The Importance of Intestinal Microbiota and Dysbiosis in the Context of the Development of Intestinal Lymphoma in Dogs and Cats
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Background
1.2. Objectives of the Article
2. The Microbiota
2.1. Definition and Composition
2.2. Functions of the Microbiota
3. Normobiosis and Dysbiosis
3.1. Gut Microbiota and Lymphoma
3.2. Normobiosis
3.3. Dysbiosis
4. Lymphomas
4.1. General Information
4.2. Lymphoma in Cats and Dogs
Authors | Research | Date | Animals | Methodology | Results |
---|---|---|---|---|---|
Omori et al. [27] | Fecal microbiome in dogs with inflammatory bowel disease and intestinal lymphoma | 2009–2012 | dogs | Fecal samples were collected from 3 groups of dogs: 11 healthy dogs, 16 dogs diagnosed with IBD, 7 dogs diagnosed with intestinal lymphoma, 15 dogs with no clinical signs. |
|
Garraway et al. [23] | Relationship between the mucosal microbiota and gastrointestinal inflammation and small-cell intestinal lymphoma in cats | 2018 | cats | Tissue samples were collected from 14 cats diagnosed with IBD and 14 cats diagnosed with small-cell GI lymphoma (SCIL). No healthy cats were included as controls. The procedure involved biopsy sampling of the intestine; the samples were subsequently evaluated for the presence of bacteria, NF-κB transcription factor expression, and CD11b+ cells. |
|
Marsilio et al. [35] | Characterization of the fecal microbiome in cats with inflammatory bowel disease or alimentary small-cell lymphoma | 2019 | cats | Fecal samples were collected from 38 healthy cats, 13 cats diagnosed with IBD, and 14 cats diagnosed with small-cell lymphoma. |
|
Mahiddine et al. [56] | Microbiome Profile of Dogs with Stage-IV Multicentric Lymphoma: A Pilot Study | 2022 | dogs | Fecal samples were collected from 11 healthy dogs and 7 dogs diagnosed with lymphoma. |
|
Sung et al. [31] | Dysbiosis index to evaluate the fecal microbiota in healthy cats and cats with chronic enteropathies | 2022 | cats | Fecal samples were collected from 80 healthy cats and 68 cats diagnosed with chronic enteropathies, which included both IBD and alimentary small-cell lymphoma. |
|
Diseases that May Cause Similar Clinical Signs in the Intestinal Area | Type of Examination in Differential Diagnosis |
---|---|
Food allergy/sensitivity | Elimination diet containing protein hydrolysates/protein from a new source (possibly allergy tests) |
Parasites | Stool flotation test, smear, SNAP test (e.g., Giardia spp.) |
Bacterial intestinal inflammation | Microbiological examination of stools—smear or in the laboratory |
Metabolic or systemic diseases | Biochemical blood test with a general profile |
Exocrine pancreatic insufficiency | Trypsin-like factor immunoreactivity (TLI) |
Acute pancreatitis | Pancreatic lipase (fPLI or cPLI), imaging diagnostics |
Hyperthyroidism (mainly in cats) | T3, T4 |
Vitamin B12 deficiency | Cobalamin |
Addison’s disease | Cortisol—ACTH stimulation test |
Gastrointestinal obstruction | Diagnostic imaging |
IBD | Endoscopic biopsy, laparotomy with biopsy, laparoscopy with biopsy, cobalamin |
Cancers (Adenocarcinoma, Lymphoma, others) | Diagnostic imaging, endoscopic biopsy, laparotomy with biopsy, laparoscopy with biopsy |
Fungal infection | Microbiological examination of stools, endoscopic biopsy, laparotomy with biopsy, laparoscopy with biopsy |
Type of Examination | Cytological Examination | Histopathological Examination | Immunohistochemical Examination (IHC) | PCR Examination for Rearrangement of the Antigen Receptor (PARR) | Flow Cytometry (FC) |
---|---|---|---|---|---|
Analysis | |||||
Site of sample collection | Altered lymph nodes/tissue fragments [47,52,59] | Infiltrative changes + enlarged mesenteric lymph nodes [47] | Infiltrative changes/transformed tissue samples/lymph nodes [59] | Altered lymph nodes and tissues [60] | Blood, lymph nodes, tonsils, transformed tissue fragments [61] |
