; Lynch, T.; Perry, A.S. IGFBP7 Promoter Methylation and Gene Expression Analysis in Prostate Cancer. J. Urol. 2012, 188, 1354–1360. [Google Scholar] [CrossRef] [PubMed]
- Hwa, V.; Tomasini-sprenger, C.; Bermejo, P.; Rosenfeld, R.G.; Plymate, S.R. Characterization of Insulin-Like Growth Factor-Binding-Related Protein-1 in Prostate Cells. J. Clin. Endocrinol. Metab. 1998, 83, 4355–4362. [Google Scholar]
- Perretti, M.; D’Acquisto, F. Annexin A1 and Glucocorticoids as Effectors of the Resolution of Inflammation. Nat. Rev. Immunol. 2009, 9, 62–70. [Google Scholar] [CrossRef]
- Raynal, P.; Pollard, H.B. Annexins: The Problem of Assessing the Biological Role for a Gene Family of Multifunctional Calcium- and Phospholipid-Binding Proteins. BBA Rev. Biomembr. 1994, 1197, 63–93. [Google Scholar] [CrossRef]
- Guo, C.; Liu, S.; Sun, M.Z. Potential Role of Anxa1 in Cancer. Future Oncol. 2013, 9, 1773–1793. [Google Scholar] [CrossRef] [PubMed]
- Suo, A.; Zhang, M.; Yao, Y.; Zhang, L.; Huang, C.; Nan, K.; Zhang, W. Proteome Analysis of the Effects of Sorafenib on Human Hepatocellular Carcinoma Cell Line HepG2. Med. Oncol. 2012, 29, 1827–1836. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Aránguez, A.; Olmo, N.; Turnay, J.; Lecona, E.; Pérez-Ramos, P.; López De Silanes, I.; Lizarbe, M.A. Differentiation of Human Colon Adenocarcinoma Cells Alters the Expression and Intracellular Localization of Annexins A1, A2, and A5. J. Cell Biochem. 2005, 94, 178–193. [Google Scholar] [CrossRef] [PubMed]
- Duncan, R.; Carpenter, B.; Main, L.C.; Telfer, C.; Murray, G.I. Characterisation and Protein Expression Profiling of Annexins in Colorectal Cancer. Br. J. Cancer 2008, 98, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Biaoxue, R.; Xiling, J.; Shuanying, Y.; Wei, Z.; Xiguang, C.; Jinsui, W.; Min, Z. Upregulation of Hsp90-Beta and Annexin A1 Correlates with Poor Survival and Lymphatic Metastasis in Lung Cancer Patients. J. Exp. Clin. Cancer Res. 2012, 31, 70. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.-F.; Ni, X.-G.; Zhao, P.; Liu, S.-M.; Wang, H.-X.; Guo, B.; Zhou, L.-P.; Liu, F.; Zhang, J.-S.; Wang, K.; et al. Overexpression of Annexin 1 in Pancreatic Cancer and Its Clinical Significance. China World J. Gastroenterol. 2004, 10, 1466–1470. [Google Scholar] [CrossRef] [PubMed]
- Rondepierre, F.; Bouchon, B.; Papon, J.; Bonnet-Duquennoy, M.; Kintossou, R.; Moins, N.; Maublant, J.; Madelmont, J.C.; D’Incan, M.; Degoul, F. Proteomic Studies of B16 Lines: Involvement of Annexin A1 in Melanoma Dissemination. Biochim. Biophys. Acta Proteins Proteom. 