Type Disparity in Sodium–Glucose Cotransporter-2 Inhibitors in Incidences of Renal Cell Carcinoma: A Propensity-Score-Matched Cohort Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Variables and Outcomes
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Relative Risk of RCC in Individual SGLT2Is
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Graff, R.E.; Sanchez, A.; Tobias, D.K.; Rodríguez, D.; Barrisford, G.W.; Blute, M.L.; Li, Y.; Sun, Q.; Preston, M.A.; Wilson, K.M.; et al. Type 2 Diabetes in Relation to the Risk of Renal Cell Carcinoma among Men and Women in Two Large Prospective Cohort Studies. Diabetes Care 2018, 41, 1432–1437. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yin, K.; Wang, Y.; Xia, M.; Zhang, R.; Wang, W.; Chen, J.; Wang, C.; Shuang, W. Pre-existing type 2 diabetes is an adverse prognostic factor in patients with renal cell carcinoma. J. Diabetes 2019, 11, 993–1001. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.P.; Mittal, A.; Jha, D.K.; Pandeya, D.R.; Sathian, B. Diabetes mellitus and renal cell carcinoma—A hospital based study from Kathmandu Valley. Asian Pac. J. Cancer Prev. 2012, 13, 4963–4965. [Google Scholar] [CrossRef]
- Hossen, M.S.; Samad, A.; Ahammad, F.; Sasa, G.B.K.; Jiang, Z.; Ding, X. System biology approaches identified novel biomarkers and their signaling pathways involved in renal cell carcinoma with different human diseases. Biosci. Rep. 2022, 42, BSR20221108. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, G.C.; Fernandes, A.; Cardoso, R.; Penalver, J.; Knijnik, L.; Mitrani, R.D.; Myerburg, R.J.; Goldberger, J.J. Association of SGLT2 inhibitors with arrhythmias and sudden cardiac death in patients with type 2 diabetes or heart failure: A meta-analysis of 34 randomized controlled trials. Heart Rhythm 2021, 18, 1098–1105. [Google Scholar] [CrossRef]
- Monda, V.M.; Gentile, S.; Porcellati, F.; Satta, E.; Fucili, A.; Monesi, M.; Strollo, F. Heart Failure with Preserved Ejection Fraction and Obstructive Sleep Apnea: A Novel Paradigm for Additional Cardiovascular Benefit of SGLT2 Inhibitors in Subjects with or without Type 2 Diabetes. Adv. Ther. 2022, 39, 4837–4846. [Google Scholar] [CrossRef] [PubMed]
- van der Aart-van der Beek, A.B.; de Boer, R.A.; Heerspink, H.J.L. Kidney and heart failure outcomes associated with SGLT2 inhibitor use. Nat. Rev. Nephrol. 2022, 18, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Duran, M.; Ziyrek, M.; Alsancak, Y. Effects of SGLT2 Inhibitors as an Add-on Therapy to Metformin on Electrocardiographic Indices of Ventricular Repolarization. Acta Cardiol. Sin. 2020, 36, 626–632. [Google Scholar]
- Phillips, J.A.; Taub, M.E.; Bogdanffy, M.S.; Yuan, J.; Knight, B.; Smith, J.D.; Ku, W.W. Mode of action and human relevance assessment of male CD-1 mouse renal adenocarcinoma associated with lifetime exposure to empagliflozin. J. Appl. Toxicol. 2022, 42, 1570–1584. [Google Scholar] [CrossRef]
- Alblowy, A.H.; Maan, N.; Ibrahim, A.A. Optimal control strategies for SGLT2 inhibitors as a novel anti-tumor agent and their effect on human breast cancer cells with the effect of time delay and hyperglycemia. Comput. Biol. Med. 2023, 166, 107552. [Google Scholar] [CrossRef]
- Jang, J.H.; Lee, T.J.; Sung, E.G.; Song, I.H.; Kim, J.Y. Dapagliflozin induces apoptosis by downregulating cFILPL and increasing cFILPS instability in Caki-1 cells. Oncol. Lett. 2022, 24, 401. [Google Scholar] [CrossRef]
