The Challenging Approach to Multiple Myeloma: From Disease Diagnosis and Monitoring to Complications Management
Abstract
:Simple Summary
Abstract
1. Introduction
2. Latest in Diagnosis: From X-rays to Artificial Intelligence-Based Techniques
3. From More Precise MM Risk Stratification to Personalized Therapy
4. Disease Monitoring at the Time of Increasingly Effective Therapies
Trial | Phase | Treatment | MRD Negativity (%)/Sensitivity 10−5 | Timing of MRD Assessment |
---|---|---|---|---|
ASCT eligible | ||||
CASSIOPEIA [75] | III | Dara-VTD (4) → ASCT → Dara-VTD (2) | 64 | Post-consolidation |
GRIFFIN [76] | II | Dara-VRD (4) → ASCT → Dara-VRD (2) | 50 | Post-consolidation |
PERSEUS [77] | III | Dara-VRD (4) → ASCT → Dara-VRD (2) | 57.5 | Post-consolidation |
MASTER [78] | II | Dara-KRD (4) → ASCT → Dara-KRD (4) | 81 | Any time ^^ |
IFM 2018-04 * [79] | II | Dara-KRD (6) → ASCT → Dara-KRD (4) → ASCT | 97 | After second ASCT |
GMMG-HD7 [80] | III | Isa-VRD (3) → ASCT | 50.1 | Post-induction |
IsKia EMN 24 [81] | III | Isa-KRD (4) → ASCT → Isa-KRD (4) | 77 | Post-consolidation |
GMMG-CONCEPT ^ [82] | Isa-KRD (6) → ASCT → Isa-KRD (4) | 67.7 | Post-consolidation | |
ASCT not eligible | ||||
MAIA [60] | III | Dara-Rd continuously | 28.8 | Any time ** |
ALCYONE [60] | III | Dara-VMP × 9 cycles | 26.9 | Any time |
Diagnosis | Risk Stratification | Monitoring (MRD Assessment) |
---|---|---|
Laboratory tests
Panel including de17p, t(4; 14); t(14; 16), t(14; 20), 1q21 gain/1q21 amplification, 1p delection Molecular analysis TP53 mutation/deletion Imaging methods
| Potential future risk scores | Potential future methods |
5. New Treatment and Novel Side Effects
6. Infectious Complications Once Again in the Limelight
7. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Varettoni, M.; Corso, A.; Pica, G.; Mangiacavalli, S.; Pascutto, C.; Lazzarino, M. Incidence, Presenting Features and Outcome of Extramedullary Disease in Multiple Myeloma: A Longitudinal Study on 1003 Consecutive Patients. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2010, 21, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Maura, F.; Rajanna, A.R.; Ziccheddu, B.; Poos, A.M.; Derkach, A.; Maclachlan, K.; Durante, M.; Diamond, B.; Papadimitriou, M.; Davies, F.; et al. Genomic Classification and Individualized Prognosis in Multiple Myeloma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2024, 42, 1229–1240. [Google Scholar] [CrossRef] [PubMed]
- Giesen, N.; Chatterjee, M.; Scheid, C.; Poos, A.M.; Besemer, B.; Miah, K.; Benner, A.; Becker, N.; Moehler, T.; Metzler, I.; et al. A Phase 2 Clinical Trial of Combined BRAF/MEK Inhibition for BRAFV600E-Mutated Multiple Myeloma. Blood 2023, 141, 1685–1690. [Google Scholar] [CrossRef] [PubMed]
- Ansari-Pour, N.; Samur, M.; Flynt, E.; Gooding, S.; Towfic, F.; Stong, N.; Estevez, M.O.; Mavrommatis, K.; Walker, B.; Morgan, G.; et al. Whole-Genome Analysis Identifies Novel Drivers and High-Risk Double-Hit Events in Relapsed/Refractory Myeloma. Blood 2023, 141, 620–633. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, H.; Terpos, E.; van de Donk, N.; Mateos, M.-V.; Moreau, P.; Dimopoulos, M.-A.; Delforge, M.; Rodriguez-Otero, P.; San-Miguel, J.; Yong, K.; et al. Prevention and Management of Adverse Events during Treatment with Bispecific Antibodies and CAR T Cells in Multiple Myeloma: A Consensus Report of the European Myeloma Network. Lancet Oncol. 2023, 24, e255–e269. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.-V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group Updated Criteria for the Diagnosis of Multiple Myeloma. Lancet Oncol. 2014, 15, e538–e548. [Google Scholar] [CrossRef]
- Rodríguez-Laval, V.; Lumbreras-Fernández, B.; Aguado-Bueno, B.; Gómez-León, N. Imaging of Multiple Myeloma: Present and Future. J. Clin. Med. 2024, 13, 264. [Google Scholar] [CrossRef]
- Hillengass, J.; Usmani, S.; Rajkumar, S.V.; Durie, B.G.M.; Mateos, M.-V.; Lonial, S.; Joao, C.; Anderson, K.C.; García-Sanz, R.; Riva, E.; et al. International Myeloma Working Group Consensus Recommendations on Imaging in Monoclonal Plasma Cell Disorders. Lancet Oncol. 2019, 20, e302–e312. [Google Scholar] [CrossRef]
- Moulopoulos, L.A.; Koutoulidis, V.; Hillengass, J.; Zamagni, E.; Aquerreta, J.D.; Roche, C.L.; Lentzsch, S.; Moreau, P.; Cavo, M.; Miguel, J.S.; et al. Recommendations for Acquisition, Interpretation and Reporting of Whole Body Low Dose CT in Patients with Multiple Myeloma and Other Plasma Cell Disorders: A Report of the IMWG Bone Working Group. Blood Cancer J. 2018, 8, 95. [Google Scholar] [CrossRef]
- Cook, J.; Rajendran, K.; Ferrero, A.; Dhillon, P.; Kumar, S.; Baffour, F. Photon Counting Detector Computed Tomography: A New Frontier of Myeloma Bone Disease Evaluation. Acta Haematol. 2023, 146, 419–423. [Google Scholar] [CrossRef]
- Winkelmann, M.T.; Hagen, F.; Le-Yannou, L.; Weiss, J.; Riffel, P.; Gutjahr, R.; Faby, S.; Nikolaou, K.; Horger, M. Myeloma Bone Disease Imaging on a 1st-Generation Clinical Photon-Counting Detector CT vs. 2nd-Generation Dual-Source Dual-Energy CT. Eur. Radiol. 2023, 33, 2415–2425. [Google Scholar] [CrossRef]