2009, 1794, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Hummerich, L.; Müller, R.; Hess, J.; Kokocinski, F.; Hahn, M.; Fürstenberger, G.; Mauch, C.; Lichter, P.; Angel, P. Identification of Novel Tumour-Associated Genes Differentially Expressed in the Process of Squamous Cell Cancer Development. Oncogene 2006, 25, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Moghanibashi, M.; Jazii, F.R.; Soheili, Z.S.; Zare, M.; Karkhane, A.; Parivar, K.; Mohamadynejad, P. Proteomics of a New Esophageal Cancer Cell Line Established from Persian Patient. Gene 2012, 500, 124–133. [Google Scholar] [CrossRef]
- Han, G.H.; Lu, K.J.; Huang, J.X.; Zhang, L.X.; Dai, S.B.; Dai, C.L. Association of Serum Annexin A1 with Treatment Response and Prognosis in Patients with Esophageal Squamous Cell Carcinoma. J. Cancer Res. Ther. 2018, 14, S667–S674. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, X.; Zhong, L.P.; Zhou, X.J.; Pan, H.Y.; Wei, K.J.; Li, J.; Chen, W.T.; Zhang, Z.Y. Decreased Expression of Annexin A1 Correlates with Pathologic Differentiation Grade in Oral Squamous Cell Carcinoma. J. Oral Pathol. Med. 2009, 38, 362–370. [Google Scholar] [CrossRef]
- Huang, T.T.; Chen, J.Y.F.; Tseng, C.E.; Su, Y.C.; Ho, H.C.; Lee, M.S.; Chang, C.T.; Wong, Y.K.; Chen, H.R. Decreased GRP78 Protein Expression Is a Potential Prognostic Marker of Oral Squamous Cell Carcinoma in Taiwan. J. Formos. Med. Assoc. 2010, 109, 326–337. [Google Scholar] [CrossRef]
- Wang, L.D.; Yang, Y.H.; Liu, Y.; Song, H.T.; Zhang, L.Y.; Li, P.L. Decreased Expression of Annexin A1 During the Progression of Cervical Neoplasia. J. Int. Med. Res. 2008, 36, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Santana Gastardelo, T.; Rodrigues Cunha, B.; Sé Rgio Raposo, L.; Maniglia, J.V.; Cury, P.M.; Via, F.; Lisoni, C.R.; Tajara, H.; Oliani, S.M. Inflammation and Cancer: Role of Annexin A1 and FPR2/ALX in Proliferation and Metastasis in Human Laryngeal Squamous Cell Carcinoma. PLoS ONE 2014, 9, e111317. [Google Scholar] [CrossRef] [PubMed]
- Alves, V.A.F.; Nonogaki, S.; Cury, P.M.; Wünsch-Filho, V.; De Carvalho, M.B.; Michaluart, P.; Moyses, R.A.; Curioni, O.A.; Figueiredo, D.L.A.; Scapulatempo-Neto, C.; et al. Annexin A1 Subcellular Expression in Laryngeal Squamous Cell Carcinoma. Histopathology 2008, 53, 715–727. [Google Scholar] [CrossRef]
- Cheng, A.L.; Huang, W.G.; Chen, Z.C.; Peng, F.; Zhang, P.F.; Li, M.Y.; Li, F.; Li, J.N.; Li, C.; Yi, H.; et al. Identification of Novel Nasopharyngeal Carcinoma Biomarkers by Laser Capture Microdissection and Proteomic Analysis. Clin. Cancer Res. 2008, 14, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.; Chang, H.R.; Chen, Z.; He, J.; Lonsberry, V.; Elshimali, Y.; Chia, D.; Seligson, D.; Goodglick, L.; Nelson, S.F.; et al. Loss of Annexin A1 Expression in Human Breast Cancer Detected by Multiple High-Throughput Analyses. Biochem. Biophys. Res. Commun. 2004, 326, 218–227. [Google Scholar] [CrossRef]
