The Impact of Expert Pathology Review and Molecular Diagnostics on the Management of Sarcoma Patients: A Prospective Study of the Hellenic Group of Sarcomas and Rare Cancers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Procedures
2.3. Molecular Test
2.4. Statistics
3. Results
3.1. Patient Characteristics
3.2. Effect of Expert Pathology Review
3.3. Effect of Molecular Test
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ducimetière, F.; Lurkin, A.; Ranchère-Vince, D.; Decouvelaere, A.-V.; Péoc’h, M.; Istier, L.; Chalabreysse, P.; Muller, C.; Alberti, L.; Bringuier, P.-P.; et al. Incidence of Sarcoma Histotypes and Molecular Subtypes in a Prospective Epidemiological Study with Central Pathology Review and Molecular Testing. PLoS ONE 2011, 6, e20294. [Google Scholar] [CrossRef]
- Jo, V.Y.; Fletcher, C.D.M. WHO Classification of Soft Tissue Tumours: An Update Based on the 2013 (4th) Edition. Pathology 2014, 46, 95–104. [Google Scholar] [CrossRef]
- Sbaraglia, M.; Bellan, E.; Dei Tos, A.P. The 2020 WHO Classification of Soft Tissue Tumours: News and Perspectives. Pathologica 2021, 113, 70–84. [Google Scholar] [CrossRef]
- Anderson, W.J.; Doyle, L.A. Updates from the 2020 World Health Organization Classification of Soft Tissue and Bone Tumours. Histopathology 2021, 78, 644–657. [Google Scholar] [CrossRef]
- Davis, J.L.; Al-Ibraheemi, A.; Rudzinski, E.R.; Surrey, L.F. Mesenchymal Neoplasms with NTRK and Other Kinase Gene Alterations. Histopathology 2022, 80, 4–18. [Google Scholar] [CrossRef]
- Kao, Y.-C.; Owosho, A.A.; Sung, Y.-S.; Zhang, L.; Fujisawa, Y.; Lee, J.-C.; Wexler, L.; Argani, P.; Swanson, D.; Dickson, B.C.; et al. BCOR-CCNB3 Fusion Positive Sarcomas: A Clinicopathologic and Molecular Analysis of 36 Cases with Comparison to Morphologic Spectrum and Clinical Behavior of Other Round Cell Sarcomas. Am. J. Surg. Pathol. 2018, 42, 604–615. [Google Scholar] [CrossRef]
- de Alava, E.; Gerald, W.L. Molecular Biology of the Ewing’s Sarcoma/Primitive Neuroectodermal Tumor Family. J. Clin. Oncol. 2000, 18, 204–213. [Google Scholar] [CrossRef]
- Xiao, X.; Garbutt, C.C.; Hornicek, F.; Guo, Z.; Duan, Z. Advances in Chromosomal Translocations and Fusion Genes in Sarcomas and Potential Therapeutic Applications. Cancer Treat. Rev. 2018, 63, 61–70. [Google Scholar] [CrossRef]
- Ladanyi, M.; Antonescu, C.R.; Leung, D.H.; Woodruff, J.M.; Kawai, A.; Healey, J.H.; Brennan, M.F.; Bridge, J.A.; Neff, J.R.; Barr, F.G.; et al. Impact of SYT-SSX Fusion Type on the Clinical Behavior of Synovial Sarcoma: A Multi-Institutional Retrospective Study of 243 Patients. Cancer Res. 2002, 62, 135–140. [Google Scholar]
- Williamson, D.; Missiaglia, E.; de Reyniès, A.; Pierron, G.; Thuille, B.; Palenzuela, G.; Thway, K.; Orbach, D.; Laé, M.; Fréneaux, P.; et al. Fusion Gene-Negative Alveolar Rhabdomyosarcoma Is Clinically and Molecularly Indistinguishable from Embryonal Rhabdomyosarcoma. J. Clin. Oncol. 2010, 28, 2151–2158. [Google Scholar] [CrossRef]