- Mena, E.; Turkbey, E.B.; Lindenberg, L. Modern Radiographic Imaging in Multiple Myeloma, What Is the Minimum Requirement? Semin. Oncol. 2022, 49, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Rasche, L.; Angtuaco, E.; McDonald, J.E.; Buros, A.; Stein, C.; Pawlyn, C.; Thanendrarajan, S.; Schinke, C.; Samant, R.; Yaccoby, S.; et al. Low Expression of Hexokinase-2 Is Associated with False-Negative FDG-Positron Emission Tomography in Multiple Myeloma. Blood 2017, 130, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Hillengass, J.; Landgren, O. Challenges and Opportunities of Novel Imaging Techniques in Monoclonal Plasma Cell Disorders: Imaging “Early Myeloma”. Leuk. Lymphoma 2013, 54, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- Torkian, P.; Azadbakht, J.; Andrea Bonaffini, P.; Amini, B.; Chalian, M. Advanced Imaging in Multiple Myeloma: New Frontiers for MRI. Diagnostics 2022, 12, 2182. [Google Scholar] [CrossRef] [PubMed]
- Messiou, C.; Porta, N.; Sharma, B.; Levine, D.; Koh, D.-M.; Boyd, K.; Pawlyn, C.; Riddell, A.; Downey, K.; Croft, J.; et al. Prospective Evaluation of Whole-Body MRI versus FDG PET/CT for Lesion Detection in Participants with Myeloma. Radiol. Imaging Cancer 2021, 3, e210048. [Google Scholar] [CrossRef] [PubMed]
- Sidiqi, M.H.; Aljama, M.; Kumar, S.K.; Jevremovic, D.; Buadi, F.K.; Warsame, R.; Lacy, M.Q.; Dingli, D.; Gonsalves, W.I.; Fonder, A.L.; et al. The Role of Bone Marrow Biopsy in Patients with Plasma Cell Disorders: Should All Patients with a Monoclonal Protein Be Biopsied? Blood Cancer J. 2020, 10, 52. [Google Scholar] [CrossRef] [PubMed]
- Fervers, P.; Fervers, F.; Kottlors, J.; Lohneis, P.; Pollman-Schweckhorst, P.; Zaytoun, H.; Rinneburger, M.; Maintz, D.; Große Hokamp, N. Feasibility of Artificial Intelligence–Supported Assessment of Bone Marrow Infiltration Using Dual-Energy Computed Tomography in Patients with Evidence of Monoclonal Protein—A Retrospective Observational Study. Eur. Radiol. 2022, 32, 2901–2911. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Hong, R.; Fan, X.; Hao, Z.; Zhang, X.; Zhang, Y.; Hu, C. Quantitative Assessment of Bone Marrow Infiltration and Characterization of Tumor Burden Using Dual-Layer Spectral CT in Patients with Multiple Myeloma. Radiol. Oncol. 2024, 58, 43–50. [Google Scholar] [CrossRef]
- Ludwig, H.; Kainz, S.; Schreder, M.; Zojer, N.; Hinke, A. SLiM CRAB Criteria Revisited: Temporal Trends in Prognosis of Patients with Smoldering Multiple Myeloma Who Meet the Definition of ’Biomarker-Defined Early Multiple Myeloma’-a Systematic Review with Meta-Analysis. EClinicalMedicine 2023, 58, 101910. [Google Scholar] [CrossRef]
- Visram, A.; Rajkumar, S.V.; Kapoor, P.; Dispenzieri, A.; Lacy, M.Q.; Gertz, M.A.; Buadi, F.K.; Hayman, S.R.; Dingli, D.; Kourelis, T.; et al. Monoclonal Proteinuria Predicts Progression Risk in Asymptomatic Multiple Myeloma with a Free Light Chain Ratio ≥100. Leukemia 2022, 36, 1429–1431. [Google Scholar] [CrossRef] [PubMed]
- Greipp, P.R.; Miguel, J.S.; Dune, B.G.M.; Crowley, J.J.; Barlogie, B.; Bladé, J.; Boccadoro, M.; Child, J.A.; Harousseau, J.L.; Kyle, R.A.; et al. International Staging System for Multiple Myeloma. J. Clin. Oncol. 2005, 23, 3412–3420. [Google Scholar] [CrossRef]
- Palumbo, A.; Avet-Loiseau, H.; Oliva, S.; Lokhorst, H.M.; Goldschmidt, H.; Rosinol, L.; Richardson, P.; Caltagirone, S.; Lahuerta, J.J.; Facon, T.; et al. Revised International Staging System for Multiple Myeloma: A Report from International Myeloma Working Group. J. Clin. Oncol. 2015, 33, 2863–2869. [Google Scholar] [CrossRef] [PubMed]
- Schavgoulidze, A.; Lauwers-Cances, V.; Perrot, A.; Cazaubiel, T.; Chretien, M.-L.; Moreau, P.; Facon, T.; Leleu, X.; Karlin, L.; Stoppa, A.-M.; et al. Heterogeneity in Long-Term Outcomes for Patients with Revised International Staging System Stage II, Newly Diagnosed Multiple Myeloma. Haematologica 2023, 108, 1374–1384. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, M.; Cairns, D.A.; Lahuerta, J.J.; Wester, R.; Bertsch, U.; Waage, A.; Zamagni, E.; Mateos, M.-V.; Dall’Olio, D.; van de Donk, N.W.C.J.; et al. Second Revision of the International Staging System (R2-ISS) for Overall Survival in Multiple Myeloma: A European Myeloma Network (EMN) Report within the HARMONY Project. J. Clin. Oncol. 2022, 40, 3406–3418. [Google Scholar] [CrossRef]
- Perrot, A.; Lauwers-Cances, V.; Tournay, E.; Hulin, C.; Chretien, M.-L.; Royer, B.; Dib, M.; Decaux, O.; Jaccard, A.; Belhadj, K.; et al. Development and Validation of a Cytogenetic Prognostic Index Predicting Survival in Multiple Myeloma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 1657–1665. [Google Scholar] [CrossRef] [PubMed]
- Schavgoulidze, A.; Perrot, A.; Cazaubiel, T.; Leleu, X.; Montes, L.; Jacquet, C.; Belhadj, K.; Brechignac, S.; Frenzel, L.; Chalopin, T.; et al. Prognostic Impact of Translocation t(14;16) in Multiple Myeloma According to the Presence of Additional Genetic Lesions. Blood Cancer J. 2023, 13, 160. [Google Scholar] [CrossRef] [PubMed]
- Mian, H.; Kaiser, M.; Fonseca, R. Translocation t(14;16) in Multiple Myeloma: Gangster or Just Part of the Gang? Blood Cancer J. 2024, 14, 7. [Google Scholar] [CrossRef]
- Schavgoulidze, A.; Talbot, A.; Perrot, A.; Cazaubiel, T.; Leleu, X.; Manier, S.; Buisson, L.; Mahéo, S.; Do Souto Ferreira, L.; Pavageau, L.; et al. Biallelic Deletion of 1p32 Defines Ultra-High-Risk Myeloma, but Monoallelic Del(1p32) Remains a Strong Prognostic Factor. Blood 2023, 141, 1308–1315. [Google Scholar] [CrossRef]
- Walker, B.A.; Mavrommatis, K.; Wardell, C.P.; Ashby, T.C.; Bauer, M.; Davies, F.; Rosenthal, A.; Wang, H.; Qu, P.; Hoering, A.; et al. A high-risk, double-hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia 2019, 33, 159–170. [Google Scholar] [CrossRef]