- Deng, S.; Wang, J.; Hou, L.; Li, J.; Chen, G.; Jing, B.; Zhang, X.; Yang, Z. Annexin A1, A2, A4 and A5 Play Important Roles in Breast Cancer, Pancreatic Cancer, and Laryngeal Carcinoma, Alone and/or Synergistically. Oncol. Lett. 2012, 5, 107–112. [Google Scholar] [CrossRef]
- Wu, W.; Tang, X.; Hu, W.; Lotan, R.; Ki Hong, W.; Mao, L. Identification and Validation of Metastasis-Associated Proteins in Head and Neck Cancer Cell Lines by Two-Dimensional Electrophoresis and Mass Spectrometry. Clin. Exp. Metastasis 2002, 19, 319–326. [Google Scholar] [CrossRef]
- Garcia Pedrero, J.M.; Fernandez, M.P.; Morgan, R.O.; Herrero Zapatero, A.; Gonzalez, M.V.; Suarez Nieto, C.; Rodrigo, J.P. Annexin A1 Down-Regulation in Head and Neck Cancer Is Associated with Epithelial Differentiation Status. Am. J. Pathol. 2004, 164, 73–79. [Google Scholar] [CrossRef]
- Silistino-Souza, R.; Rodrigues-Lisoni, F.C.; Cury, P.M.; Maniglia, J.V.; Raposo, L.S.; Tajara, E.H.; Christian, H.C.; Oliani, S.M. Annexin 1: Differential Expression in Tumor and Mast Cells in Human Larynx Cancer. Int. J. Cancer 2007, 120, 2582–2589. [Google Scholar] [CrossRef] [PubMed]
- Raulf, N.; Lucarelli, P.; Thavaraj, S.; Brown, S.; Vicencio, J.M.; Sauter, T.; Tavassoli, M. Annexin A1 Regulates EGFR Activity and Alters EGFR-Containing Tumour-Derived Exosomes in Head and Neck Cancers. Eur. J. Cancer 2018, 102, 52–68. [Google Scholar] [CrossRef] [PubMed]
- Suh, Y.E.; Raulf, N.; Gäken, J.; Lawler, K.; Urbano, T.G.; Bullenkamp, J.; Gobeil, S.; Huot, J.; Odell, E.; Tavassoli, M. MicroRNA-196a Promotes an Oncogenic Effect in Head and Neck Cancer Cells by Suppressing Annexin A1 and Enhancing Radioresistance. Int. J. Cancer 2015, 137, 1021–1034. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Teijeiro, S.; Menéndez, S.T.; Villaronga, M.Á.; Pena-Alonso, E.; Rodrigo, J.P.; Morgan, R.O.; Granda-Díaz, R.; Salom, C.; Fernandez, M.P.; García-Pedrero, J.M. Annexin A1 Down-Regulation in Head and Neck Squamous Cell Carcinoma Is Mediated via Transcriptional Control with Direct Involvement of MiR-196a/b. Sci. Rep. 2017, 7, 6790. [Google Scholar] [CrossRef] [PubMed]
- Bandeira-Melo, C.; Bonavita, A.G.C.; Diaz, B.L.; E Silva, P.M.R.; Carvalho, V.F.; Jose, P.J.; Flower, R.J.; Perretti, M.; Martins, M.A. A Novel Effect for Annexin 1-Derived Peptide Ac2-26: Reduction of Allergic Inflammation in the Rat. J. Pharmacol. Exp. Ther. 2005, 313, 1416–1422. [Google Scholar] [CrossRef] [PubMed]
- Oliani, S.M.; Christian, H.C.; Manston, J.; Flower, R.J.; Perretti, M. An Immunocytochemical and In Situ Hybridization Analysis of Annexin 1 Expression in Rat Mast Cells: Modulation by Inflammation and Dexamethasone. Lab. Investig. 2000, 80, 1429–1438. [Google Scholar] [CrossRef] [PubMed]