Material | Fine-needle aspirates [47,52] | Biopsy specimens (not smaller than 1 mm) or entire lesion—avoid areas of necrosis and ulceration; fixed in formalin [52]. | Fresh samples—fine-needle aspirates and biopsies—or embedded in paraffin [60] | Fresh samples (fine-needle aspirates, biopsies, blood, body fluids) or fixed in formalin or made from a paraffin block [47,60] | Whole blood collected in tubes with sodium EDTA, tissue material—fine-needle aspirates—cells isolated in a density gradient [61,62,63] |
Differentiation between lymphoma and IBD | Difficult for low-grade lymphomas (LG low grade); possible for large cell lymphomas (DLBCL) and lymphomas with granular lymphocytes [47] | Possible, but the test result may be unreliable [47,62] | Possible [47,62,64] | Difficult for low-grade lymphomas (LG low grade); possible for large cell lymphomas (DLBCL) and lymphomas with granular lymphocytes [42,47,62] | Possible [62] |
Intestinal lymphoma | Small lymphocytes with few blasts [47] | Small/large lymphocytes—the possibility of assessment depends on the place where the biopsy sample was taken, lymphoblasts [47,65] | CD20+ for B lymphocytes/CD3+ for T lymphocytes [60,64,66] | Expression of heavy-chain immunoglobulin (IgH+)/T-cell receptor gamma (TCRγ+) [60] | Identification of markers for different types of lymphoma [61] |
IBD | Inflammatory cells, including plasma cells, numerous blasts [47] | Inflammatory cells, including plasma cells [57] | Differentiated immunophenotype [67] | Negative [47] | Immunophenotyping—TCRγδ+ T-cell receptor (decreased), CD21+ for B lymphocytes (decreased) [67] |
Diagnostic value | Moderate, additional confirmation for the presence of proliferation is necessary [47] | High—higher with appropriate cooperation between the referring physician and pathologist [52] | Moderate, false + or − results may occur. However, they allow adjusting the likely course of the disease and treatment plan (e.g., by determining genetic changes and the degree of proliferation) [47] | High, especially used to differentiate lymphomas from reactive proliferation [47,60] | The use of flow cytometry (allowing qualitative and quantitative analysis of cells and antigens) along with fine-needle aspiration biopsy increases the accuracy in detecting lymphoma, along with its subclassification [61,62,68] |
Notes | Inability to assess the structure of a specific tissue, assessment of cells/individual clusters only [47] | Abandonment in cases where the result has no impact on the treatment method or when the collection is too dangerous [52] | For better diagnostics, it is advisable to complement with PARR examination and monitor treatment effects [47] | Diagnosis of the presence of monoclonal lymphocyte proliferation; additional HP/IHC diagnostics required; consider the possibility of result distortion due to monoclonality or prior corticosteroid administration [47]. | The requirement is to provide live cells for the study [61] |
5. Diagnostics
5.1. Clinical Signs
5.2. Diagnostic Procedures
5.3. Therapy and Prevention
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
APC | Antigen-presenting cell |
DLBCL | Diffuse large B-cell lymphoma |
EIEC | Enteroinvasive Escherichia coli |
FeLV | Feline leukemia virus |
FIV | Feline immunodeficiency virus |
FMT | Fecal microbiota transplant |
GALT | Gut-associated lymphoid tissue |
IBD | Inflammatory bowel disease |
IgH+ | Immunoglobulin heavy |
ILFs | Isolated lymphoid follicles |
SCIL | Small-cell GI lymphoma |
SFB | Segmented filamentous bacteria |
TCRγ+ | T-cell receptor |
Treg | Regulatory T cells |
Th17 | Helper T lymphocytes |
WHO | World Health Organisation |
WSAVA | World Small Animal Veterinary Association |
References
- Sapierzyński, R. Nowotwory układu pokarmowego u psów i kotów. Część II. Nowotwory przełyku, żołądka i jelit. Życie Weter. 2006, 81, S316–S325. [Google Scholar]
- Taylor, A. Chłoniaki u Kotów—Rozpoznanie i Leczenie. Weter. Dyplomie 2022, 4. Available online: https://magwet.pl/wpd/37831 (accessed on 1 June 2024).