- Walker, B.A.; Wardell, C.P.; Murison, A.; Boyle, E.M.; Begum, D.B.; Dahir, N.M.; Proszek, P.Z.; Melchor, L.; Pawlyn, C.; Kaiser, M.F.; et al. APOBEC Family Mutational Signatures Are Associated with Poor Prognosis Translocations in Multiple Myeloma. Nat. Commun. 2015, 6, 6997. [Google Scholar] [CrossRef] [PubMed]
- Hoang, P.H.; Cornish, A.J.; Dobbins, S.E.; Kaiser, M.; Houlston, R.S. Mutational Processes Contributing to the Development of Multiple Myeloma. Blood Cancer J. 2019, 9, 60. [Google Scholar] [CrossRef] [PubMed]
- Grasedieck, S.; Panahi, A.; Jarvis, M.C.; Borzooee, F.; Harris, R.S.; Larijani, M.; Avet-Loiseau, H.; Samur, M.; Munshi, N.; Song, K.; et al. Redefining High Risk Multiple Myeloma with an APOBEC/Inflammation-Based Classifier. Leukemia 2024, 38, 1172–1177. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Varma, G.; Davies, F.; Morgan, G. Approach to High-Risk Multiple Myeloma. Hematol. Oncol. Clin. N. Am. 2024, 38, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Gagelmann, N.; Eikema, D.-J.; Iacobelli, S.; Koster, L.; Nahi, H.; Stoppa, A.-M.; Masszi, T.; Caillot, D.; Lenhoff, S.; Udvardy, M.; et al. Impact of Extramedullary Disease in Patients with Newly Diagnosed Multiple Myeloma Undergoing Autologous Stem Cell Transplantation: A Study from the Chronic Malignancies Working Party of the EBMT. Haematologica 2018, 103, 890–897. [Google Scholar] [CrossRef]
- Jelinek, T.; Zihala, D.; Sevcikova, T.; Anilkumar Sithara, A.; Kapustova, V.; Sahinbegovic, H.; Venglar, O.; Muronova, L.; Broskevicova, L.; Nenarokov, S.; et al. Beyond the Marrow: Insights from Comprehensive next-Generation Sequencing of Extramedullary Multiple Myeloma Tumors. Leukemia 2024, 38, 1323–1333. [Google Scholar] [CrossRef] [PubMed]
- Bertamini, L.; Oliva, S.; Rota-Scalabrini, D.; Paris, L.; Morè, S.; Corradini, P.; Ledda, A.; Gentile, M.; De Sabbata, G.; Pietrantuono, G.; et al. High Levels of Circulating Tumor Plasma Cells as a Key Hallmark of Aggressive Disease in Transplant-Eligible Patients with Newly Diagnosed Multiple Myeloma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2022, 40, 3120–3131. [Google Scholar] [CrossRef] [PubMed]
- Garcés, J.-J.; Cedena, M.-T.; Puig, N.; Burgos, L.; Perez, J.J.; Cordon, L.; Flores-Montero, J.; Sanoja-Flores, L.; Calasanz, M.-J.; Ortiol, A.; et al. Circulating Tumor Cells for the Staging of Patients with Newly Diagnosed Transplant-Eligible Multiple Myeloma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2022, 40, 3151–3161. [Google Scholar] [CrossRef] [PubMed]
- Garcés, J.-J.; Termini, R.; Martín-Sánchez, E.; Lasa, M.; Perez, J.J.; Gutierrez, N.C.; Fernández, M.; Calasanz, M.J.; Rosiñol, L.; Hernández Garcia, M.T.; et al. Biological and Clinical Significance of Undetectable Circulating Tumor Cells (CTCs) in Patients (Pts) with Multiple Myeloma (MM). Blood 2023, 142, 646. [Google Scholar] [CrossRef]
- Li, Q.; Ai, L.; Zuo, L.; Li, J.; Zhao, F.; Xu, A.; Zhang, B.; Cai, L.; Hu, Y.; Sun, C. Circulating Plasma Cells as a Predictive Biomarker in Multiple Myeloma: An Updated Systematic Review and Meta-Analysis. Ann. Med. 2024, 56, 2338604. [Google Scholar] [CrossRef]
- Rasche, L.; Angtuaco, E.J.; Alpe, T.L.; Gershner, G.H.; McDonald, J.E.; Samant, R.S.; Kumar, M.; Van Hemert, R.; Epstein, J.; Deshpande, S.; et al. The Presence of Large Focal Lesions Is a Strong Independent Prognostic Factor in Multiple Myeloma. Blood 2018, 132, 59–66. [Google Scholar] [CrossRef]
- Morita, K.; Karashima, S.; Terao, T.; Yoshida, K.; Yamashita, T.; Yoroidaka, T.; Tanabe, M.; Imi, T.; Zaimoku, Y.; Yoshida, A.; et al. 3D CNN-Based Deep Learning Model-Based Explanatory Prognostication in Patients with Multiple Myeloma Using Whole-Body MRI. J. Med. Syst. 2024, 48, 30. [Google Scholar] [CrossRef] [PubMed]
- Sachpekidis, C.; Enqvist, O.; Ulén, J.; Kopp-Schneider, A.; Pan, L.; Jauch, A.; Hajiyianni, M.; John, L.; Weinhold, N.; Sauer, S.; et al. Application of an Artificial Intelligence-Based Tool in [18F]FDG PET/CT for the Assessment of Bone Marrow Involvement in Multiple Myeloma. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 3697–3708. [Google Scholar] [CrossRef]
- Durand, R.; Descamps, G.; Bellanger, C.; Dousset, C.; Maïga, S.; Alberge, J.-B.; Derrien, J.; Cruard, J.; Minvielle, S.; Lilli, N.L.; et al. A P53 Score Derived from TP53 CRISPR/Cas9 HMCLs Predicts Survival and Reveals a Major Role of BAX in the Response to BH3 Mimetics. Blood 2024, 143, 1242–1258. [Google Scholar] [CrossRef]
- Zeissig, M.N.; Hewett, D.R.; Mrozik, K.M.; Panagopoulos, V.; Wallington-Gates, C.T.; Spencer, A.; Dold, S.M.; Engelhardt, M.; Vandyke, K.; Zannettino, A.C.W. Expression of the Chemokine Receptor CCR1 Decreases Sensitivity to Bortezomib in Multiple Myeloma Cell Lines. Leuk. Res. 2024, 139, 107469. [Google Scholar] [CrossRef] [PubMed]
- Zeissig, M.N.; Hewett, D.R.; Panagopoulos, V.; Mrozik, K.M.; To, L.B.; Croucher, P.I.; Zannettino, A.C.W.; Vandyke, K. Expression of the Chemokine Receptor CCR1 Promotes the Dissemination of Multiple Myeloma Plasma Cells In Vivo. Haematologica 2021, 106, 3176–3187. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Gao, X.; Jia, X.; Wang, Y.; Xu, L.; Yu, D.; Chang, S.; Deng, H.; Hu, K.; Wang, G.; et al. Ribosomal Protein S3 Mediates Drug Resistance of Proteasome Inhibitor: Potential Therapeutic Application in Multiple Myeloma. Haematologica 2024, 109, 1206–1219. [Google Scholar] [CrossRef]
- Maclachlan, K.H.; Gitareja, K.; Kang, J.; Cuddihy, A.; Cao, Y.; Hein, N.; Cullinane, C.; Ang, C.-S.; Brajanovski, N.; Pearson, R.B.; et al. Targeting the Ribosome to Treat Multiple Myeloma. Mol. Ther. Oncol. 2024, 32, 200771. [Google Scholar] [CrossRef]
