Baseline Cell-Free DNA Can Predict Malignancy of Nodules Observed in the ITALUNG Screening Trial
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants’ Selection
2.2. Plasma DNA Quantification
2.3. LDCT Assessment
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thierry, A.R.; El Messaoudi, S.; Gahan, P.B.; Anker, P.; Stroun, M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev. 2016, 35, 347–376. [Google Scholar] [CrossRef] [PubMed]
- Merker, J.D.; Oxnard, G.R.; Compton, C.; Diehn, M.; Hurley, P.; Lazar, A.J.; Lindeman, N.; Lockwood, C.M.; Rai, A.J.; Schilsky, R.L.; et al. Circulating Tumor DNA Analysis in Patients with Cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review. Arch. Pathol. Lab. Med. 2018, 142, 1242–1253. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.; Shehzad, A.; Khan, S.A.; Miran, W.; Khan, S.; Lee, Y.S. Diagnostic and Therapeutic Potential of Circulating-Free DNA and Cell-Free RNA in Cancer Management. Biomedicines 2022, 10, 2047. [Google Scholar] [CrossRef] [PubMed]
- Mattox, A.K.; Douville, C.; Wang, Y.; Popoli, M.; Ptak, J.; Silliman, N.; Dobbyn, L.; Schaefer, J.; Lu, S.; H Pearlman, A.H.; et al. The Origin of Highly Elevated Cell-Free DNA in Healthy Individuals and Patients with Pancreatic, Colorectal, Lung, or Ovarian Cancer. Cancer Discov. 2023, 13, 2166–2179. [Google Scholar] [CrossRef]
- Thierry, A.R.; Pisareva, E. A New Paradigm of the Origins of Circulating DNA in Patients with Cancer. Cancer Discov. 2023, 13, 2122–2124. [Google Scholar] [CrossRef] [PubMed]
- Seijo, L.M.; Peled, N.; Ajona, D.; Boeri, M.; Field, J.K.; Sozzi, G.; Pio, R.; Zulueta, J.J.; Spira, A.; Massion, P.P.; et al. Biomarkers in Lung Cancer Screening: Achievements, Promises, and Challenges. J. Thorac. Oncol. 2019, 14, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Cisneros-Villanueva, M.; Hidalgo-Pérez, L.; Rios-Romero, M.; Cedro-Tanda, A.; Ruiz-Villavicencio, C.A.; Page, K.; Fernandez-Garcia, K.D.; Allsopp, R.; Fonseca-Montaño, M.A.; Jimenez-Moraleset, S.; et al. Cell-free DNA analysis in current cancer clinical trials: A review. Br. J. Cancer 2022, 126, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Wu, L.R.; Yan, Y.H.; Zhang, J.X.; Chu, T.; Kwong, L.N.; Patel, A.A.; Zhang, D.Y. Limitations and opportunities of technologies for the analysis of cell-free DNA in cancer diagnostics. Nat. Biomed. Eng. 2022, 6, 232–245. [Google Scholar] [CrossRef] [PubMed]
- Sozzi, G.; Roz, L.; Conte, D.; Mariani, L.; Andriani, F.; Lo Vullo, S.; Verri, C.; Pastorino, U. Plasma DNA quantification in lung cancer computed tomography screening: Five-year results of a prospective study. Am. J. Respir. Crit. Care Med. 2009, 179, 69–74. [Google Scholar] [CrossRef]
- Carozzi, F.M.; Bisanzi, S.; Falini, P.; Sani, C.; Venturini, G.; Lopes Pegna, A.; Bianchi, R.; Ronchi, C.; Picozzi, G.; Mascalchi, M.; et al. Molecular profile in body fluids in subjects enrolled in a randomised trial for lung cancer screening: Perspectives of integrated strategies for early diagnosis. Lung Cancer 2010, 68, 216–221. [Google Scholar] [CrossRef]
- Carozzi, F.M.; Bisanzi, S.; Carrozzi, L.; Falaschi, F.; Lopes Pegna, A.; Mascalchi, M.; Picozzi, G.; Peluso, M.; Sani, C.; Greco, L.; et al. Multimodal lung cancer screening using the ITALUNG biomarker panel and low dose computed tomography. Results of the ITALUNG biomarker study. Int. J. Cancer 2017, 141, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Oudkerk, M.; Devaraj, A.; Vliegenthart, R.; Henzler, T.; Prosch, H.; Heussel, C.P.; Bastarrika, G.; Sverzellati, N.; Mascalchi, M.; Delorme, S.; et al. European position statement on lung cancer screening. Lancet Oncol. 2017, 18, e754–e766. [Google Scholar] [CrossRef] [PubMed]
- ACR. Lung-Screening Reporting and Data System (LungRADS) Version 1.1. 2019. Available online: https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Lung-Rads (accessed on 22 January 2024).