- Withrow, J.S.; Vail, D.M.; Page, R.; Selting, K.A. Small Animal Clinical Oncology, 5th ed.; WB Saunders Co.: Philadelphia, PA, USA, 2012; pp. S412–S423. [Google Scholar]
- Wolfesberger, B.; Burger, S.; Kummer, S.; Walter, I.; Tichy, A.; Klinger, S.; Alton, K.; Burgener, I.A.; Liehmann, L.; Hammer, S.E.; et al. Proliferation Activity in Canine Gastrointestinal Lymphoma. J. Comp. Pathol. 2021, 189, 77–87. [Google Scholar] [CrossRef]
- Honda, K.; Littman, D.R. The microbiome in infectious disease and inflammation. Annu. Rev. Immunol. 2012, 30, 759–795. [Google Scholar] [CrossRef]
- Kamada, N.; Núñez, G. Role of the gut microbiota in the development and function of lymphoid cells. J. Immunol. 2013, 190, 1389–1395. [Google Scholar] [CrossRef]
- Belkaid, Y.; Hand, T.W. Role of the microbiota in immunity and inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef]
- Garraway, K.; Allenspach, K.; Jergens, A. Nieswoiste Zapalenie Jelit u Psów i Kotów. Weter. Dyplomie 2019, 1. Available online: https://magwet.pl/wpd/31973,nieswoiste-zapalenie-jelit-u-psow-i-kotow?page=7 (accessed on 1 June 2024).
- Francuz, T.; Czajka-Francuz, P.; Cisoń-Jurek, S.; Wojnar, J. Rola zapalenia w patogenezie raka jelita grubego. Postępy Hig. I Med. Doświadczalnej 2016, 70, S360–S366. [Google Scholar] [CrossRef] [PubMed]
- Jank, M. Mikrobiota przewodu pokarmowego—Nowy wskaźnik i cel w terapii chorób przewodu pokarmowego. In Weterynaria w Praktyce; Monografia; Elamed Media Group: Katowice, Poland, 2021; pp. S28–S34. [Google Scholar]
- Wincewicz, E. Probiotyki w żywieniu zwierząt towarzyszących. Acta Sci. Pol. Med. Vet. 2011, 10, S13–S24. [Google Scholar]
- Barko, P.C.; McMichael, M.A.; Swanson, K.S.; Williams, D.A. The Gastrointestinal Microbiome: A Review. J. Vet. Intern. Med. 2018, 32, 9–25. [Google Scholar] [CrossRef]
- Suchodolski, J.S. Intestinal microbiota of dogs and cats: A bigger world than we thought. Vet. Clin. Small Anim. Pract. 2011, 41, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Mazcorro, J.F.; Minamoto, Y. Gastrointestinal microorganisms in cats and dogs: A brief review. Arch. Med. Vet. 2013, 45, 111–112. [Google Scholar] [CrossRef]
- Suchodolski, J.S. Companion animals symposium: Microbes and gastrointestinal health of dogs and cats. J. Anim. Sci. 2011, 89, 1520–1530. [Google Scholar] [CrossRef] [PubMed]
- Suchodolski, J.S. Analysis of the gut microbiome in dogs and cats. Vet. Clin. Pathol. 2021, 50 (Suppl. S1), 6–17. [Google Scholar] [CrossRef] [PubMed]
- Ziese, A.L.; Suchodolski, J.S. Impact of Changes in Gastrointestinal Microbiota in Canine and Feline Digestive Diseases. Vet. Clin. Small Anim. Pract. 2021, 51, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Grzegory, M. Zaburzenia żołądkowo-jelitowe u psów i kotów. Weter. Prakt. 2021, 18, 110–112. [Google Scholar]
- Schwabe, R.F.; Jobin, C. The microbiome and cancer. Nat. Rev. Cancer 2013, 13, 800–812. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.L.; Schiestl, R.H. Lymphoma caused by intestinal microbiota. Int. J. Environ. Res. Public Health 2014, 11, 9038–9049. [Google Scholar] [CrossRef] [PubMed]
- Tizard, I.R.; Jones, S.W. The Microbiota Regulates Immunity and Immunologic Diseases in Dogs and Cats. Vet. Clin. Small Anim. Pract. 2018, 48, 307–322. [Google Scholar] [CrossRef]