- Lisowska, A.; Szyszkowska, A.; Knapp, M.; Łapińska, M.; Kondraciuk, M.; Kamińska, I.; Hryszko, T.; Ptaszyńska-Kopczyńska, K.; Kamiński, K. IGFBP7 Concentration May Reflect Subclinical Myocardial Damage and Kidney Function in Patients with Stable Ischemic Heart Disease. Biomolecules 2022, 12, 274. [Google Scholar] [CrossRef]
- Ruan, W.; Wu, M.; Shi, L.; Li, F.; Dong, L.; Qiu, Y.; Wu, X.; Ying, K. Serum levels of IGFBP7 are elevated during acute exacerbation in COPD patients. Int. J. COPD 2017, 12, 1775–1780. [Google Scholar] [CrossRef] [PubMed]
- Rong, B.; Zhao, C.; Liu, H.; Ming, Z.; Cai, X.; Gao, W.; Yang, S. Elevated Serum Annexin A1 as Potential Diagnostic Marker for Lung Cancer: A Retrospective Case-Control Study. Am. J. Transl. Res. 2014, 6, 558. [Google Scholar]
- Mueller, S.K.; Nocera, A.L.; Dillon, S.T.; Wu, D.; Libermann, T.A.; Bleier, B.S. Highly Multiplexed Proteomic Analysis Reveals Significant Tissue and Exosomal Coagulation Pathway Derangement in Chronic Rhinosinusitis with Nasal Polyps. Int. Forum Allergy Rhinol. 2018, 8, 1438–1444. [Google Scholar] [CrossRef]
- Fu, Z.; Zhang, S.; Wang, B.; Huang, W.; Zheng, L.; Cheng, A. Annexin A1: A Double-Edged Sword as Novel Cancer Biomarker. Clin. Chim. Acta 2020, 504, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Peers, S.H.; Smillie, F.; Elderfield, A.J.; Flower, R.J. Glucocorticoid-and Non-Glucocorticoid Induction of Lipocortins (Annexins) 1 and 2 in Rat Peritoneal Leucocytes in Vivo. Br. J. Pharmacol. 1993, 108, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Perretti, M.; Christian, H.; Wheller, S.K.; Aiello, I.; Mugridge, K.G.; Morris, J.F.; Flower, R.J.; Goulding, N.J. Annexin I Is Stored within Gelatinase Granules of Human Neutrophil and Mobilized on the Cell Surface upon Adhesion but Not Phagocytosis. Cell Biol. Int. 2000, 24, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Tian, Y.; Duan, B.; Sheng, H.; Gao, H.; Huang, J. Association of Nuclear Annexin A1 with Prognosis of Patients with Esophageal Squamous Cell Carcinoma. Int. J. Clin. Exp. Pathol. 2014, 7, 751. [Google Scholar] [PubMed]
- Lin, C.Y.; Jeng, Y.M.; Chou, H.Y.; Hsu, H.C.; Yuan, R.H.; Chiang, C.P.; Kuo, M.Y.P. Nuclear Localization of Annexin A1 Is a Prognostic Factor in Oral Squamous Cell Carcinoma. J. Surg. Oncol. 2008, 97, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, H.-X.; Lu, N.; Mao, Y.-S.; Liu, F.; Wang, Y.; Zhang, H.-R.; Wang, K.; Wu, M.; Zhao Yu Liu, X.-H.; et al. Translocation of Annexin I from Cellular Membrane to the Nuclear Membrane in Human Esophageal Squamous Cell Carcinoma. World J. Gastroenterol. 2003, 9, 645. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.Y.; Wu, M.S.; Lin, J.T.; Lin, M.T.; Shun, C.T.; Huang, H.Y.; Hua, K.T.; Kuo, M.L. Annexin A1 Is Associated with Gastric Cancer Survival and Promotes Gastric Cancer Cell Invasiveness through the Formyl Peptide Receptor/Extracellular Signal-Regulated Kinase/Integrin Beta-1-Binding Protein 1 Pathway. Cancer 2012, 118, 5757–5767. [Google Scholar] [CrossRef] [PubMed]