- Kuang, H.; Liao, L.; Chen, H.; Kang, Q.; Shu, X.; Wang, Y. Therapeutic Effect of Sodium Glucose Co-Transporter 2 Inhibitor Dapagliflozin on Renal Cell Carcinoma. Med. Sci. Monit. 2017, 23, 3737–3745. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, R.; Ng, K.; Alkabbani, W.; Labib, Y.; Mourad, N.; Gamble, J.M. The association of sodium-glucose cotransporter 2 inhibitors with cancer: An overview of quantitative systematic reviews. Endocrinol. Diabetes Metab. 2020, 3, e00145. [Google Scholar] [CrossRef] [PubMed]
- Kaji, K.; Nishimura, N.; Seki, K.; Sato, S.; Saikawa, S.; Nakanishi, K.; Furukawa, M.; Kawaratani, H.; Kitade, M.; Moriya, K.; et al. Sodium glucose cotransporter 2 inhibitor canagliflozin attenuates liver cancer cell growth and angiogenic activity by inhibiting glucose uptake. Int. J. Cancer 2018, 142, 1712–1722. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.Y.; Wu, Y.W.; Chuang, W.; Lin, T.C.; Chang, S.W.; Cheng, S.H.; Kuo, R.N. An Integrated Community-Based Blood Pressure Telemonitoring Program—A Population-Based Observational Study. Acta Cardiol. Sin. 2022, 38, 612–622. [Google Scholar] [PubMed]
- Patoulias, D. SGLT-2 Inhibitors Beneficial Effects on Ventricular Repolarization May Be Protective against Atrial Fibrillation Occurrence. Acta Cardiol. Sin. 2021, 37, 323. [Google Scholar] [PubMed]
- Zannad, F.; Ferreira, J.P.; Pocock, S.J.; Anker, S.D.; Butler, J.; Filippatos, G.; Brueckmann, M.; Ofstad, A.P.; Pfarr, E.; Jamal, W.; et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: A meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet 2020, 396, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Ferrannini, G.; Savarese, G.; Cosentino, F. SGLT2 Inhibitors in Type 2 Diabetes Mellitus. Heart Fail. Clin. 2022, 18, 551–559. [Google Scholar] [CrossRef]
- Jhund, P.S. SGLT2 Inhibitors and Heart Failure with Preserved Ejection Fraction. Heart Fail. Clin. 2022, 18, 579–586. [Google Scholar] [CrossRef]
- Wang, L.; Liu, M.; Yin, F.; Wang, Y.; Li, X.; Wu, Y.; Ye, C.; Liu, J. Trilobatin, a Novel SGLT1/2 Inhibitor, Selectively Induces the Proliferation of Human Hepatoblastoma Cells. Molecules 2019, 24, 3390. [Google Scholar] [CrossRef]
- Dutka, M.; Bobiński, R.; Francuz, T.; Garczorz, W.; Zimmer, K.; Ilczak, T.; Ćwiertnia, M.; Hajduga, M.B. SGLT-2 Inhibitors in Cancer Treatment-Mechanisms of Action and Emerging New Perspectives. Cancers 2022, 14, 5811. [Google Scholar] [CrossRef]
- Xu, B.; Kang, B.; Li, S.; Fan, S.; Zhou, J. Sodium-glucose cotransporter 2 inhibitors and cancer: A systematic review and meta-analysis. J. Endocrinol. Investig. 2024. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Spiazzi, B.F.; Naibo, R.A.; Wayerbacher, L.F.; Piccoli, G.F.; Farenzena, L.P.; Londero, T.M.; da Natividade, G.R.; Zoldan, M.; Degobi, N.A.H.; Niches, M.; et al. Sodium-glucose cotransporter-2 inhibitors and cancer outcomes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Res. Clin. Pract. 2023, 198, 110621. [Google Scholar] [CrossRef] [PubMed]
- Ueda, P.; Svanström, H.; Hviid, A.; Eliasson, B.; Svensson, A.M.; Franzén, S.; Gudbjörnsdottir, S.; Hveem, K.; Jonasson, C.; Wintzell, V.; et al. Sodium-Glucose Cotransporter 2 Inhibitors and Risk of Bladder and Renal Cancer: Scandinavian Cohort Study. Diabetes Care 2022, 45, e93–e96. [Google Scholar] [CrossRef] [PubMed]
- Cangoz, S.; Chang, Y.Y.; Chempakaseril, S.J.; Guduru, R.C.; Huynh, L.M.; John, J.S.; John, S.T.; Joseph, M.E.; Judge, R.; Kimmey, R.; et al. The kidney as a new target for antidiabetic drugs: SGLT2 inhibitors. J. Clin. Pharm. Ther. 2013, 38, 350–359. [Google Scholar] [CrossRef]
- Tang, H.; Dai, Q.; Shi, W.; Zhai, S.; Song, Y.; Han, J. SGLT2 inhibitors and risk of cancer in type 2 diabetes: A systematic review and meta-analysis of randomised controlled trials. Diabetologia 2017, 60, 1862–1872. [Google Scholar] [CrossRef]