- Chelala, L.; Hossain, R.; Kazerooni, E.A.; Christensen, J.D.; Dyer, D.S.; White, C.S. Lung-RADS version 1.1: Challenges and a look ahead, from the AJR special series on radiology reporting and data systems. AJR Am. J. Roentgenol. 2021, 216, 1411–1422. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Picozzi, G.; Sverzellati, N.; Anglesio, S.; Bartolucci, M.; Cavigli, E.; Deliperi, A.; Falchini, M.; Falaschi, F.; Ghio, D.; et al. Low-dose CT for lung cancer screening: Position paper from the Italian college of thoracic radiology. Radiol. Med. 2022, 127, 543–559. [Google Scholar] [CrossRef] [PubMed]
- McWilliams, A.; Tammemagi, M.C.; Mayo, J.R.; Roberts, H.; Liu, G.; Soghrati, K.; Yasufuku, K.; Martel, S.; Laberge, F.; Gingras, M.; et al. Probability of cancer in pulmonary nodules detected on first screening CT. N. Engl. J. Med. 2013, 369, 910–919. [Google Scholar] [CrossRef] [PubMed]
- Tammemagi, M.; Ritchie, A.J.; Atkar-Khattra, S.; Dougherty, B.; Sanghera, C.; Mayo, J.R.; Yuan, R.; Manos, D.; McWilliams, A.M.; Schmidt, H.; et al. Predicting Malignancy Risk of Screen-Detected Lung Nodules-Mean Diameter or Volume. J. Thorac. Oncol. 2019, 14, 203–211. [Google Scholar] [CrossRef]
- González Maldonado, S.; Delorme, S.; Hüsing, A.; Motsch, E.; Kauczor, H.U.; Heussel, C.P.; Kaaks, R. Evaluation of Prediction Models for Identifying Malignancy in Pulmonary Nodules Detected via Low-Dose Computed Tomography. JAMA Netw. Open 2020, 3, e1921221. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.; Sone, S.; Takashima, S.; Li, F.; Yang, Z.G.; Maruyama, Y.; Watanabe, T. Growth rate of small lung cancers detected on mass CT screening. Br. J. Radiol. 2000, 73, 1252–1259. [Google Scholar] [CrossRef]
- Lopes Pegna, A.; Picozzi, G.; Mascalchi, M.; Carozzi, M.F.; Carrozzi, L.; Comin, C.; Spinelli, C.; Falaschi, F.; Grazzini, M.; Innocenti, F.; et al. Design, recruitment and baseline results of the ITALUNG trial for lung cancer screening with low-dose CT. Lung Cancer 2009, 64, 34–40. [Google Scholar] [CrossRef]
- Lopes Pegna, A.; Picozzi, G.; Falaschi, F.; Carrozzi, L.; Falchini, M.; Carozzi, F.M.; Pistelli, F.; Comin, C.E.; Deliperi, A.; Grazzini, M.; et al. Four-year results of low-dose CT screening and nodule management in the ITALUNG trial. J. Thorac. Oncol. 2013, 8, 866–875. [Google Scholar] [CrossRef]
