Development of Traceable Mouse Models of Advanced and Metastatic Bladder Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Inducible Mouse Models of Bladder Cancer
2.3. Generation of Luc-SIY-Expressing Bladder Tumor Cell Line
2.4. Heterotopic Bladder Cancer Mouse Model
2.5. Orthotopic Syngeneic Muscle-Invasive Bladder Cancer Mouse Model
2.6. In Vivo/Ex Vivo Bioluminescence Imaging
2.7. Histology and Immunohistochemistry
2.8. Single-Cell Preparation and FACS Staining
2.9. Therapeutic Treatments
2.10. Statistical Analysis
3. Results
3.1. Luc-SIY Transgene Does Not Influence Bladder Cancer Development
3.2. Luc-SIY Transgene Has No Influence on the Tumor Immune Microenvironment Composition
3.3. Luc-SIY+ Inducible Bladder Cancer Model Is Resistant to Anti-PD-1 Immune Checkpoint Blockade
3.4. Luc-SIY-Expressing Bladder Tumors Are Immunogenic in C57BL/6 Mice
3.5. Orthotopic Tumor Cell Injection as a Novel Syngeneic Mouse Model of Metastatic MIBC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamat, A.M.; Hahn, N.M.; Efstathiou, J.A.; Lerner, S.P.; Malmström, P.U.; Choi, W.; Guo, C.C.; Lotan, Y.; Kassouf, W. Bladder Cancer. Lancet 2016, 388, 2796–2810. [Google Scholar] [CrossRef] [PubMed]
- Knowles, M.A.; Hurst, C.D. Molecular Biology of Bladder Cancer: New Insights into Pathogenesis and Clinical Diversity. Nat. Rev. Cancer 2015, 15, 25–41. [Google Scholar] [CrossRef] [PubMed]
- Sonpavde, G. PD-1 and PD-L1 Inhibitors as Salvage Therapy for Urothelial Carcinoma. N. Engl. J. Med. 2017, 376, 1073–1074. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M. Tumor Mutation Burden for Predicting Immune Checkpoint Blockade Response: The More, the Better. J. Immunother. Cancer 2022, 10, e003087. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Owczarek, T.B.; McKiernan, J.M.; Abate-Shen, C. Modelling Bladder Cancer in Mice: Opportunities and Challenges. Nat. Rev. Cancer 2015, 15, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Domingos-Pereira, S.; Sathiyanadan, K.; Polak, L.; Haefliger, J.A.; Schmittnaegel, M.; Ries, C.H.; Jichlinski, P.; Roth, B.; Derré, L.; Nardelli-Haefliger, D. Tumor-Microenvironment Characterization of the MB49 Non-Muscle-Invasive Bladder-Cancer Orthotopic Model towards New Therapeutic Strategies. Int. J. Mol. Sci. 2023, 24, 123. [Google Scholar] [CrossRef] [PubMed]
- Saito, R.; Smith, C.C.; Utsumi, T.; Bixby, L.M.; Kardos, J.; Wobker, S.E.; Stewart, K.G.; Chai, S.; Manocha, U.; Byrd, K.M.; et al. Molecular Subtype-Specific Immunocompetent Models of High-Grade Urothelial Carcinoma Reveal Differential Neoantigen Expression and Response to Immunotherapy. Cancer Res. 2018, 78, 3954–3968. [Google Scholar] [CrossRef] [PubMed]
- Lodillinsky, C.; Rodriguez, V.; Vauthay, L.; Sandes, E.; Casabé, A.; Eiján, A.M. Novel Invasive Orthotopic Bladder Cancer Model with High Cathepsin B Activity Resembling Human Bladder Cancer. J. Urol. 2009, 182, 749–755. [Google Scholar] [CrossRef]
- Fantini, D.; Glaser, A.P.; Rimar, K.J.; Wang, Y.; Schipma, M.; Varghese, N.; Rademaker, A.; Behdad, A.; Yellapa, A.; Yu, Y.; et al. A Carcinogen-Induced Mouse Model Recapitulates the Molecular Alterations of Human Muscle Invasive Bladder Cancer. Oncogene 2018, 37, 1911–1925. [Google Scholar] [CrossRef]
- Nòbrega, C.V.; Colaco, A.; Lopes, C.; Oliveira, P.A. BBN as an Urothelial Carcinogen. In Vivo 2012, 26, 727–739. [Google Scholar]