- Bonvalot, S.; Roland, C.; Raut, C.; Le Péchoux, C.; Tzanis, D.; Frezza, A.M.; Gronchi, A. Histology-Tailored Multidisciplinary Management of Primary Retroperitoneal Sarcomas. Eur. J. Surg. Oncol. 2023, 49, 1061–1067. [Google Scholar] [CrossRef]
- Katz, D.; Palmerini, E.; Pollack, S.M. More Than 50 Subtypes of Soft Tissue Sarcoma: Paving the Path for Histology-Driven Treatments. Am. Soc. Clin. Oncol. Educ. Book. 2018, 38, 925–938. [Google Scholar] [CrossRef]
- Harris, M.; Hartley, A.L.; Blair, V.; Birch, J.M.; Banerjee, S.S.; Freemont, A.J.; McClure, J.; McWilliam, L.J. Sarcomas in North West England: I. Histopathological Peer Review. Br. J. Cancer 1991, 64, 315–320. [Google Scholar] [CrossRef]
- Arbiser, Z.K.; Folpe, A.L.; Weiss, S.W. Consultative (Expert) Second Opinions in Soft Tissue Pathology. Analysis of Problem-Prone Diagnostic Situations. Am. J. Clin. Pathol. 2001, 116, 473–476. [Google Scholar] [CrossRef]
- Rastogi, S.; Aggarwal, A.; Soti, K.R.; Vanidassane, I.; Sharma, M.C.; Yadav, A.; Sharma, A.; Kataria, B.; Deo, S.V.S. Discordance of Histo-Pathological Diagnosis of Patients with Soft Tissue Sarcoma Referred to Tertiary Care Center. JCO 2017, 35, 11064. [Google Scholar] [CrossRef]
- Ray-Coquard, I.; Montesco, M.C.; Coindre, J.M.; Dei Tos, A.P.; Lurkin, A.; Ranchère-Vince, D.; Vecchiato, A.; Decouvelaere, A.V.; Mathoulin-Pélissier, S.; Albert, S.; et al. Sarcoma: Concordance between Initial Diagnosis and Centralized Expert Review in a Population-Based Study within Three European Regions. Ann. Oncol. 2012, 23, 2442–2449. [Google Scholar] [CrossRef]
- Presant, C.A.; Russell, W.O.; Alexander, R.W.; Fu, Y.S. Soft-Tissue and Bone Sarcoma Histopathology Peer Review: The Frequency of Disagreement in Diagnosis and the Need for Second Pathology Opinions. The Southeastern Cancer Study Group Experience. J. Clin. Oncol. 1986, 4, 1658–1661. [Google Scholar] [CrossRef]
- Randall, R.L.; Bruckner, J.D.; Papenhausen, M.D.; Thurman, T.; Conrad, E.U. Errors in Diagnosis and Margin Determination of Soft-Tissue Sarcomas Initially Treated at Non-Tertiary Centers. Orthopedics 2004, 27, 209–212. [Google Scholar] [CrossRef]
- Douglas, C.; Potter, A.; Davidson, T.; Schipp, D.; Crowe, P. The Impact of Additional Pathology Analysis on the Diagnosis and Management of Soft Tissue Tumours: A 10-Year Retrospective Study. Pathology 2023, 55, 486–491. [Google Scholar] [CrossRef]
- Vats, K.; Spafford, M.; Groot, G.; Graham, P.; Banerjee, T.; Deobald, R.; Osmond, A. Moving towards the Optimization of Diagnosis for Patients with Sarcoma: A 10-Year Review of Externally Consulted Sarcoma Cases in a General Anatomical Pathology Service. Ann. Diagn. Pathol. 2022, 60, 151958. [Google Scholar] [CrossRef]
- Wellauer, H.; Studer, G.; Bode-Lesniewska, B.; Fuchs, B. Time and Accuracy to Establish the Diagnosis of Soft Tissue Tumors: A Comparative Analysis from the Swiss Sarcoma Network. Sarcoma 2022, 2022, 7949549. [Google Scholar] [CrossRef]