- Paci, E.; Puliti, D.; Lopes Pegna, A.; Carrozzi, L.; Picozzi, G.; Falaschi, F.; Pistelli, F.; Aquilini, F.; Ocello, C.; Zappa, M.; et al. Mortality, survival and incidence rates in the ITALUNG randomised lung cancer screening trial. Thorax 2017, 72, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Henschke, C.I.; Yip, R.; Shaham, D.; Zulueta, J.J.; Aguayo, S.M.; Reeves, A.P.; Jirapatnakul, A.; Avila, R.; Moghanaki, D.; Yankelevitz, D.F.; et al. The Regimen of Computed Tomography Screening for Lung Cancer: Lessons Learned Over 25 Years From the International Early Lung Cancer Action Program. J. Thorac. Imaging 2021, 36, 6–23. [Google Scholar] [CrossRef] [PubMed]
- Mascalchi, M.; Picozzi, G.; Falchini, M.; Vella, A.; Diciotti, S.; Carrozzi, L.; Lopes-Pegna, A.; Falaschi, F. Initial LDCT appearance of incident lung cancers in the ITALUNG trial. Eur. J. Radiol. 2014, 83, 2080–2086. [Google Scholar] [CrossRef] [PubMed]
- Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef]
- Smith, G.C.S.; Seaman, S.R.; Wood, A.M.; Royston, P.; White, I.R. Correcting for optimistic prediction in small data sets. Am. J. Epidemiol. 2014, 180, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Sozzi, G.; Conte, D.; Leon, M.; Ciricione, R.; Roz, L.; Ratcliffe, C.; Roz, E.; Cirenei, N.; Bellomi, M.; Pelosi, G.; et al. Quantification of free circulating DNA as a diagnostic marker in lung cancer. J. Clin. Oncol. 2003, 21, 3902–3908. [Google Scholar] [CrossRef]
- Paci, M.; Maramotti, S.; Bellesia, E.; Formisano, D.; Albertazzi, L.; Ricchetti, T.; Ferraria, G.; Annessia, V.; Lasagnid, D.; Carbonelli, C.; et al. Circulating plasma DNA as diagnostic biomarker in non-small cell lung cancer. Lung Cancer 2009, 64, 92–97. [Google Scholar] [CrossRef]
- Tanos, R.; Tosato, G.; Otandault, A.; Al Amir Dache, Z.; Pique Lasorsa, L.; Tousch, G.; El Messaoudi, S.; Meddeb, R.; Assaf, M.D.; Ychou, M.; et al. Machine Learning-Assisted Evaluation of Circulating DNA Quantitative Analysis for Cancer Screening. Adv. Sci. 2020, 7, 2000486. [Google Scholar] [CrossRef]
- Chabon, J.J.; Hamilton, E.G.; Kurtz, D.M.; Esfahani, M.S.; Moding, E.J.; Stehr, H.; Schroers-Martin, J.; Nabet, B.Y.; Chen, B.; Chaudhur, A.A.; et al. Integrating genomic features for non-invasive early lung cancer detection. Nature 2020, 580, 245–251. [Google Scholar] [CrossRef]
- Abbosh, C.; Frankell, A.M.; Harrison, T.; Kisistok, J.; Garnett, A.; Johnson, J.; Veeriah, S.; Moreau, M.; Chesh, A.; Chaunzwa, T.L.; et al. Tracking early lung cancer metastatic dissemination in TRACERx using ctDNA. Nature 2023, 616, 553–562. [Google Scholar] [CrossRef]
Benign Nodules (n = 108) | LC Screen-Diagnosed at 1st Round (n = 17)—Prevalent LC | LC Screen-Diagnosed at 2nd–4th Round (n = 12)—Incident LC | p-Value | |
---|---|---|---|---|
Demographics, individual smoking history, and familial history of LC | ||||
Gender: n (% female) | 42 (39%) | 4 (24%) | 2 (17%) | 0.176 |
Age at randomization (mean) | 61.0 | 62.9 | 63.0 | 0.1136 |