- Maura, F.; Boyle, E.M.; Coffey, D.; Maclachlan, K.; Gagler, D.; Diamond, B.; Ghamlouch, H.; Blaney, P.; Ziccheddu, B.; Cirrincione, A.; et al. Genomic and Immune Signatures Predict Clinical Outcome in Newly Diagnosed Multiple Myeloma Treated with Immunotherapy Regimens. Nat. Cancer 2023, 4, 1660–1674. [Google Scholar] [CrossRef]
- Agarwal, G.; Kazeroun, M.; Salazar, M.; McBean, K.; Ferguson, L.; Larham, J.; Kothari, J.; Ansari-Pour, N.; Moore, S.; Boyle, E.; et al. Targeted NGS Panel Guides Risk-Adapted Treatment Intention in Newly Diagnosed Myeloma Patients. Blood 2023, 142, 644. [Google Scholar] [CrossRef]
- Andreozzi, F.; Dragani, M.; Quivoron, C.; Le Bras, F.; Assi, T.; Danu, A.; Belhadj, K.; Lazarovici, J.; Cotteret, S.; Bernard, O.A.; et al. Precision Medicine Approach Based on Molecular Alterations for Patients with Relapsed or Refractory Multiple Myeloma: Results from the MM-EP1 Study. Cancers 2023, 15, 1508. [Google Scholar] [CrossRef] [PubMed]
- Munshi, N.C.; Avet-Loiseau, H.; Rawstron, A.C.; Owen, R.G.; Child, J.A.; Thakurta, A.; Sherrington, P.; Samur, M.K.; Georgieva, A.; Anderson, K.C.; et al. Association of Minimal Residual Disease with Superior Survival Outcomes in Patients with Multiple Myeloma: A Meta-Analysis. JAMA Oncol. 2017, 3, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Paiva, B.; Anderson, K.C.; Durie, B.; Landgren, O.; Moreau, P.; Munshi, N.; Lonial, S.; Bladé, J.; Mateos, M.-V.; et al. International Myeloma Working Group Consensus Criteria for Response and Minimal Residual Disease Assessment in Multiple Myeloma. Lancet Oncol. 2016, 17, e328–e346. [Google Scholar] [CrossRef] [PubMed]
- Roshal, M.; Flores-Montero, J.A.; Gao, Q.; Koeber, M.; Wardrope, J.; Durie, B.G.M.; Dogan, A.; Orfao, A.; Landgren, O. MRD Detection in Multiple Myeloma: Comparison between MSKCC 10-Color Single-Tube and EuroFlow 8-Color 2-Tube Methods. Blood Adv. 2017, 1, 728–732. [Google Scholar] [CrossRef] [PubMed]
- Flores-Montero, J.; Sanoja-Flores, L.; Paiva, B.; Puig, N.; García-Sánchez, O.; Böttcher, S.; van der Velden, V.H.J.; Pérez-Morán, J.-J.; Vidriales, M.-B.; García-Sanz, R.; et al. Next Generation Flow for Highly Sensitive and Standardized Detection of Minimal Residual Disease in Multiple Myeloma. Leukemia 2017, 31, 2094–2103. [Google Scholar] [CrossRef] [PubMed]
- Szalat, R.; Anderson, K.; Munshi, N. Role of Minimal Residual Disease Assessment in Multiple Myeloma. Haematologica 2024. [Google Scholar] [CrossRef] [PubMed]
- Oliva, S.; Genuardi, E.; Paris, L.; D’Agostino, M.; Rogers, J.; Rota-Scalabrini, D.; Jacob, A.P.; Patriarca, F.; Luppi, M.; Bertazzoni, P.; et al. Prospective Evaluation of Minimal Residual Disease in the Phase II FORTE Trial: A Head-to-Head Comparison between Multiparameter Flow Cytometry and next-Generation Sequencing. EClinicalMedicine 2023, 60, 102016. [Google Scholar] [CrossRef] [PubMed]
- Munshi, N.C.; Avet-Loiseau, H.; Anderson, K.C.; Neri, P.; Paiva, B.; Samur, M.; Dimopoulos, M.; Kulakova, M.; Lam, A.; Hashim, M.; et al. A Large Meta-Analysis Establishes the Role of MRD Negativity in Long-Term Survival Outcomes in Patients with Multiple Myeloma. Blood Adv. 2020, 4, 5988–5999. [Google Scholar] [CrossRef] [PubMed]
- Cavo, M.; San-Miguel, J.; Usmani, S.Z.; Weisel, K.; Dimopoulos, M.A.; Avet-Loiseau, H.; Paiva, B.; Bahlis, N.J.; Plesner, T.; Hungria, V.; et al. Prognostic Value of Minimal Residual Disease Negativity in Myeloma: Combined Analysis of POLLUX, CASTOR, ALCYONE, and MAIA. Blood 2022, 139, 835–844. [Google Scholar] [CrossRef]
- San-Miguel, J.; Avet-Loiseau, H.; Paiva, B.; Kumar, S.; Dimopoulos, M.A.; Facon, T.; Mateos, M.V.; Touzeau, C.; Jakubowiak, A.; Usmani, S.Z.; et al. Sustained Minimal Residual Disease Negativity in Newly Diagnosed Multiple Myeloma and the Impact of Daratumumab in MAIA and ALCYONE. Blood 2022, 139, 492–501. [Google Scholar] [CrossRef]
- D’Agostino, M.; Bertuglia, G.; Rota-Scalabrini, D.; Belotti, A.; Morè, S.; Corradini, P.; Oliva, S.; Ledda, A.; Grasso, M.; Pavone, V.; et al. Predictors of Unsustained Measurable Residual Disease Negativity in Patients with Multiple Myeloma. Blood 2024, 143, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, C.; Puig, N.; Cedena, M.-T.; Calasanz, M.-J.; Gutierrez, N.C.; Fernandez, M.; Oriol, A.; Ríos-Tamayo, R.; Hernandez, M.-T.; Martínez-Martínez, R.; et al. Predictors of Unsustained Measurable Residual Disease Negativity in Transplant-Eligible Patients with Multiple Myeloma. Blood 2024, 143, 597–603. [Google Scholar] [CrossRef]
- Zabaleta, A.; Puig, N.; Cedena Romero, M.T.; Perez, J.J.; Moreno, C.; Tamariz-Amador, L.-E.; Rodriguez Otero, P.; Gonzalez-Calle, V.; Lopez Corral, L.; Rey-Búa, B.; et al. Clinical Significance of Measurable Residual Disease (MRD) in Relapsed/Refractory Multiple Myeloma (RRMM) Patients (Pts) Treated with Chimeric Antigen Receptor (CAR) T Cells and T-Cell Engagers (TCE). Blood 2023, 142, 94. [Google Scholar] [CrossRef]
- Gonzalez, C.; Lasa, M.; Notarfranchi, L.; Agullo, C.; Buenache Cuenda, N.; Zherniakova, A.; Castro, S.; Pérez, J.J.; Gonzalez-Calle, V.; Cedena Romero, M.T.; et al. Minimally Invasive Assessment of Measurable Residual Disease (MRD) in Multiple Myeloma (MM). Blood 2023, 142, 339. [Google Scholar] [CrossRef]