- Lurkin, A.; Ducimetière, F.; Vince, D.R.; Decouvelaere, A.-V.; Cellier, D.; Gilly, F.N.; Salameire, D.; Biron, P.; de Laroche, G.; Blay, J.Y.; et al. Epidemiological Evaluation of Concordance between Initial Diagnosis and Central Pathology Review in a Comprehensive and Prospective Series of Sarcoma Patients in the Rhone-Alpes Region. BMC Cancer 2010, 10, 150. [Google Scholar] [CrossRef]
- Italiano, A.; Di Mauro, I.; Rapp, J.; Pierron, G.; Auger, N.; Alberti, L.; Chibon, F.; Escande, F.; Voegeli, A.-C.; Ghnassia, J.-P.; et al. Clinical Effect of Molecular Methods in Sarcoma Diagnosis (GENSARC): A Prospective, Multicentre, Observational Study. Lancet Oncol. 2016, 17, 532–538. [Google Scholar] [CrossRef]
- Neuville, A.; Ranchère-Vince, D.; Dei Tos, A.P.; Montesco, M.C.; Hostein, I.; Toffolatti, L.; Chibon, F.; Pissaloux, D.; Alberti, L.; Decouvelaere, A.-V.; et al. Impact of Molecular Analysis on the Final Sarcoma Diagnosis: A Study on 763 Cases Collected during a European Epidemiological Study. Am. J. Surg. Pathol. 2013, 37, 1259–1268. [Google Scholar] [CrossRef]
- Bridge, J.A.; Sandberg, A.A. Cytogenetic and Molecular Genetic Techniques as Adjunctive Approaches in the Diagnosis of Bone and Soft Tissue Tumors. Skeletal Radiol. 2000, 29, 249–258. [Google Scholar] [CrossRef]
- Asif, A.; Mushtaq, S.; Hassan, U.; Akhtar, N.; Hussain, M.; Azam, M.; Qazi, R. Fluorescence in Situ Hybridization (FISH) for Differential Diagnosis of Soft Tissue Sarcomas. Asian Pac. J. Cancer Prev. 2018, 19, 655–660. [Google Scholar] [CrossRef]
- Suurmeijer, A.J.H.; Dickson, B.C.; Antonescu, C.R. Complementary Value of Molecular Analysis to Expert Review in Refining Classification of Uncommon Soft Tissue Tumors. Genes Chromosomes Cancer 2023. [Google Scholar] [CrossRef]
- Xu, L.; Xie, X.; Shi, X.; Zhang, P.; Liu, A.; Wang, J.; Zhang, B. Potential Application of Genomic Profiling for the Diagnosis and Treatment of Patients with Sarcoma. Oncol. Lett. 2021, 21, 353. [Google Scholar] [CrossRef]
- Gounder, M.M.; Agaram, N.P.; Trabucco, S.E.; Robinson, V.; Ferraro, R.A.; Millis, S.Z.; Krishnan, A.; Lee, J.; Attia, S.; Abida, W.; et al. Clinical Genomic Profiling in the Management of Patients with Soft Tissue and Bone Sarcoma. Nat. Commun. 2022, 13, 3406. [Google Scholar] [CrossRef]
- Kyriazoglou, A.; Zając, A.; Valverde, C.; Czarnecka, A.M.; Błoński, P.; Romagosa, C.; Seliga, K.A.; Koulouridi, A.; Mala, A.; Wągrodzki, M.; et al. Exploring the impact of NGS on diagnostics and treatment of sarcoma: Insights from real-world data across multiple institutions in Europe. In Proceedings of the Connective Tissue Oncology Society 2023 Annual Meeting, Dublin, Ireland, 1–4 November 2023. [Google Scholar]
- Meis-Kindblom, J.M.; Bjerkehage, B.; Böhling, T.; Domanski, H.; Halvorsen, T.B.; Larsson, O.; Lilleng, P.; Myhre-Jensen, O.; Stenwig, E.; Virolainen, M.; et al. Morphologic Review of 1000 Soft Tissue Sarcomas from the Scandinavian Sarcoma Group (SSG) Register. The Peer-Review Committee Experience. Acta Orthop. Scand. Suppl. 1999, 285, 18–26. [Google Scholar] [CrossRef]