- Deng, P.; Swanson, K.S. Gut microbiota of humans, dogs and cats: Current knowledge and future opportunities and challenges. Br. J. Nutr. 2015, 113, S6–S17. [Google Scholar] [CrossRef]
- Garraway, K.; Johannes, C.M.; Bryan, A.; Peauroi, J.; Rossi, G.; Zhang, M.; Wang, C.; Allenspach, K.; Jergens, A.E. Relationship of the mucosal microbiota to gastrointestinal inflammation and small cell intestinal lymphoma in cats. J. Vet. Intern. 2018, 32, 1692–1702. [Google Scholar] [CrossRef] [PubMed]
- Ettinger, S.N. Principles of treatment for feline lymphoma. Clin. Tech. Small Anim. Pract. 2003, 18, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Maynard, C.L.; Elson, C.O.; Hatton, R.D.; Weaver, C.T. Reciprocal interactions of the intestinal microbiota and immune system. Nature 2012, 489, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Srikanth, C.V.; McCormick, B.A. Interactions of the intestinal epithelium with the pathogen and the indigenous microbiota: A three-way crosstalk. Interdiscip. Perspect. Infect. Dis. 2008, 2008, 626827. [Google Scholar] [CrossRef] [PubMed]
- Omori, M.; Maeda, S.; Igarashi, H.; Ohno, K.; Sakai, K.; Yonezawa, T.; Horigome, A.; Odamaki, T.; Matsuki, N. Fecal microbiome in dogs with inflammatory bowel disease and intestinal lymphoma. J. Vet. Med. Sci. 2017, 79, 1840–1847. [Google Scholar] [CrossRef] [PubMed]
- Hoption Cann, S.A.; van Netten, J.P.; van Netten, C. Dr William Coley and tumour regression: A place in history or in the future. Postgrad. Med. J. 2003, 79, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Mondo, E.; Marliani, G.; Accorsi, P.A.; Cocchi, M.; Di Leone, A. Role of gut microbiota in dog and cat’s health and diseases. Open Veter J. 2019, 9, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Aluai-Cunha, C.S.; Pinto, C.A.; Correia, I.A.D.F.L.; Serra, C.A.d.R.; Santos, A.A.F. The animal’s microbiome and cancer: A translational perspective. Veter Comp. Oncol. 2023, 21, 166–183. [Google Scholar] [CrossRef] [PubMed]
- Sung, C.-H.; Marsilio, S.; Chow, B.; A Zornow, K.; E Slovak, J.; Pilla, R.; A Lidbury, J.; Steiner, J.M.; Park, S.Y.; Hong, M.-P.; et al. Dysbiosis index to evaluate the fecal microbiota in healthy cats and cats with chronic enteropathies. J. Feline Med. Surg. 2022, 24, e1–e12. [Google Scholar] [CrossRef]
- Markus, V.; Paul, A.A.; Teralı, K.; Özer, N.; Marks, R.S.; Golberg, K.; Kushmaro, A. Conversations in the Gut: The Role of Quorum Sensing in Normobiosis. Int. J. Mol. Sci. 2023, 24, 3722. [Google Scholar] [CrossRef]
- Huang, Z.; Pan, Z.; Yang, R.; Bi, Y.; Xiong, X. The canine gastrointestinal microbiota: Early studies and research frontiers. Gut Microbes 2020, 11, 635–654. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.; Kolodziejczyk, A.A.; Thaiss, C.A.; Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol. 2017, 17, 219–232. [Google Scholar] [CrossRef]
- Marsilio, S.; Pilla, R.; Sarawichitr, B.; Chow, B.; Hill, S.L.; Ackermann, M.R.; Estep, J.S.; Lidbury, J.A.; Steiner, J.M.; Suchodolski, J.S. Characterization of the fecal microbiome in cats with inflammatory bowel disease or alimentary small cell lymphoma. Sci. Rep. 2019, 9, 19208. [Google Scholar] [CrossRef] [PubMed]
- Jagielski, D. Chłoniaki przewodu pokarmowego kotów, Cz. I. Mag. Weter. 2012, 9. Available online: https://magwet.pl/25438,chloniaki-przewodu-pokarmowego-kotow-cz-i (accessed on 1 June 2024).