- Zajec, M.; Langerhorst, P.; VanDuijn, M.M.; Gloerich, J.; Russcher, H.; van Gool, A.J.; Luider, T.M.; Joosten, I.; de Rijke, Y.B.; Jacobs, J.F.M. Mass Spectrometry for Identification, Monitoring, and Minimal Residual Disease Detection of M-Proteins. Clin. Chem. 2020, 66, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Dispenzieri, A.; Krishnan, A.; Arendt, B.; Blackwell, B.; Wallace, P.K.; Dasari, S.; Vogl, D.T.; Efebera, Y.; Fei, M.; Geller, N.; et al. Mass-Fix Better Predicts for PFS and OS than Standard Methods among Multiple Myeloma Patients Participating on the STAMINA Trial (BMT CTN 0702 /07LT). Blood Cancer J. 2022, 12, 27. [Google Scholar] [CrossRef]
- Mai, E.K.; Huhn, S.; Miah, K.; Poos, A.M.; Scheid, C.; Weisel, K.C.; Bertsch, U.; Munder, M.; Berlanga, O.; Hose, D.; et al. Implications and Prognostic Impact of Mass Spectrometry in Patients with Newly-Diagnosed Multiple Myeloma. Blood Cancer J. 2023, 13, 1. [Google Scholar] [CrossRef]
- Kubicki, T.; Dytfeld, D.; Wrobel, T.; Jamroziak, K.; Robak, P.; Czyz, J.; Tyczynska, A.; Druzd-Sitek, A.; Giannopoulos, K.; Nowicki, A.; et al. Longitudinal Assessment of Minimal Residual Disease (MRD) in the ATLAS Randomized Phase 3 Trial of Post-Transplant Treatment with Carfilzomib, Lenalidomide, and Dexamethasone (KRd) versus Lenalidomide (R) Alone in Patients with Newly Diagnosed Multiple Myeloma (NDMM). Blood 2023, 142, 4715. [Google Scholar] [CrossRef]
- Kubicki, T.; Dytfeld, D.; Barnidge, D.R.; Sakrikar, D.; Przybyłowicz-Chalecka, A.; Jamroziak, K.; Robak, P.; Czyz, J.; Tyczynska, A.; Druzd-Sitek, A.A.; et al. Mass Spectrometry-Based Assessment of M-Protein in Peripheral Blood During Maintenance Therapy in Multiple Myeloma. Blood 2024, in press. [CrossRef]
- Zamagni, E.; Patriarca, F.; Nanni, C.; Zannetti, B.; Englaro, E.; Pezzi, A.; Tacchetti, P.; Buttignol, S.; Perrone, G.; Brioli, A.; et al. Prognostic Relevance of 18-F FDG PET/CT in Newly Diagnosed Multiple Myeloma Patients Treated with up-Front Autologous Transplantation. Blood 2011, 118, 5989–5995. [Google Scholar] [CrossRef]
- Zamagni, E.; Nanni, C.; Mancuso, K.; Tacchetti, P.; Pezzi, A.; Pantani, L.; Zannetti, B.; Rambaldi, I.; Brioli, A.; Rocchi, S.; et al. PET/CT Improves the Definition of Complete Response and Allows to Detect Otherwise Unidentifiable Skeletal Progression in Multiple Myeloma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2015, 21, 4384–4390. [Google Scholar] [CrossRef] [PubMed]
- Zamagni, E.; Oliva, S.; Gay, F.; Capra, A.; Rota-Scalabrini, D.; D’Agostino, M.; Belotti, A.; Galli, M.; Racca, M.; Zambello, R.; et al. Impact of Minimal Residual Disease Standardised Assessment by FDG-PET/CT in Transplant-Eligible Patients with Newly Diagnosed Multiple Myeloma Enrolled in the Imaging Sub-Study of the FORTE Trial. EClinicalMedicine 2023, 60, 102017. [Google Scholar] [CrossRef] [PubMed]
- Messiou, C.; Hillengass, J.; Delorme, S.; Lecouvet, F.E.; Moulopoulos, L.A.; Collins, D.J.; Blackledge, M.D.; Abildgaard, N.; Østergaard, B.; Schlemmer, H.-P.; et al. Guidelines for Acquisition, Interpretation, and Reporting of Whole-Body MRI in Myeloma: Myeloma Response Assessment and Diagnosis System (MY-RADS). Radiology 2019, 291, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Belotti, A.; Ribolla, R.; Crippa, C.; Chiarini, M.; Giustini, V.; Ferrari, S.; Peli, A.; Cattaneo, C.; Roccaro, A.; Frittoli, B.; et al. Predictive Role of Sustained Imaging MRD Negativity Assessed by Diffusion-Weighted Whole-Body MRI in Multiple Myeloma. Am. J. Hematol. 2023, 98, E230–E232. [Google Scholar] [CrossRef] [PubMed]
- Moreau, P.; Attal, M.; Hulin, C.; Arnulf, B.; Belhadj, K.; Benboubker, L.; Béné, M.C.; Broijl, A.; Caillon, H.; Caillot, D.; et al. Bortezomib, Thalidomide, and Dexamethasone with or without Daratumumab before and after Autologous Stem-Cell Transplantation for Newly Diagnosed Multiple Myeloma (CASSIOPEIA): A Randomised, Open-Label, Phase 3 Study. Lancet 2019, 394, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Voorhees, P.M.; Sborov, D.W.; Laubach, J.; Kaufman, J.L.; Reeves, B.; Rodriguez, C.; Chari, A.; Silbermann, R.; Costa, L.J.; Anderson, L.D., Jr.; et al. Addition of daratumumab to lenalidomide, bortezomib, and dexamethasone for transplantation-eligible patients with newly diagnosed multiple myeloma (GRIFFIN): Final analysis of an open-label, randomised, phase 2 trial. Lancet Haematol. 2023, 10, e825–e837. [Google Scholar] [CrossRef] [PubMed]
- Sonneveld, P.; Dimopoulos, M.A.; Boccadoro, M.; Quach, H.; Ho, P.J.; Beksac, M.; Hulin, C.; Antonioli, E.; Leleu, X.; Mangiacavalli, S.; et al. Daratumumab, Bortezomib, Lenalidomide, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2024, 390, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.J.; Chhabra, S.; Medvedova, E.; Dholaria, B.R.; Schmidt, T.M.; Godby, K.N.; Silbermann, R.; Dhakal, B.; Bal, S.; Giri, S.; et al. Minimal Residual Disease Response-Adapted Therapy in Newly Diagnosed Multiple Myeloma (MASTER): Final Report of the Multicentre, Single-Arm, Phase 2 Trial. Lancet Haematol. 2023, 10, e890–e901. [Google Scholar] [CrossRef] [PubMed]
- Touzeau, C.; Perrot, A.; Hulin, C.; Manier, S.; Macro, M.D.; Chretien, M.-L.; Karlin, L.; Escoffre, M.; Jacquet, C.; Tiab, M.; et al. Daratumumab Carfilzomib Lenalidomide and Dexamethasone with Tandem Transplant in High-Risk Newly Diagnosed Myeloma. Blood 2024, 143, 2029–2036. [Google Scholar] [CrossRef]
- Goldschmidt, H.; Mai, E.K.; Bertsch, U.; Fenk, R.; Nievergall, E.; Tichy, D.; Besemer, B.; Dürig, J.; Schroers, R.; von Metzler, I.; et al. Addition of Isatuximab to Lenalidomide, Bortezomib, and Dexamethasone as Induction Therapy for Newly Diagnosed, Transplantation-Eligible Patients with Multiple Myeloma (GMMG-HD7): Part 1 of an Open-Label, Multicentre, Randomised, Active-Controlled, Phase 3 trial. Lancet Haematol. 2022, 9, e810–e821. [Google Scholar] [CrossRef]