- Hasegawa, T.; Yamamoto, S.; Nojima, T.; Hirose, T.; Nikaido, T.; Yamashiro, K.; Matsuno, Y. Validity and Reproducibility of Histologic Diagnosis and Grading for Adult Soft-Tissue Sarcomas. Hum. Pathol. 2002, 33, 111–115. [Google Scholar] [CrossRef]
- Kandel, R.A.; Yao, X.; Dickson, B.C.; Ghert, M.; Popovic, S.; Purgina, B.M.; Verma, S.; Werier, J. Molecular Analyses in the Diagnosis and Prediction of Prognosis in Non-GIST Soft Tissue Sarcomas: A Systematic Review and Meta-Analysis. Cancer Treat. Rev. 2018, 66, 74–81. [Google Scholar] [CrossRef]
- Wei, R.; Gao, F.; Zeng, Z.; Gui, Z.; Shang, Y.; Shen, N.; Wang, Z.; Han, W.; Shen, H.; Li, X.; et al. Molecular Profiling of Gene Fusions in Soft Tissue Sarcomas by Ion AmpliSeqTM: A Study of 35 Cases. Transl. Cancer Res. 2022, 11, 488–499. [Google Scholar] [CrossRef]
- Szurian, K.; Kashofer, K.; Liegl-Atzwanger, B. Role of Next-Generation Sequencing as a Diagnostic Tool for the Evaluation of Bone and Soft-Tissue Tumors. Pathobiology 2017, 84, 323–338. [Google Scholar] [CrossRef]
- Racanelli, D.; Brenca, M.; Baldazzi, D.; Goeman, F.; Casini, B.; De Angelis, B.; Guercio, M.; Milano, G.M.; Tamborini, E.; Busico, A.; et al. Next-Generation Sequencing Approaches for the Identification of Pathognomonic Fusion Transcripts in Sarcomas: The Experience of the Italian ACC Sarcoma Working Group. Front. Oncol. 2020, 10, 489. [Google Scholar] [CrossRef]
- Coindre, J.-M.; Pelmus, M.; Hostein, I.; Lussan, C.; Bui, B.N.; Guillou, L. Should Molecular Testing Be Required for Diagnosing Synovial Sarcoma? A Prospective Study of 204 Cases. Cancer 2003, 98, 2700–2707. [Google Scholar] [CrossRef]
- Giannikopoulos, P.; Parham, D.M. Rhabdomyosarcoma: How Advanced Molecular Methods Are Shaping the Diagnostic and Therapeutic Paradigm. Pediatr. Dev. Pathol. 2021, 24, 395–404. [Google Scholar] [CrossRef]
- Coindre, J.-M.; Hostein, I.; Terrier, P.; Bouvier-Labit, C.; Collin, F.; Michels, J.-J.; Trassard, M.; Marques, B.; Ranchere, D.; Guillou, L. Diagnosis of Clear Cell Sarcoma by Real-Time Reverse Transcriptase-Polymerase Chain Reaction Analysis of Paraffin Embedded Tissues: Clinicopathologic and Molecular Analysis of 44 Patients from the French Sarcoma Group. Cancer 2006, 107, 1055–1064. [Google Scholar] [CrossRef]
- Le Guellec, S.; Soubeyran, I.; Rochaix, P.; Filleron, T.; Neuville, A.; Hostein, I.; Coindre, J.-M. CTNNB1 Mutation Analysis Is a Useful Tool for the Diagnosis of Desmoid Tumors: A Study of 260 Desmoid Tumors and 191 Potential Morphologic Mimics. Mod. Pathol. 2012, 25, 1551–1558. [Google Scholar] [CrossRef]
- Sirvent, N.; Coindre, J.-M.; Maire, G.; Hostein, I.; Keslair, F.; Guillou, L.; Ranchere-Vince, D.; Terrier, P.; Pedeutour, F. Detection of MDM2-CDK4 Amplification by Fluorescence in Situ Hybridization in 200 Paraffin-Embedded Tumor Samples: Utility in Diagnosing Adipocytic Lesions and Comparison with Immunohistochemistry and Real-Time PCR. Am. J. Surg. Pathol. 2007, 31, 1476–1489. [Google Scholar] [CrossRef]