- Puzio-Kuter, A.M.; Castillo-Martin, M.; Kinkade, C.W.; Wang, X.; Shen, T.H.; Matos, T.; Shen, M.M.; Cordon-Cardo, C.; Abate-Shen, C. Inactivation of P53 and Pten Promotes Invasive Bladder Cancer. Genes Dev. 2009, 23, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Segovia, C.; San José-Enériz, E.; Munera-Maravilla, E.; Martínez-Fernández, M.; Garate, L.; Miranda, E.; Vilas-Zornoza, A.; Lodewijk, I.; Rubio, C.; Segrelles, C.; et al. Inhibition of a G9a/DNMT Network Triggers Immune-Mediated Bladder Cancer Regression. Nat. Med. 2019, 25, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Rong, L.; Owczarek, T.B.; Di Bernardo, M.; Shoulson, R.L.; Chua, C.W.; Kim, J.Y.; Lankarani, A.; Chakrapani, P.; Syed, T.; et al. Novel Mouse Models of Bladder Cancer Identify a Prognostic Signature Associated with Risk of Disease Progression. Cancer Res. 2021, 81, 5161–5175. [Google Scholar] [CrossRef] [PubMed]
- Rubio, C.; Martínez-Fernandez, M.; Segovia, C.; Lodewijk, I.; Suarez-Cabrera, C.; Segrelles, C.; Lopez-Calder, F.; Munera-Maravilla, E.; Santos, M.; Bernardini, A.; et al. CDK4/6 Inhibitor as a Novel Therapeutic Approach for Advanced Bladder Cancer Independently of RB1 Status. Clin. Cancer Res. 2019, 25, 390–402. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.; Martínez-Fernández, M.; Dueñas, M.; García-Escudero, R.; Alfaya, B.; Villacampa, F.; Saiz-Ladera, C.; Costa, C.; Oteo, M.; Duarte, J.; et al. In Vivo Disruption of an Rb-E2F-Ezh2 Signaling Loop Causes Bladder Cancer. Cancer Res. 2014, 74, 6565–6577. [Google Scholar] [CrossRef] [PubMed]
- Leblond, M.M.; Tille, L.; Nassiri, S.; Gilfillan, C.B.; Imbratta, C.; Schmittnaegel, M.; Ries, C.H.; Speiser, D.E.; Verdeil, G. CD40 Agonist Restores the Antitumor Efficacy of Anti-PD1 Therapy in Muscle-Invasive Bladder Cancer in an IFN I/II-Mediated Manner. Cancer Immunol. Res. 2020, 8, 1180–1192. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.G.; Kim, J.; Al-Ahmadie, H.; Bellmunt, J.; Guo, G.; Cherniack, A.D.; Hinoue, T.; Laird, P.W.; Hoadley, K.A.; Akbani, R.; et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell 2017, 171, 540–556. [Google Scholar] [CrossRef] [PubMed]
- Eischen, C.M. Genome Stability Requires P53. Cold Spring Harb. Perspect. Med. 2016, 6, a026096. [Google Scholar] [CrossRef]
- Puzio-Kuter, A.M.; Seager, C.M.; Harik, L.R.; Castillo-Martin, M.; Abate-Shen, C.T.; Cordon-Cardo, C.; McKiernan, J.M. Combinatorial P53 and Pten Inactivation Promotes Invasive Bladder Cancer. J. Urol. 2009, 181, 343. [Google Scholar] [CrossRef]
- Bankhead, P.; Loughrey, M.B.; Fernández, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open Source Software for Digital Pathology Image Analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef]
- Cheung, A.F.; DuPage, M.J.P.; Dong, H.K.; Chen, J.; Jacks, T. Regulated Expression of a Tumor-Associated Antigen Reveals Multiple Levels of T-Cell Tolerance in a Mouse Model of Lung Cancer. Cancer Res. 2008, 68, 9459–9468. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Xu, H.; Xu, X.; Guo, T.; Ge, W. High Tumor Mutation Burden Predicts Better Efficacy of Immunotherapy: A Pooled Analysis of 103078 Cancer Patients. Oncoimmunology 2019, 8, e1629258. [Google Scholar] [CrossRef] [PubMed]
- Vinay, D.S.; Ryan, E.P.; Pawelec, G.; Talib, W.H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W.K.; Whelan, R.L.; Kumara, H.M.C.S.; et al. Immune Evasion in Cancer: Mechanistic Basis and Therapeutic Strategies. Semin. Cancer Biol. 2015, 35, S185–S198. [Google Scholar] [CrossRef] [PubMed]
- Giacobbe, A.; Abate-Shen, C. Modeling Metastasis in Mice: A Closer Look. Trends Cancer 2021, 7, 916–929. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-T.; Pak, J.; Shapiro, E.; Sun, T.-T.; Wu, X.-R. Urothelium-Specific Expression of an Oncogene in Transgenic Mice Induced the Formation of Carcinoma in Situ and Invasive Transitional Cell Carcinoma1. Cancer Res. 1999, 59, 3512–3517. [Google Scholar]