- Shreiner, A.B.; Kao, J.Y.; Young, V.B. The gut microbiome in health and in disease. Curr. Opin. Gastroenterol. 2015, 31, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Arthur, J.C.; Perez-Chanona, E.; Mühlbauer, M.; Tomkovich, S.; Uronis, J.M.; Fan, T.-J.; Campbell, B.J.; Abujamel, T.; Dogan, B.; Rogers, A.B.; et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012, 338, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Lupp, C.; Robertson, M.L.; Wickham, M.E.; Sekirov, I.; Champion, O.L.; Gaynor, E.C.; Finlay, B.B. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2007, 2, 204. [Google Scholar] [CrossRef] [PubMed]
- Pilla, R.; Suchodolski, J.S. The Role of the Canine Gut Microbiome and Metabolome in Health and Gastrointestinal Disease. Front. Vet. Sci. 2020, 6, 498. [Google Scholar] [CrossRef] [PubMed]
- Suchodolski, J.S. Diagnosis and interpretation of intestinal dysbiosis in dogs and cats. Vet. J. 2016, 215, 30–37. [Google Scholar] [CrossRef]
- Klopfleisch, R. Veterinary Oncology. In A Short Textbook; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Sobczynska-Rak, A.; Polkowska, I.; Smiech, A.; Silmanowicz, P. Przypadek chłoniaka złośliwego jelita biodrowego u psa. Med. Weter. 2008, 64, 889–892. [Google Scholar]
- Szczeklik, A. Interna Szczeklika; MP Kraków: Kraków, Poland, 2015; ISBN 978-83-7430-459-7. [Google Scholar]
- Mullin, C. Chłoniaki u Psów—Możliwości Leczenia. Weter. Dyplomie 2022, 1. Available online: https://magwet.pl/wpd/38502,chloniaki-u-psow-mozliwosci-leczenia (accessed on 1 June 2024).
- Dobson, J.M.; Duncan, B.; Lascelles, X. Onkologia Psów i Kotów; Galaktyka: Łódź, Poland, 2018. [Google Scholar]
- Sapierzyński, R. Chłoniak limfocytarny jelit/limfocytarne zapalenie jelit u kotów—Problemy diagnostyczne. Życie Weter. 2020, 95, 367–377. [Google Scholar]
- Tilley, L.P.; Smith, F.W.K., Jr. 5 Minut Konsultacji Weterynaryjnej—Psy i Koty; Edra: Tokyo, Japan, 2020. [Google Scholar]
- Harvey, A.; Tasker, S. Koty. In Weterynaryjna Praktyka Kliniczna; Edra: Tokyo, Japan, 2019. [Google Scholar]
- Herman, I.; Rusinek, A.; Zawłocka-Hutny, E. Chłoniak Jam Nosowych u Kotów. Weter. Prakt. 2021, 1/2, 86–93. [Google Scholar]
- Brodsky, E. Cancer of the Small and Large Intestine. In Clinical Small Animal Internal Medicine; Wiley: Hoboken, NJ, USA, 2020; pp. S1287–S1292. [Google Scholar]
- Sapierzyński, R. Onkologia Praktyczna Psów i Kotów; Edra: Tokyo, Japan, 2010. [Google Scholar]
- Jagielski, D. Chłoniaki przewodu pokarmowego kotów, Cz. II. Mag. Weter. 2013, 22, 2. [Google Scholar]
- Lane, J.; Price, J.; Moore, A.; Dandrieux, J.R.S.; Clifford, C.; Curran, K.; Choy, K.; Cannon, C. Low-grade gastrointestinal lymphoma in dogs: 20 cases (2010 to 2016). J. Small Anim. Pract. 2018, 59, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Frances, M.; Lane, A.E.; Lenard, Z.M. Sonographic features of gastrointestinal lymphoma in 15 dogs. J. Small Anim. Pract. 2013, 54, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Mahiddine, F.Y.; You, I.; Park, H.; Kim, M.J. Microbiome profile of dogs with stage IV multicentric lymphoma: A pilot study. Veter Sci. 2022, 9, 409. [Google Scholar] [CrossRef]