- Ueda, K.; Suekane, S.; Nishihara, K.; Ogasawara, N.; Kurose, H.; Hayashi, S.; Chikui, K.; Suyama, S.; Nakiri, M.; Matsuo, M.; et al. Duration of First-line Treatment with Molecular Targeted-Therapy Is a Prognostic Factor in Metastatic Renal Cell Carcinoma. Anticancer Res. 2015, 35, 3415–3421. [Google Scholar]
Non-SGLT2I N = 237,069 | SGLT2I N = 237,069 | ASD | |
---|---|---|---|
Sex | 0.0045 | ||
Female | 102,366 (43.18%) | 103,718 (43.75%) | |
Male | 134,703 (56.82%) | 133,351 (56.25%) | |
Age | 0.0000 | ||
<50 | 52,511 (22.15%) | 52,511 (22.15%) | |
50–59 | 67,446 (28.45%) | 67,375 (28.42%) | |
60–69 | 76,170 (32.13%) | 76,241 (32.16%) | |
≥70 | 40,942 (17.27%) | 40,942 (17.27%) | |
Comorbidity | |||
Hypertension | 147,220 (62.10%) | 145,181 (61.24%) | 0.0157 |
CAD | 38,974 (16.44%) | 39,496 (16.66%) | 0.0060 |
Hyperlipidemia | 160,733 (67.80%) | 158,101 (66.69%) | 0.0236 |
Chronic kidney disease | 66,047 (27.86%) | 63,961 (26.98%) | 0.0221 |
Liver disease | 31,720 (13.38%) | 31,886 (13.45%) | 0.0000 |
Stroke | 12,470 (5.26%) | 12,517 (5.28%) | 0.0008 |
COPD | 11,806 (4.98%) | 12,043 (5.08%) | 0.0042 |
Atrial fibrillation and flutter | 3461 (1.46%) | 3509 (1.48%) | 0.0013 |
Rheumatoid Arthritis | 1754 (0.74%) | 1802 (0.76%) | 0.0016 |
Medication | |||
NSAIDs | 164,881 (69.55%) | 165,427 (69.78%) | 0.0051 |
Corticosteroids | 59,860 (25.25%) | 60,547 (25.54%) | 0.0066 |
PPIs | 20,672 (8.72%) | 20,933 (8.83%) | 0.0037 |
H2 blockers | 78,517 (33.12%) | 78,991 (33.32%) | 0.0045 |
Aspirin | 67,446 (28.45%) | 67,138 (28.32%) | 0.0023 |
Statin | 165,735 (69.91%) | 165,806 (69.94%) | 0.0213 |
Biguanides | 152,720 (64.42%) | 152,791 (64.45%) | 0.0010 |
Sulfonylureas | 107,345 (45.28%) | 108,435 (45.74%) | 0.0110 |
Alpha glucosidase inhibitors | 44,071 (18.59%) | 45,565 (19.22%) | 0.0163 |
Thiazolidinediones | 41,297 (17.42%) | 42,269 (17.83%) | 0.0108 |
DPP4 inhibitors | 93,524 (39.45%) | 93,642 (39.50%) | 0.0031 |
Insullin | 47,177 (19.90%) | 47,935 (20.22%) | 0.0081 |
GLP-1 agonists | 4575 (1.93%) | 4623 (1.95%) | 0.0053 |
SGLT2I type | |||
Non-SGLT2I | 237,069 (100%) | 0 (0%) | |
Dapagliflozin | 0 (0%) | 117,397 (49.52%) | |
Canagliflozin | 0 (0%) | 21,881 (9.23%) | |
Empagliflozin | 0 (0%) | 97,791 (41.25%) |
Non-SGLT2I | SGLT2I | p-Value | |
---|---|---|---|
N | 237,069 | 237,069 | |
Follow-up person-months | 5,684,030 | 5,688,388 | |
New case | 318 | 216 | |
Incidence rate * (95% CI) | 0.56 (0.50–0.64) | 0.38 (0.32–0.45) | |
Crude Relative risk (95% CI) | reference | 0.71 (0.59–0.85) | <0.0001 |
Adjusted HR (95% CI) † | reference | 0.72 (0.60–0.86) | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, T.-K.; Wang, W.-Y.; Yang, T.-Y.; Jong, G.-P. Type Disparity in Sodium–Glucose Cotransporter-2 Inhibitors in Incidences of Renal Cell Carcinoma: A Propensity-Score-Matched Cohort Study. Cancers 2024, 16, 2145. https://doi.org/10.3390/cancers16112145
Lin T-K, Wang W-Y, Yang T-Y, Jong G-P. Type Disparity in Sodium–Glucose Cotransporter-2 Inhibitors in Incidences of Renal Cell Carcinoma: A Propensity-Score-Matched Cohort Study. Cancers. 2024; 16(11):2145. https://doi.org/10.3390/cancers16112145
Chicago/Turabian StyleLin, Tsung-Kun, Wei-Yao Wang, Tsung-Yuan Yang, and Gwo-Ping Jong. 2024. "Type Disparity in Sodium–Glucose Cotransporter-2 Inhibitors in Incidences of Renal Cell Carcinoma: A Propensity-Score-Matched Cohort Study" Cancers 16, no. 11: 2145. https://doi.org/10.3390/cancers16112145
APA StyleLin, T. -K., Wang, W. -Y., Yang, T. -Y., & Jong, G. -P. (2024). Type Disparity in Sodium–Glucose Cotransporter-2 Inhibitors in Incidences of Renal Cell Carcinoma: A Propensity-Score-Matched Cohort Study. Cancers, 16(11), 2145. https://doi.org/10.3390/cancers16112145