- Rampias, T.; Vgenopoulou, P.; Avgeris, M.; Polyzos, A.; Stravodimos, K.; Valavanis, C.; Scorilas, A.; Klinakis, A. A New Tumor Suppressor Role for the Notch Pathway in Bladder Cancer. Nat. Med. 2014, 20, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- Shinagare, A.B.; Ramaiya, N.H.; Jagannathan, J.P.; Fennessy, F.M.; Taplin, M.E.; Van Den Abbeele, A.D. Metastatic Pattern of Bladder Cancer: Correlation with the Characteristics of the Primary Tumor. Am. J. Roentgenol. 2011, 196, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Xie, Z.; Yan, Y.; Huang, Z.; Tang, P.; Cao, X.; Wang, Z.; Yang, C.; Tan, M.; Zhang, F.; et al. Establishment of an Optimized Orthotopic Bladder Cancer Model in Mice. BMC Urol. 2022, 22, 142. [Google Scholar] [CrossRef]
- Olson, B.; Li, Y.; Lin, Y.; Liu, E.T.; Patnaik, A. Mouse Models for Cancer Immunotherapy Research. Cancer Discov. 2018, 8, 1358–1365. [Google Scholar] [CrossRef]
Target | Clone | Reference | Provider | Dilution |
---|---|---|---|---|
CD4 | H129.19 | 550278 | BD pharmingen (Franklin Lakes NJ, USA) | 1/100 |
CD8 | EPR21769 | ab217344 | Abcam (Cambridge, UK) | 1/100 |
Anti-rat | 712-545-150 | Jackson ImmunoResearch (West Grove, PA, USA) | 1/500 | |
Anti-rabbit | A32733 | Invitrogen (Carlsbad, CA, USA) | 1/500 |
Extracellular Target | Fluorochrome | Clone | Reference | Provider | Dilution |
---|---|---|---|---|---|
CD45.2 | BV711 | 104 | 109847 | Biolegend | 1/50 |
CD45.2 | BV650 | 104 | 109836 | Biolegend | 1/100 |
CD4 | FITC | GK1.5 | FACS Facility UNIL | 1/1000 | |
CD4 | BV605 | RM4-5 | FACS Facility UNIL | 1/200 | |
CD8 | BV786 | 53-6.7 | 100750 | Biolegend | 1/200 |
CD8 | APC efluor 780 | 53.6.7 | 100714 | Biolegend | 1/100 |
CD11b | BV605 | M1/70 | 101257 | Biolegend | 1/500 |
F4/80 | PEDz594 | BM8 | 123146 | Biolegend | 1/50 |
Ly6C | Percp/Cy5.5 | HK1.4 | 45-5932-82 | Invitrogen | 1/200 |
Ly6G | BV650 | 1A8 | 127641 | Biolegend | 1/200 |
MHCII | BV786 | M5/114.15.2 | 107645 | Biolegend | 1/1000 |
CD11c | FITC | N418 | 11-0114-85 | Invitrogen | 1/100 |
B220 | PE/Cy7 | RA3-6B2 | 103222 | Biolegend | 1/1000 |
B220 | BV570 | RA3-6B2 | 103237 | Biolegend | 1/50 |
PD-1 | BV711 | 29F.1A12 | 135231 | Biolegend | 1/200 |
CD44 | APC/Cy7 | IM7 | 47-0441-82 | Invitrogen | 1/100 |
CD25 | PE/Cy7 | PC61 | 25-0251-82 | eBioscience | 1/100 |
TNFα | BV421 | MP6-XT22 | 506318 | Biolegend | 1/100 |
IFNγ | PE/Cy7 | XMG1.2 | 505826 | Biolegend | 1/100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desponds, E.; Kioseoglou, K.; Zdimerova, H.; Ongaro, M.; Verdeil, G.; Leblond, M.M. Development of Traceable Mouse Models of Advanced and Metastatic Bladder Cancer. Cancers 2024, 16, 2245. https://doi.org/10.3390/cancers16122245
Desponds E, Kioseoglou K, Zdimerova H, Ongaro M, Verdeil G, Leblond MM. Development of Traceable Mouse Models of Advanced and Metastatic Bladder Cancer. Cancers. 2024; 16(12):2245. https://doi.org/10.3390/cancers16122245
Chicago/Turabian StyleDesponds, Emma, Konstantina Kioseoglou, Hana Zdimerova, Marco Ongaro, Grégory Verdeil, and Marine M. Leblond. 2024. "Development of Traceable Mouse Models of Advanced and Metastatic Bladder Cancer" Cancers 16, no. 12: 2245. https://doi.org/10.3390/cancers16122245
APA StyleDesponds, E., Kioseoglou, K., Zdimerova, H., Ongaro, M., Verdeil, G., & Leblond, M. M. (2024). Development of Traceable Mouse Models of Advanced and Metastatic Bladder Cancer. Cancers, 16(12), 2245. https://doi.org/10.3390/cancers16122245