- Jergens, A.E.; Simpson, K.W. Inflammatory bowel disease in veterinary medicine. Front. Biosci. Elite 2012, 4, s1404–s1419. [Google Scholar] [CrossRef] [PubMed]
- Garcia, L.G. Zapalenie trzustki u psów—Punkt widzenia lekarza internisty. Weter. Po Dyplomie 2015, 16, S61–S62. [Google Scholar]
- Sapierzyński, R. Practical aspects of immunocytochemistry in canine lymphomas. Pol. J. Vet. Sci. 2010, 13, 661–668. [Google Scholar] [CrossRef]
- Waugh, E.M.; Gallagher, A.; Haining, H.; Johnston, P.E.; Marchesi, F.; Jarrett, R.F.; Morris, J.S. Optimisation and validation of a PCR for antigen receptor rearrangement (PARR) assay to detect clonality in canine lymphoid malignancies. Veter Immunol. Immunopathol. 2016, 182, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Żeromski, J.; Sikora, J.; Dworacki, G. Rola cytometrii w diagnostyce i monitorowaniu chłoniaków (Lymphoma). Postępy Biol. Komórki 2008, 35, S113–S114. [Google Scholar]
- Guzera, M.; Cian, F.; Leo, C.; Winnicka, A.; Archer, J. The use of flow cytometry for immunophenotyping lymphoproliferative disorders in cats: A retrospective study of 19 cases. Vet. Comp. Oncol. 2016, 14 (Suppl. S1), 40–51. [Google Scholar] [CrossRef] [PubMed]
- Lisiecka, U.; Kostro, K.; Jarosz, Ł. Zastosowanie cytometrii przepływowej w medycynie weterynaryjnej. Med. Weter. 2007, 63, S1040–S1044. [Google Scholar]
- Cho, J. Basic immunohistochemistry for lymphoma diagnosis. Blood Res. 2022, 57, 55–61. [Google Scholar] [CrossRef]
- Cortelazzo, S.; Ponzoni, M.; Ferreri, A.J.; Hoelzer, D. Lymphoblastic lymphoma. Crit. Rev. Oncol. 2011, 79, 330–343. [Google Scholar] [CrossRef]
- Marsilio, S.; Freiche, V.; Johnson, E.; Leo, C.; Langerak, A.W.; Peters, I.; Ackermann, M.R. ACVIM consensus statement guidelines on diagnosing and distinguishing low-grade neoplastic from inflammatory lymphocytic chronic enteropathies in cats. J. Veter Intern. Med. 2023, 37, 794–816. [Google Scholar] [CrossRef]
- Galler, A.; Rütgen, B.; Haas, E.; Saalmüller, A.; Hirt, R.; Gerner, W.; Schwendenwein, I.; Richter, B.; Thalhammer, J.; Luckschander-Zeller, N. Immunophenotype of Peripheral Blood Lymphocytes in Dogs with Inflammatory Bowel Disease. J. Veter Intern. Med. 2017, 31, 1730–1739. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, A.; Osawa, T.; Leporowska, E.; Mackiewicz, A. The role of flow cytometry in clinical diagnosis. Współczesna Onkol. 2002, 6, S366–S373. [Google Scholar]
- Freiche, V.; Paulin, M.V.; Cordonnier, N.; Huet, H.; Turba, M.E.; Macintyre, E.; Molina, T.J.; Hermine, O.; Couronné, L.; Bruneau, J. Histopathologic, phenotypic, and molecular criteria to discriminate low-grade intestinal T-cell lymphoma in cats from lymphoplasmacytic enteritis. J. Vet. Intern. Med. 2021, 35, 2673–2684. [Google Scholar] [CrossRef]
- Hernandez, J.; Rhimi, S.; Kriaa, A.; Mariaule, V.; Boudaya, H.; Drut, A.; Jablaoui, A.; Mkaouar, H.; Saidi, A.; Biourge, V.; et al. Domestic Environment and Gut Microbiota: Lessons from Pet Dogs. Microorganisms 2022, 10, 949. [Google Scholar] [CrossRef] [PubMed]
- Burgener, I.A. Probiose, Dysbiose, Antibiose—The good, the bad, and the ugly?!? In 10. Leipziger Tierärztekongress; 2019; pp. 163–168. Available online: https://core.ac.uk/download/pdf/304114699.pdf#page=163 (accessed on 1 June 2024).