- Chung, L.; Lau, S.K.; Jiang, Z.; Loera, S.; Bedel, V.; Ji, J.; Weiss, L.M.; Chu, P.G. Overlapping Features between Dedifferentiated Liposarcoma and Undifferentiated High-Grade Pleomorphic Sarcoma. Am. J. Surg. Pathol. 2009, 33, 1594–1600. [Google Scholar] [CrossRef]
- de Vreeze, R.S.A.; de Jong, D.; Nederlof, P.M.; Ariaens, A.; Tielen, I.H.G.; Frenken, L.; Haas, R.L.; van Coevorden, F. Added Value of Molecular Biological Analysis in Diagnosis and Clinical Management of Liposarcoma: A 30-Year Single-Institution Experience. Ann. Surg. Oncol. 2010, 17, 686–693. [Google Scholar] [CrossRef]
- Sandberg, A.A.; Bridge, J.A. Updates on Cytogenetics and Molecular Genetics of Bone and Soft Tissue Tumors: Ewing Sarcoma and Peripheral Primitive Neuroectodermal Tumors. Cancer Genet. Cytogenet. 2000, 123, 1–26. [Google Scholar] [CrossRef]
- Palmerini, E.; Gambarotti, M.; Italiano, A.; Nathenson, M.J.; Ratan, R.; Dileo, P.; Provenzano, S.; Jones, R.L.; DuBois, S.G.; Martin-Broto, J.; et al. A Global collaboRAtive Study of CIC-Rearranged, BCOR::CCNB3-Rearranged and Other Ultra-Rare Unclassified Undifferentiated Small Round Cell Sarcomas (GRACefUl). Eur. J. Cancer 2023, 183, 11–23. [Google Scholar] [CrossRef]
- Gambarotti, M.; Benini, S.; Gamberi, G.; Cocchi, S.; Palmerini, E.; Sbaraglia, M.; Donati, D.; Picci, P.; Vanel, D.; Ferrari, S.; et al. CIC-DUX4 Fusion-Positive Round-Cell Sarcomas of Soft Tissue and Bone: A Single-Institution Morphological and Molecular Analysis of Seven Cases. Histopathology 2016, 69, 624–634. [Google Scholar] [CrossRef]
- Rossi, S.; Gasparotto, D.; Miceli, R.; Toffolatti, L.; Gallina, G.; Scaramel, E.; Marzotto, A.; Boscato, E.; Messerini, L.; Bearzi, I.; et al. KIT, PDGFRA, and BRAF Mutational Spectrum Impacts on the Natural History of Imatinib-Naive Localized GIST: A Population-Based Study. Am. J. Surg. Pathol. 2015, 39, 922–930. [Google Scholar] [CrossRef]
- Wozniak, A.; Rutkowski, P.; Schöffski, P.; Ray-Coquard, I.; Hostein, I.; Schildhaus, H.-U.; Le Cesne, A.; Bylina, E.; Limon, J.; Blay, J.-Y.; et al. Tumor Genotype Is an Independent Prognostic Factor in Primary Gastrointestinal Stromal Tumors of Gastric Origin: A European Multicenter Analysis Based on ConticaGIST. Clin. Cancer Res. 2014, 20, 6105–6116. [Google Scholar] [CrossRef]
- Casali, P.G.; Blay, J.Y.; Abecassis, N.; Bajpai, J.; Bauer, S.; Biagini, R.; Bielack, S.; Bonvalot, S.; Boukovinas, I.; Bovee, J.V.M.G.; et al. Gastrointestinal Stromal Tumours: ESMO-EURACAN-GENTURIS Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2022, 33, 20–33. [Google Scholar] [CrossRef]
- von Mehren, M.; Kane, J.M.; Riedel, R.F.; Sicklick, J.K.; Pollack, S.M.; Agulnik, M.; Bui, M.M.; Carr-Ascher, J.; Choy, E.; Connelly, M.; et al. NCCN Guidelines® Insights: Gastrointestinal Stromal Tumors, Version 2.2022. J. Natl. Compr. Canc Netw. 2022, 20, 1204–1214. [Google Scholar] [CrossRef]