Age at randomisation: n (%) | ||||
<60 years | 47 (44%) | 4 (24%) | 4 (33%) | |
60–64 years | 31 (29%) | 6 (35%) | 1 (8%) | |
65–70 years | 30 (28%) | 7 (41%) | 7 (58%) | 0.123 |
Smoking status n (%) | ||||
Former | 30 (28%) | 4 (24%) | 3 (25%) | |
Current | 78 (72%) | 13 (76%) | 9 (75%) | 0.922 |
Pack-years (median) | 40.5 | 52.5 | 50.7 | 0.015 |
Pack-years class: n (%) | ||||
[20–30) pack-years | 21 (19%) | 0 (0%) | 1 (8%) | |
[30–40) pack-years | 28 (26%) | 4 (24%) | 3 (25%) | |
[40–50) pack-years | 33 (31%) | 3 (18%) | 1 (8%) | |
≥50 pack-years | 26 (24%) | 10 (59%) | 7 (58%) | 0.018 |
Family history of LC: n, (% yes) | 13 (12%) | 3 (18%) | 1 (8%) | 0.731 |
Body Max Index* (mean) | 25.6 | 27.1 | 24.7 | 0.427 |
Body Max Index*: n (%) | ||||
[18–25) | 49 (46%) | 5 (29%) | 6 (50%) | |
[25–30) | 50 (47%) | 8 (47%) | 5 (42%) | |
≥30 | 8 (7%) | 4 (24%) | 1 (8%) | 0.284 |
Asbestos exposure: n (% yes) | 8 (7%) | 1 (6%) | 1 (8%) | 0.965 |
Silica exposure: n (% yes) | 3 (3%) | 0 (0%) | 0 (0%) | 0.662 |
Chemicals (solvents, detergents, etc.) exposure: n (% yes) | 33 (31%) | 8 (47%) | 2 (17%) | 0.204 |
Initial LDCT findings | ||||
Emphysema: n (% yes) | 38 (35%) | 7 (41%) | 4 (33%) | 0.877 |
Number of nodules (median) | 1 | 1 | 1 | 0.658 |
Number of nodules: n (%) | ||||
0 | 0 (0%) | 0 (0%) | 2 (17%) | |
1 | 69 (64%) | 9 (53%) | 6 (50%) | |
2 | 24 (22%) | 3 (18%) | 2 (17%) | |
≥3 | 15 (14%) | 5 (29%) | 2 (17%) | 0.001 |
Spiculation: n (% yes) | 3 (2.8%) | 8 (47.1%) | 0 (0%) | <0.001 |
Size (mm) of main nodule (mean) | 6.9 | 22.8 | 7.2 | <0.001 |
Size (mm) of main nodule: n (%) | ||||
<6 mm | 60 (56%) | 1 (6%) | 5 (42%) | |
≥6 to <8 mm | 22 (20%) | 1 (6%) | 2 (17%) | |
≥8 to <15 mm | 21 (19%) | 6 (35%) | 2 (17%) | |
≥15 mm | 5 (5%) | 9 (53%) | 3 (25%) | <0.001 |
Lung-RADS (version 1.1): n (%) | ||||
1 | 0 (0%) | 0 (0%) | 2 (17%) | |
2 | 70 (65%) | 1 (6%) | 7 (58%) | |
3 | 17 (16%) | 0 (0%) | 2 (17%) | |
4A | 16 (15%) | 3 (18%) | 1 (8%) | |
4B | 3 (3%) | 3 (18%) | 0 (0%) | |
4X | 2 (2%) | 10 (59%) | 0 (0%) | <0.001 |
Brock score (%) at initial LDCT | ||||
mean | 3.2% | 29.7% | 4.2% | <0.001 |
category: n (%) | ||||
<5% | 88 (81%) | 1 (6%) | 8 (67%) | |
≥5% | 20 (19%) | 16 (94%) | 4 (33%) | <0.001 |
cfDNA (ngDNA/mL plasma) | ||||
mean | 3.3 | 18.8 | 4.8 | <0.001 |
category: n (%) | ||||
<3.15 | 71 (65.7%) | 3 (17.7%) | 3 (25.0%) | |
[3.15–5) | 21 (19.4%) | 2 (11.8%) | 5 (41.7%) | |
≥5 | 16 (14.8%) | 12 (70.6%) | 4 (33.3%) | <0.001 |
All Screen-Diagnosed LC vs. Benign Nodules | Screen-Diagnosed LC at 1st Round vs. Benign Nodules | Screen-Diagnosed LC at 2nd–4th Rounds vs. Benign Nodules | |
---|---|---|---|