- Khau, T.; Langenbach, S.Y.; Schuliga, M.; Harris, T.; Johnstone, C.N.; Anderson, R.L.; Stewart, A.G. Annexin-1 Signals Mitogen-Stimulated Breast Tumor Cell Proliferation by Activation of the Formyl Peptide Receptors (FPRs) 1 and 2. FASEB J. 2011, 25, 483–496. [Google Scholar] [CrossRef]
- Al-Ali, H.N.; Crichton, S.J.; Fabian, C.; Pepper, C.; Butcher, D.R.; Dempsey, F.C.; Parris, C.N. A Therapeutic Antibody Targeting Annexin-A1 Inhibits Cancer Cell Growth in Vitro and in Vivo. Oncogene 2024, 43, 608–614. [Google Scholar] [CrossRef]
- Mussunoor, S.; Murray, G.I. The Role of Annexins in Tumour Development and Progression. J. Pathol. 2008, 216, 131–140. [Google Scholar] [CrossRef]
- Lebron, I.d.S.L.; da Silva, L.F.; Paletta, J.T.; da Silva, R.A.; Sant’Ana, M.; Costa, S.d.S.; Iyomasa-Pilon, M.M.; Souza, H.R.; Possebon, L.; Girol, A.P. Modulation of the endogenous Annexin A1 in a cigarette smoke cessation model: Potential therapeutic target in reversing the damage caused by smoking? Pathol. Res. Pract. 2019, 215, 152614. [Google Scholar] [CrossRef] [PubMed]
Method | Target | Host | Class | Immunogen | Clone | Manufacturer |
---|---|---|---|---|---|---|
IHC, western blot | IGFBP7 | mouse | monoclonal | IGFBP7 aa 181–282 | H-3 | Santa Cruz, Heidelberg, Germany |
IHC | IGFBP7 | rabbit | polyclonal | peptide | - | Proteintech, Planegg, Germany |
IHC, western blot | Annexin A1 | rabbit | polyclonal | recombinant protein aa 1–346 | - | Proteintech, Planegg, Germany |
IHC | Annexin A1 | mouse | monoclonal | recombinant protein aa 1–346 | 1E1B7 | Proteintech, Planegg, Germany |
Western blot | GAPDH | mouse | monoclonal | recombinant protein aa 1–335 | 1E6D9 | Proteintech, Planegg, Germany |
Characteristics in (%) | LSCC | Control | p |
---|---|---|---|
Cohort A | 15 | 7 | - |
Mean age in years (±SD) | 63.4 (±9.8) | 55.4 (±7.1) | ns (p = 0.069) |
Gender | |||
Male | 13/15 (86.7) | 5/7 (71.4) | ns (p = 0.388) |
Female | 2/15 (13.3) | 2/7 (28.6) | ns (p = 0.388) |
Tumor size (T) | |||
T1 | 4/15 (26.7) | - | - |
T2 | 2/15 (13.3) | - | - |
T3 | 0/15 | - | - |
T4 | 9/15 (60.0) | - | - |
Nodal status (N) | |||
N0 | 9/15 (60.0) | - | - |
N1 | 0/15 | - | - |
N2 | 3/15 (20.0) | - | - |
N3 | 3/15 (20.0) | - | - |
Distant metastasis (M) | |||
M0 | 15/15 (100) | - | - |
M+ | 0/15 | - | - |
Caucasian | 15/15 (100) | 7/7 (100) | - |
Comorbidity | |||
Metabolic disease | 5/15 (33.3) | 0/7 | ns (p = 0.082) |
Cardiovascular disease | 9/15 (60.0) | 3/7 (42.9) | ns (p = 0.452) |