- Kawai, A.; Woodruff, J.; Healey, J.H.; Brennan, M.F.; Antonescu, C.R.; Ladanyi, M. SYT-SSX Gene Fusion as a Determinant of Morphology and Prognosis in Synovial Sarcoma. N. Engl. J. Med. 1998, 338, 153–160. [Google Scholar] [CrossRef]
- Mezzelani, A.; Mariani, L.; Tamborini, E.; Agus, V.; Riva, C.; Lo Vullo, S.; Fabbri, A.; Stumbo, M.; Azzarelli, A.; Casali, P.G.; et al. SYT-SSX Fusion Genes and Prognosis in Synovial Sarcoma. Br. J. Cancer 2001, 85, 1535–1539. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, B.; Wang, J.; Cai, W.; Zhao, X.; Zhang, S.; Hao, X. Prognostic Implication of SYT-SSX Fusion Type and Clinicopathological Parameters for Tumor-Related Death, Recurrence, and Metastasis in Synovial Sarcoma. Cancer Sci. 2009, 100, 1018–1025. [Google Scholar] [CrossRef]
- Inagaki, H.; Nagasaka, T.; Otsuka, T.; Sugiura, E.; Nakashima, N.; Eimoto, T. Association of SYT-SSX Fusion Types with Proliferative Activity and Prognosis in Synovial Sarcoma. Mod. Pathol. 2000, 13, 482–488. [Google Scholar] [CrossRef]
- Takenaka, S.; Ueda, T.; Naka, N.; Araki, N.; Hashimoto, N.; Myoui, A.; Ozaki, T.; Nakayama, T.; Toguchida, J.; Tanaka, K.; et al. Prognostic Implication of SYT-SSX Fusion Type in Synovial Sarcoma: A Multi-Institutional Retrospective Analysis in Japan. Oncol. Rep. 2008, 19, 467–476. [Google Scholar] [CrossRef]
- Guillou, L.; Benhattar, J.; Bonichon, F.; Gallagher, G.; Terrier, P.; Stauffer, E.; Somerhausen, N.d.S.A.; Michels, J.-J.; Jundt, G.; Vince, D.R.; et al. Histologic Grade, but Not SYT-SSX Fusion Type, Is an Important Prognostic Factor in Patients with Synovial Sarcoma: A Multicenter, Retrospective Analysis. J. Clin. Oncol. 2004, 22, 4040–4050. [Google Scholar] [CrossRef]
- Chibon, F.; Lesluyes, T.; Valentin, T.; Le Guellec, S. CINSARC Signature as a Prognostic Marker for Clinical Outcome in Sarcomas and Beyond. Genes Chromosomes Cancer 2019, 58, 124–129. [Google Scholar] [CrossRef]
- Boddu, S.; Walko, C.M.; Bienasz, S.; Bui, M.M.; Henderson-Jackson, E.; Naghavi, A.O.; Mullinax, J.E.; Joyce, D.M.; Binitie, O.; Letson, G.D.; et al. Clinical Utility of Genomic Profiling in the Treatment of Advanced Sarcomas: A Single-Center Experience. JCO Precis. Oncol. 2018, 2, 1–8. [Google Scholar] [CrossRef]
- Gusho, C.A.; Weiss, M.C.; Lee, L.; Gitelis, S.; Blank, A.T.; Wang, D.; Batus, M. The Clinical Utility of Next-Generation Sequencing for Bone and Soft Tissue Sarcoma. Acta Oncol. 2022, 61, 38–44. [Google Scholar] [CrossRef]
- Butrynski, J.E.; D’Adamo, D.R.; Hornick, J.L.; Dal Cin, P.; Antonescu, C.R.; Jhanwar, S.C.; Ladanyi, M.; Capelletti, M.; Rodig, S.J.; Ramaiya, N.; et al. Crizotinib in ALK-Rearranged Inflammatory Myofibroblastic Tumor. N. Engl. J. Med. 2010, 363, 1727–1733. [Google Scholar] [CrossRef]
- McArthur, G.A.; Demetri, G.D.; van Oosterom, A.; Heinrich, M.C.; Debiec-Rychter, M.; Corless, C.L.; Nikolova, Z.; Dimitrijevic, S.; Fletcher, J.A. Molecular and Clinical Analysis of Locally Advanced Dermatofibrosarcoma Protuberans Treated with Imatinib: Imatinib Target Exploration Consortium Study B2225. J. Clin. Oncol. 2005, 23, 866–873. [Google Scholar] [CrossRef]