- Lee, D.; Goh, T.W.; Kang, M.G.; Choi, H.J.; Yeo, S.Y.; Yang, J.; Huh, C.S.; Kim, Y.Y.; Kim, Y. Perspectives and advances in probiotics and the gut microbiome in companion animals. J. Anim. Sci. Technol. 2022, 64, 197–217. [Google Scholar] [CrossRef] [PubMed]
- Niina, A.; Kibe, R.; Suzuki, R.; Yuchi, Y.; Teshima, T.; Matsumoto, H.; Kataoka, Y.; Koyama, H. Fecal microbiota transplantation as a new treatment for canine inflammatory bowel disease. Biosci. Microbiota Food Health 2021, 40, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Niina, A.; Kibe, R.; Suzuki, R.; Yuchi, Y.; Teshima, T.; Matsumoto, H.; Kataoka, Y.; Koyama, H. Improvement in Clinical Symptoms and Fecal Microbiome After Fecal Microbiota Transplantation in a Dog with Inflammatory Bowel Disease. Vet. Med. Res. Rep. 2019, 10, 197–201. [Google Scholar] [CrossRef]
- Collier, A.J.; Gomez, D.E.; Monteith, G.; Plattner, B.L.; Verbrugghe, A.; Webb, J.; Weese, J.S.; Blois, S.L. Investigating fecal microbial transplant as a novel therapy in dogs with inflammatory bowel disease: A preliminary study. PLoS ONE 2022, 17, e0276295. [Google Scholar] [CrossRef]
Group of Microorganisms * | Bacteria | Fungi | Viruses |
---|---|---|---|
Subject of Analysis | |||
Characteristics of a specific microbiome element | Intestinal microbiota changes depending on the section of the gastrointestinal tract. The diversity of bacteria increases along the gastrointestinal tract from the duodenum to the colon [21]. | They are usually not found in the content of the intestines but adhere to the mucous membrane [13]. | The quantity of viruses in the overall microbiota is small [13]. |
Dog | Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, Actinobacteria [22,23] | Yeasts and molds Each dog has a unique profile of species of fungi present in their population [13]. | Rotaviruses, coronaviruses, parvoviruses, noroviruses, astroviruses, paramyxoviruses [13] |
Cat | Firmicutes (including Clostridium spp.), Proteobacteria (including Enterobacteriaceae, Helicobacter), Bacteroidetes, Fusobacteria, Actinobacteria [22,23] | Ascomycota (>90%); Saccharomyces and Aspergillus, Neocallimastigomycota (>5%) [24] | Rotaviruses, coronaviruses, parvoviruses, bacteriophages Caudovirales, Crenarchaeota, Euryarchaeota, Korarchaeota, Nanoarchaeota and Thaumarchaeota [3,24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breczko, W.J.; Bubak, J.; Miszczak, M. The Importance of Intestinal Microbiota and Dysbiosis in the Context of the Development of Intestinal Lymphoma in Dogs and Cats. Cancers 2024, 16, 2255. https://doi.org/10.3390/cancers16122255
Breczko WJ, Bubak J, Miszczak M. The Importance of Intestinal Microbiota and Dysbiosis in the Context of the Development of Intestinal Lymphoma in Dogs and Cats. Cancers. 2024; 16(12):2255. https://doi.org/10.3390/cancers16122255
Chicago/Turabian StyleBreczko, Wioleta Jadwiga, Joanna Bubak, and Marta Miszczak. 2024. "The Importance of Intestinal Microbiota and Dysbiosis in the Context of the Development of Intestinal Lymphoma in Dogs and Cats" Cancers 16, no. 12: 2255. https://doi.org/10.3390/cancers16122255
APA StyleBreczko, W. J., Bubak, J., & Miszczak, M. (2024). The Importance of Intestinal Microbiota and Dysbiosis in the Context of the Development of Intestinal Lymphoma in Dogs and Cats. Cancers, 16(12), 2255. https://doi.org/10.3390/cancers16122255