- Gay, F.; Roeloffzen, W.; Dimopoulos, M.A.; Rosiñol, L.; van der Klift, M.; Mina, R.; Rocafiguera, A.O.; Katodritou, E.; Wu, K.L.; Rodriguez Otero, P.; et al. Results of the Phase III Randomized Iskia Trial: Isatuximab-Carfilzomib-Lenalidomide-Dexamethasone Vs Carfilzomib-Lenalidomide-Dexamethasone As Pre-Transplant Induction and Post-Transplant Consolidation in Newly Diagnosed Multiple Myeloma Patients. Blood 2023, 142, 4. [Google Scholar] [CrossRef]
- Leypoldt, L.B.; Tichy, D.; Besemer, B.; Hänel, M.; Raab, M.S.; Mann, C.; Munder, M.; Reinhardt, H.C.; Nogai, A.; Görner, M.; et al. Isatuximab, Carfilzomib, Lenalidomide, and Dexamethasone for the Treatment of High-Risk Newly Diagnosed Multiple Myeloma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2024, 42, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Liang, E.C.; Sidana, S. Managing Side Effects: Guidance for Use of Immunotherapies in Multiple Myeloma. Hematology 2023, 2023, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Santomasso, B.D.; Locke, F.L.; Ghobadi, A.; Turtle, C.J.; Brudno, J.N.; Maus, M.V.; Park, J.H.; Mead, E.; Pavletic, S.; et al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biol. Blood Marrow Transplant. 2019, 25, 625–638. [Google Scholar] [CrossRef] [PubMed]
- Moreau, P.; Garfall, A.L.; van de Donk, N.W.C.J.; Nahi, H.; San-Miguel, J.F.; Oriol, A.; Nooka, A.K.; Martin, T.; Rosinol, L.; Chari, A.; et al. Teclistamab in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2022, 387, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Bahlis, N.J.; Tomasson, M.H.; Mohty, M.; Niesvizky, R.; Nooka, A.K.; Manier, S.; Maisel, C.; Jethava, Y.; Martinez-Lopez, J.; Prince, H.M.; et al. Efficacy and Safety of Elranatamab in Patients with Relapsed/Refractory Multiple Myeloma Naïve to B-Cell Maturation Antigen (BCMA)-Directed Therapies: Results from Cohort a of the Magnetismm-3 Study. Blood 2022, 140, 391–393. [Google Scholar] [CrossRef]
- Bumma, N.; Richter, J.; Brayer, J.; Zonder, J.A.; Dhodapkar, M.; Shah, M.R.; Hoffman, J.E.; Mawad, R.; Maly, J.J.; Lentzsch, S.; et al. Updated Safety and Efficacy of REGN5458, a BCMAxCD3 Bispecific Antibody, Treatment for Relapsed/Refractory Multiple Myeloma: A Phase 1/2 First-in-Human Study. Blood 2022, 140, 10140–10141. [Google Scholar] [CrossRef]
- Wong, S.W.; Bar, N.; Paris, L.; Hofmeister, C.C.; Hansson, M.; Santoro, A.; Mateos, M.-V.; Rodríguez-Otero, P.; Lund, J.; Encinas, C.; et al. Alnuctamab (ALNUC; BMS-986349; CC-93269), a B-Cell Maturation Antigen (BCMA) x CD3 T-Cell Engager (TCE), in Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Results from a Phase 1 First-in-Human Clinical Study. Blood 2022, 140, 400–402. [Google Scholar] [CrossRef]
- D’Souza, A.; Shah, N.; Rodriguez, C.; Voorhees, P.M.; Weisel, K.; Bueno, O.F.; Pothacamury, R.K.; Freise, K.J.; Yue, S.; Ross, J.A.; et al. A Phase I First-in-Human Study of ABBV-383, a B-Cell Maturation Antigen × CD3 Bispecific T-Cell Redirecting Antibody, in Patients with Relapsed/Refractory Multiple Myeloma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2022, 40, 3576–3586. [Google Scholar] [CrossRef]
- Munshi, N.C.; Anderson, L.D.; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2021, 384, 705–716. [Google Scholar] [CrossRef]
- Martin, T.; Usmani, S.Z.; Berdeja, J.G.; Agha, M.; Cohen, A.D.; Hari, P.; Avigan, D.; Deol, A.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene Autoleucel, an Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor T-Cell Therapy, for Relapsed/Refractory Multiple Myeloma: CARTITUDE-1 2-Year Follow-Up. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2023, 41, 1265–1274. [Google Scholar] [CrossRef] [PubMed]
- Rajeeve, S.; Zahradka, N.; Wilkes, M.; Pan, D.; Calafat, N.J.; Serebryakova, K.; Kappes, K.; Jackson, H.; Buchenholz, N.; Agte, S.; et al. Early and Consistent CRS Detection Using Wearable Device for Remote Patient Monitoring Following CAR-T Therapy in Relapsed/Refractory Multiple Myeloma (RRMM): Early Results of an Investigator-Initiated Trial. Blood 2023, 142, 1007. [Google Scholar] [CrossRef]
- Brudno, J.N.; Kochenderfer, J.N. Toxicities of Chimeric Antigen Receptor T Cells: Recognition and Management. Blood 2016, 127, 3321–3330. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, L.; Wang, J.; Yao, Y.; Wang, J.; Ji, S.; Hua, T.; Wang, S.; Cheng, H.; Shi, M.; et al. Correlation of Cytokine Release Syndrome with Prognosis After Chimeric Antigen Receptor T Cell Therapy: Analysis of 54 Patients with Relapsed or Refractory Multiple Myeloma. Front. Immunol. 2022, 13, 814548. [Google Scholar] [CrossRef] [PubMed]
- Mateos, M.-V.; Bahlis, N.J.; Spencer, A.; Kaedbey, R.; Rodríguez-Otero, P.; Harrison, S.; Wong, C.; Goodman, G.; Nakamura, R.; Choeurng, V.; et al. Tocilizumab pre-treatment significantly reduces the incidence of cytokine release syndrome in patients with relapsed/refractory multiple myeloma (RRMM) who received cevostamab. HemaSphere 2023, 7, e75458a8. [Google Scholar] [CrossRef]
- Scott, S.A.; Marin, E.M.; Maples, K.T.; Joseph, N.S.; Hofmeister, C.C.; Gupta, V.A.; Dhodapkar, M.V.; Kaufman, J.L.; Lonial, S.; Nooka, A.K. Prophylactic Tocilizumab to Prevent Cytokine Release Syndrome (CRS) with Teclistamab: A Single-Center Experience. Blood Cancer J. 2023, 13, 191. [Google Scholar] [CrossRef] [PubMed]