Lag-time (months) *: min–max | 0–75 months | 0–7 months | 18–75 months |
cfDNA (ng DNA/mL plasma) | 0.75 (0.62–0.83) | 0.82 (0.66–0.95) | 0.61 (0.20–0.85) |
Size of the main nodule (mm) | 0.72 (0.60–0.84) | 0.89 (0.75–0.99) | 0.42 (0.25–0.60) |
Lung-RADS (version 1.1) | 0.74 (0.65–0.84) | 0.90 (0.50–0.98) | 0.49 (0.30–0.64) |
Brock score | 0.76 (0.62–0.89) | 0.91 (0.75–0.99) | 0.44 (0.26–0.65) |
cfDNA < 3.15 ng/mL | cfDNA ≥ 3.15 ng/mL | Negative Predictive Value (NPV) | Positive Predictive Value (PPV) | |||
---|---|---|---|---|---|---|
Benign Nodules (False Positive) * | Lung Cancers (True Positive) * | Benign Nodules (False Positive) * | Lung Cancers (True Positive) * | |||
Size (mm) of the main nodule | ||||||
<6 mm | 41 | 1 | 19 | 5 | 98% | 21% |
≥6 to <8 mm | 11 | 0 | 11 | 3 | 100% | 21% |
≥8 to <15 mm | 15 | 3 | 6 | 5 | 83% | 45% |
≥15 mm | 4 | 2 | 1 | 10 | 67% | 91% |
Lung-RADS (version 1.1) categories | ||||||
1/2 | 45 | 2 | 25 | 8 | 96% | 24% |
3 | 10 | 0 | 7 | 2 | 100% | 22% |
4A | 12 | 2 | 4 | 2 | 86% | 33% |
4B/4X | 4 | 2 | 1 | 11 | 67% | 92% |
Brock score | ||||||
<1% | 38 | 1 | 20 | 5 | 97% | 20% |
[1–5%) | 20 | 1 | 10 | 2 | 95% | 17% |
[5–10%) | 4 | 1 | 6 | 1 | 80% | 14% |
≥10% | 9 | 3 | 1 | 15 | 75% | 94% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bisanzi, S.; Puliti, D.; Picozzi, G.; Romei, C.; Pistelli, F.; Deliperi, A.; Carreras, G.; Masala, G.; Gorini, G.; Zappa, M.; et al. Baseline Cell-Free DNA Can Predict Malignancy of Nodules Observed in the ITALUNG Screening Trial. Cancers 2024, 16, 2276. https://doi.org/10.3390/cancers16122276
Bisanzi S, Puliti D, Picozzi G, Romei C, Pistelli F, Deliperi A, Carreras G, Masala G, Gorini G, Zappa M, et al. Baseline Cell-Free DNA Can Predict Malignancy of Nodules Observed in the ITALUNG Screening Trial. Cancers. 2024; 16(12):2276. https://doi.org/10.3390/cancers16122276
Chicago/Turabian StyleBisanzi, Simonetta, Donella Puliti, Giulia Picozzi, Chiara Romei, Francesco Pistelli, Annalisa Deliperi, Giulia Carreras, Giovanna Masala, Giuseppe Gorini, Marco Zappa, and et al. 2024. "Baseline Cell-Free DNA Can Predict Malignancy of Nodules Observed in the ITALUNG Screening Trial" Cancers 16, no. 12: 2276. https://doi.org/10.3390/cancers16122276
APA StyleBisanzi, S., Puliti, D., Picozzi, G., Romei, C., Pistelli, F., Deliperi, A., Carreras, G., Masala, G., Gorini, G., Zappa, M., Sani, C., Carrozzi, L., Paci, E., Kaaks, R., Carozzi, F. M., & Mascalchi, M., on behalf of the ITALUNG Working Group. (2024). Baseline Cell-Free DNA Can Predict Malignancy of Nodules Observed in the ITALUNG Screening Trial. Cancers, 16(12), 2276. https://doi.org/10.3390/cancers16122276