Smoker | 10/15 (66.7) | 2/7 (28.6) | ns (p = 0.095) |
Alcohol | 12/15 (80.0) | 4/7 (57.1) | ns (p = 0.262) |
COPD | 3/15 (20.0) | 0/7 | ns (p = 0.203) |
OSAS | 1/15 (6.7) | 0/7 | ns (p = 0.484) |
Medication | |||
Antihypertensive medication | 8/15 (53.3) | 3/7 (42.9) | ns (p = 0.647) |
Antidepressants | 2/15 (13.3) | 0/7 | ns (p = 0.311) |
Opioids | 0/15 | 0/7 | - |
Immunosuppressants | 0/15 | 0/7 | - |
Cohort B | 75 | 54 | - |
Mean age in years (± SD) | 61.4 (± 9.2) | 34.5 (± 13.8) | p < 0.001 |
Gender | |||
Male | 66/75 (88.0) | 32/54 (59.3) | p < 0.001 |
Female | 9/75 (12.0) | 22/54 (40.7) | p < 0.001 |
Tumor size (T) | |||
T1 | 15/75 (20.0) | - | - |
T2 | 23/75 (30.7) | - | - |
T3 | 18/75 (24.0) | - | - |
T4 | 19/75 (25.3) | - | - |
Nodal status (N) | |||
N0 | 37/75 (49.3) | - | - |
N1 | 7/75 (9.3) | - | - |
N2 | 17/75 (22.7) | - | - |
N3 | 5/75 (6.7) | - | - |
Distant metastasis (M) | |||
M0 | 75 | - | - |
Race | |||
Caucasian | 75/75 (100) | 53/54 (98.1) | |
Comorbidity | |||
Metabolic disease | 19/53 (35.8) | 3/54 (5.6) | p < 0.001 |
Cardiovascular disease | 23/53 (43.4) | 1/54 (1.9) | p < 0.001 |
Smoker | 46/59 (78.0) | 20/54 (37.0) | p < 0.001 |
Alcohol | 43/59 (72.9) | 28/54 (51.9) | p = 0.021 |
COPD | 7/53 (13.2) | 0/54 | p = 0.006 |
OSAS | 1/53 (1.9) | 0/54 | ns (p = 0.311) |
Medication | |||
Antihypertensive medication | 21/53 (39.6) | 2/54 (3.7) | p < 0.001 |
Antidepressants | 3/53 (5.7) | 1/54 (1.9) | ns (p = 0.299) |
Opioids | 0/53 | 1/54 (1.9) | ns (p = 0.32) |
Immunosuppressants | 1/53 (1.9) | 0/54 | ns (p = 0.311) |
Protein | T1 (N0)/C | T2 (N0)/C | T4 (N0)/C | T4 (N+)/C |
---|---|---|---|---|
IGFBP7 | 3.48 | 5.93 | 1.52 | 1.17 |
Annexin A1 | 10.25 | 15.91 | 1.58 | 4.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schuster, J.; Wendler, O.; Pesold, V.-V.; Koch, M.; Sievert, M.; Balk, M.; Rupp, R.; Mueller, S.K. Exosomal Serum Biomarkers as Predictors for Laryngeal Carcinoma. Cancers 2024, 16, 2028. https://doi.org/10.3390/cancers16112028
Schuster J, Wendler O, Pesold V-V, Koch M, Sievert M, Balk M, Rupp R, Mueller SK. Exosomal Serum Biomarkers as Predictors for Laryngeal Carcinoma. Cancers. 2024; 16(11):2028. https://doi.org/10.3390/cancers16112028
Chicago/Turabian StyleSchuster, Johannes, Olaf Wendler, Vanessa-Vivien Pesold, Michael Koch, Matti Sievert, Matthias Balk, Robin Rupp, and Sarina Katrin Mueller. 2024. "Exosomal Serum Biomarkers as Predictors for Laryngeal Carcinoma" Cancers 16, no. 11: 2028. https://doi.org/10.3390/cancers16112028
APA StyleSchuster, J., Wendler, O., Pesold, V. -V., Koch, M., Sievert, M., Balk, M., Rupp, R., & Mueller, S. K. (2024). Exosomal Serum Biomarkers as Predictors for Laryngeal Carcinoma. Cancers, 16(11), 2028. https://doi.org/10.3390/cancers16112028