- van de Donk, N.W.C.J.; Garfall, A.L.; Benboubker, L.; Uttervall, K.; Groen, K.; Rosiñol, L.; Hodin, C.; Stephenson, T.; Trancucci, D.; Perales-Puchalt, A.; et al. Evaluation of Prophylactic Tocilizumab (Toci) for the Reduction of Cytokine Release Syndrome (CRS) to Inform the Management of Patients (Pts) Treated with Teclistamab in MajesTEC-1. J. Clin. Oncol. 2023, 41, 8033. [Google Scholar] [CrossRef]
- Marin, E.; Scott, S.; Maples, K.; Joseph, N.S.; Hofmeister, C.C.; Gupta, V.A.; Dhodapkar, M.V.; Kaufman, J.L.; Lonial, S.; Nooka, A.K. Prophylactic Tocilizumab to Prevent Cytokine Release Syndrome (CRS) with Teclistamab Administration. Blood 2023, 142, 2008. [Google Scholar] [CrossRef]
- Kowalski, A.; Lykon, J.L.; Diamond, B.; Coffey, D.; Kaddoura, M.; Maura, F.; Hoffman, J.E.; Kazandjian, D.; Landgren, O. Tocilizumab Prophylaxis for Patients Treated with Teclistamab: A Single-Center Experience. Blood 2023, 142, 4709. [Google Scholar] [CrossRef]
- Rees, J.H. Management of Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS). In The EBMT/EHA CAR-T Cell Handbook; Kröger, N., Gribben, J., Chabannon, C., Yakoub-Agha, I., Einsele, H., Eds.; Springer: Cham, Switzerland, 2022; pp. 141–145. ISBN 978-3-030-94352-3. [Google Scholar]
- Lin, Y.; Martin, T.G.; Usmani, S.Z.; Berdeja, J.G.; Jakubowiak, A.J.; Agha, M.E.; Cohen, A.D.; Deol, A.; Htut, M.; Lesokhin, A.M.; et al. CARTITUDE-1 Final Results: Phase 1b/2 Study of Ciltacabtagene Autoleucel in Heavily Pretreated Patients with Relapsed/Refractory Multiple Myeloma. J. Clin. Oncol. 2023, 41, 8009. [Google Scholar] [CrossRef]
- Singh, V.; Master, S. Incidence of Parkinsonism As a Complication of Anti-BCMA CAR-T Cell Therapy in Multiple Myeloma. Blood 2023, 142, 6937. [Google Scholar] [CrossRef]
- Lee, H.C.; Bumma, N.; Richter, J.R.; Dhodapkar, M.V.; Hoffman, J.E.; Suvannasankha, A.; Zonder, J.A.; Shah, M.R.; Lentzsch, S.; Maly, J.J.; et al. LINKER-MM1 Study: Linvoseltamab (REGN5458) in Patients with Relapsed/Refractory Multiple Myeloma. J. Clin. Oncol. 2023, 41, 8006. [Google Scholar] [CrossRef]
- Hines, M.R.; Knight, T.E.; McNerney, K.O.; Leick, M.B.; Jain, T.; Ahmed, S.; Frigault, M.J.; Hill, J.A.; Jain, M.D.; Johnson, W.T.; et al. Immune Effector Cell-Associated Hemophagocytic Lymphohistiocytosis-Like Syndrome. Transplant. Cell. Ther. 2023, 29, 438.e1–438.e16. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, V.E.; Wong, C.; Huang, C.-Y.; Kambhampati, S.; Wolf, J.; Martin, T.G.; Shah, N.; Wong, S.W. Macrophage Activation Syndrome-like (MAS-L) Manifestations Following BCMA-Directed CAR T Cells in Multiple Myeloma. Blood Adv. 2021, 5, 5344–5348. [Google Scholar] [CrossRef] [PubMed]
- Chari, A.; Minnema, M.C.; Berdeja, J.G.; Oriol, A.; van de Donk, N.W.C.J.; Rodr\’\iguez-Otero, P.; Askari, E.; Mateos, M.-V.; Costa, L.J.; Caers, J.; et al. Talquetamab, a T-Cell–Redirecting GPRC5D Bispecific Antibody for Multiple Myeloma. N. Engl. J. Med. 2022, 387, 2232–2244. [Google Scholar] [CrossRef] [PubMed]
- Lery, M.; Perrot, A.; Ortiz-Brugués, A.; Vigarios, E.; Anghel, D.; Bories, P.; Sibaud, V. Dermatological Toxicities Induced by T-Cell-Redirecting G Protein-Coupled Receptor Family C Class 5 Member D Bispecific Antibody Talquetamab. J. Am. Acad. Dermatol. 2024, 90, 376–377. [Google Scholar] [CrossRef] [PubMed]
- Augustson, B.M.; Begum, G.; Dunn, J.A.; Barth, N.J.; Davies, F.; Morgan, G.; Behrens, J.; Smith, A.; Child, J.A.; Drayson, M.T. Early Mortality after Diagnosis of Multiple Myeloma: Analysis of Patients Entered onto the United Kingdom Medical Research Council Trials between 1980 and 2002—Medical Research Council Adult Leukaemia Working Party. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005, 23, 9219–9226. [Google Scholar] [CrossRef]
- Blimark, C.; Holmberg, E.; Mellqvist, U.-H.; Landgren, O.; Björkholm, M.; Hultcrantz, M.; Kjellander, C.; Turesson, I.; Kristinsson, S.Y. Multiple Myeloma and Infections: A Population-Based Study on 9253 Multiple Myeloma Patients. Haematologica 2015, 100, 107–113. [Google Scholar] [CrossRef]
- Encinas, C.; Hernandez-Rivas, J.-Á.; Oriol, A.; Rosiñol, L.; Blanchard, M.-J.; Bellón, J.-M.; García-Sanz, R.; de la Rubia, J.; de la Guía, A.L.; Jímenez-Ubieto, A.; et al. A Simple Score to Predict Early Severe Infections in Patients with Newly Diagnosed Multiple Myeloma. Blood Cancer J. 2022, 12, 68. [Google Scholar] [CrossRef]
- Dumontet, C.; Hulin, C.; Dimopoulos, M.A.; Belch, A.; Dispenzieri, A.; Ludwig, H.; Rodon, P.; Van Droogenbroeck, J.; Qiu, L.; Cavo, M.; et al. A Predictive Model for Risk of Early Grade ≥3 Infection in Patients with Multiple Myeloma Not Eligible for Transplant: Analysis of the FIRST Trial. Leukemia 2018, 32, 1404–1413. [Google Scholar] [CrossRef]
- Wongsaengsak, S.; Kopel, J.; Behera, T.R.; Chakraborty, R.; Ball, S. Infection Risk with Carfilzomib in Multiple Myeloma: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Br. J. Haematol. 2020, 190, e95–e97. [Google Scholar] [CrossRef]
- Vassilopoulos, S.; Vassilopoulos, A.; Kalligeros, M.; Shehadeh, F.; Mylonakis, E. Cumulative Incidence and Relative Risk of Infection in Patients with Multiple Myeloma Treated with Anti-CD38 Monoclonal Antibody-Based Regimens: A Systematic Review and Meta-Analysis. Open Forum Infect. Dis. 2022, 9, ofac574. [Google Scholar] [CrossRef] [PubMed]
- Johnsrud, A.J.; Johnsrud, J.J.; Susanibar, S.A.; Kamimoto, J.J.; Kothari, A.; Burgess, M.; Van Rhee, F.; Rico, J.C. Infectious and Immunological Sequelae of Daratumumab in Multiple Myeloma. Br. J. Haematol. 2019, 185, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Casneuf, T.; Xu, X.S.; Adams, H.C., 3rd; Axel, A.E.; Chiu, C.; Khan, I.; Ahmadi, T.; Yan, X.; Lonial, S.; Plesner, T.; et al. Effects of Daratumumab on Natural Killer Cells and Impact on Clinical Outcomes in Relapsed or Refractory Multiple Myeloma. Blood Adv. 2017, 1, 2105–2114. [Google Scholar] [CrossRef] [PubMed]
- Girmenia, C.; Cavo, M.; Corso, A.; Di Raimondo, F.; Musto, P.; Offidani, M.; Petrucci, M.T.; Rosato, A.; Barosi, G. Management of Infectious Risk of Daratumumab Therapy in Multiple Myeloma: A Consensus-Based Position Paper from an Ad Hoc Italian Expert Panel. Crit. Rev. Oncol. Hematol. 2022, 172, 103623. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, C.; Xia, J.; Li, P.; Cao, J.; Pan, B.; Tan, X.; Li, H.; Qi, K.; Wang, X.; et al. Humoral Immune Reconstitution after Anti-BCMA CAR T-Cell Therapy in Relapsed/Refractory Multiple Myeloma. Blood Adv. 2021, 5, 5290–5299. [Google Scholar] [CrossRef] [PubMed]
- Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Jakubowiak, A.; Agha, M.; Cohen, A.D.; Stewart, A.K.; Hari, P.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene Autoleucel, a B-Cell Maturation Antigen-Directed Chimeric Antigen Receptor T-Cell Therapy in Patients with Relapsed or Refractory Multiple Myeloma (CARTITUDE-1): A Phase 1b/2 Open-Label Study. Lancet 2021, 398, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Bar, N.; Mateos, M.V.; Ribas, P.; Hansson, M.; Paris, L.; Hofmeister, C.C.; Rodriguez Otero, P.; Bermúdez, M.A.; Martin, T.; Santoro, A.; et al. Alnuctamab (ALNUC; BMS-986349; CC-93269), a 2+1 B-Cell Maturation Antigen (BCMA) × CD3 T-Cell Engager (TCE), Administered Subcutaneously (SC) in Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Updated Results from a Phase 1 First-in-Human Clinical Study. Blood 2023, 142, 2011. [Google Scholar] [CrossRef]
- Mazahreh, F.; Mazahreh, L.; Schinke, C.; Thanendrarajan, S.; Zangari, M.; Shaughnessy, J.D.; Zhan, F.; van Rhee, F.; Al Hadidi, S. Risk of Infections Associated with the Use of Bispecific Antibodies in Multiple Myeloma: A Pooled Analysis. Blood Adv. 2023, 7, 3069–3074. [Google Scholar] [CrossRef]
- Jourdes, A.; Cellerin, E.; Touzeau, C.; Harel, S.; Denis, B.; Escure, G.; Faure, E.; Jamard, S.; Danion, F.; Sonntag, C.; et al. Characteristics and Incidence of Infections in Patients with Multiple Myeloma Treated by Bispecific Antibodies: A National Retrospective Study. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2024, 30, 764–771. [Google Scholar] [CrossRef]
- Kambhampati, S.; Sheng, Y.; Huang, C.-Y.; Bylsma, S.; Lo, M.; Kennedy, V.; Natsuhara, K.; Martin, T.; Wolf, J.; Shah, N.; et al. Infectious Complications in Patients with Relapsed Refractory Multiple Myeloma after BCMA CAR T-Cell Therapy. Blood Adv. 2022, 6, 2045–2054. [Google Scholar] [CrossRef] [PubMed]
- Logue, J.M.; Peres, L.C.; Hashmi, H.; Colin-Leitzinger, C.M.; Shrewsbury, A.M.; Hosoya, H.; Gonzalez, R.M.; Copponex, C.; Kottra, K.H.; Hovanky, V.; et al. Early Cytopenias and Infections after Standard of Care Idecabtagene Vicleucel in Relapsed or Refractory Multiple Myeloma. Blood Adv. 2022, 6, 6109–6119. [Google Scholar] [CrossRef] [PubMed]
- Josyula, S.; Pont, M.J.; Dasgupta, S.; Song, X.; Thomas, S.; Pepper, G.; Keane-Candib, J.; Stevens-Ayers, T.L.; Ochs, H.D.; Boeckh, M.J.; et al. Pathogen-Specific Humoral Immunity and Infections in B Cell Maturation Antigen-Directed Chimeric Antigen Receptor T Cell Therapy Recipients with Multiple Myeloma. Transplant. Cell. Ther. 2022, 28, 304.e1–304.e9. [Google Scholar] [CrossRef] [PubMed]
- Sim, B.Z.; Longhitano, A.; Er, J.; Harrison, S.J.; Slavin, M.; Teh, B.W. Infectious Complications of Bispecific Antibody Therapy in Patients with Multiple Myeloma. Blood 2022, 140, 4384–4385. [Google Scholar] [CrossRef]
- Nath, K.; Shekarkhand, T.; Costa, B.A.; Nemirovsky, D.; Derkach, A.; Nishimura, N.; Farzana, T.; Rueda, C.; Chung, D.; Landau, H.; et al. A Comparative Analysis of Infectious Complications in Patients with Multiple Myeloma Treated with BCMA-Targeted Bispecific Antibodies and CAR T-Cell Therapy. Blood 2023, 142, 1957. [Google Scholar] [CrossRef]
- Lancman, G.; Parsa, K.; Kotlarz, K.; Avery, L.; Lurie, A.; Lieberman-Cribbin, A.; Cho, H.J.; Parekh, S.S.; Richard, S.; Richter, J.; et al. IVIg Use Associated with Ten-Fold Reduction of Serious Infections in Multiple Myeloma Patients Treated with Anti-BCMA Bispecific Antibodies. Blood Cancer Discov. 2023, 4, 440–451. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morè, S.; Corvatta, L.; Manieri, V.M.; Morsia, E.; Offidani, M. The Challenging Approach to Multiple Myeloma: From Disease Diagnosis and Monitoring to Complications Management. Cancers 2024, 16, 2263. https://doi.org/10.3390/cancers16122263
Morè S, Corvatta L, Manieri VM, Morsia E, Offidani M. The Challenging Approach to Multiple Myeloma: From Disease Diagnosis and Monitoring to Complications Management. Cancers. 2024; 16(12):2263. https://doi.org/10.3390/cancers16122263
Chicago/Turabian StyleMorè, Sonia, Laura Corvatta, Valentina Maria Manieri, Erika Morsia, and Massimo Offidani. 2024. "The Challenging Approach to Multiple Myeloma: From Disease Diagnosis and Monitoring to Complications Management" Cancers 16, no. 12: 2263. https://doi.org/10.3390/cancers16122263
APA StyleMorè, S., Corvatta, L., Manieri, V. M., Morsia, E., & Offidani, M. (2024). The Challenging Approach to Multiple Myeloma: From Disease Diagnosis and Monitoring to Complications Management. Cancers, 16(12), 2263. https://doi.org/10.3390/cancers16122263