- Dickson, M.A.; Schwartz, G.K.; Keohan, M.L.; D’Angelo, S.P.; Gounder, M.M.; Chi, P.; Antonescu, C.R.; Landa, J.; Qin, L.-X.; Crago, A.M.; et al. Progression-Free Survival Among Patients With Well-Differentiated or Dedifferentiated Liposarcoma Treated With CDK4 Inhibitor Palbociclib: A Phase 2 Clinical Trial. JAMA Oncol. 2016, 2, 937–940. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.S.; DuBois, S.G.; Kummar, S.; Farago, A.F.; Albert, C.M.; Rohrberg, K.S.; van Tilburg, C.M.; Nagasubramanian, R.; Berlin, J.D.; Federman, N.; et al. Larotrectinib in Patients with TRK Fusion-Positive Solid Tumours: A Pooled Analysis of Three Phase 1/2 Clinical Trials. Lancet Oncol. 2020, 21, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; et al. Entrectinib in Patients with Advanced or Metastatic NTRK Fusion-Positive Solid Tumours: Integrated Analysis of Three Phase 1-2 Trials. Lancet Oncol. 2020, 21, 271–282. [Google Scholar] [CrossRef]
- Demetri, G.D.; Antonescu, C.R.; Bjerkehagen, B.; Bovée, J.V.M.G.; Boye, K.; Chacón, M.; Dei Tos, A.P.; Desai, J.; Fletcher, J.A.; Gelderblom, H.; et al. Diagnosis and Management of Tropomyosin Receptor Kinase (TRK) Fusion Sarcomas: Expert Recommendations from the World Sarcoma Network. Ann. Oncol. 2020, 31, 1506–1517. [Google Scholar] [CrossRef]
Tumor | Fusion Gene |
---|---|
EWING SARCOMA | EWSR1-FLI1 |
EWSR1-ERG | |
EWSR1-FEV | |
EWSR1-ETV1 | |
EWSR1-ETV4 | |
FUS-FEV | |
FUS-ERG | |
EWSR1-SMARCA5 | |
EWING-LIKE SARCOMA | EWSR1-NAFTC2 |
NAFTC2-EWSR1 | |
EWSR1-SP3 | |
CIC-DUX4l1 | |
CIC-FOXO4 | |
SYNOVIAL SARCOMA | SS18-SSX1 |
SS18-SSX4 | |
SS18L1-SSX1 | |
ALVEOLAR RHABDOMYOSARCOMA | PAX3-FOXO1 |
FOXO1-PAX3 | |
PAX7-FOXO1 | |
PAX3-NCOA2 | |
PAX3-NCOA1 | |
ALVEOLAR SOFT PART SARCOMA | TFE3-ASPCR1 |
ASPCR1-TFE3 | |
INFINTILE FIBROSARCOMA | NTRK3-ETV6 |
ETV6-NTRK3 | |
LIPOMA | LPP-HMGA2 |
HMGA2-LPP | |
LIPOBLASTOMA | COL1A2-PLAG1 |
COL3A1-PLAG1 | |
ENDOMETRIAL STROMAL SARCOMA | JAZF1-SUZ12 |
MEAF6-PHF1 | |
SOFT TISSUE MYOEPITHELIAL TUMOR/CARCINOMA | EWSR1-ZNF444 |
MESENCHYMAL CHONDROSARCOMA | HEY1-NCOA2 |
DESMOPLASTIC SMALL ROUND CELL TUMOR | EWSR1-WT1 |
PERICYTOMA | ACTB-GLI1 |
GLI1-ACTB | |
DERMATOFIBROSARCOMA PROTUBERANS | COL1A1-PDGFB |
EXTRASKELETAL MYXOID CHODROSARCOMA | EWSR1-NR4A3 |
TFG-NR4A3 | |
INFLAMATORY MYOFIBROBLASTIC TUMOR | CLTC-ALK |
ATIC-ALK | |
TPM3-ALK | |
MYOEPITHELIOMA | EWSR1-PBX1 |
SPINDLE AND ROUND CELL SARCOMA | EWSR1-PATZ1 |
ANGIOMATOID FIBROUS HISTIOCYTOMA | EWSR1-ATF1 |
ATF1-EWSR1 | |
EWSR1-CREB1 | |
FUS-ATF1 | |
MYXOID LIPOSARCOMA | FUS-DDIT3 |
DDIT3-FUS | |
EWSR1-DDIT3 | |
LOW GRADE FIBROMYXOID SARCOMA | FUS-CREB3L1 |
FUS-CREB3L2 | |
CREB3L2-FUS | |
EWSR1-CREB3L1 | |
EWSR1-CREB3L2 | |
ANEURYSMAL BONE CYST | COL1A1-USP6 |
CDH11-USP6 | |
OMD-USP6 | |
THRAP3-USP6 | |
CNBP-USP6 |
Diagnostic Category | Initial Diagnosis | N |
---|---|---|
ADIPOCYTIC TUMOURS | Lipoma | 2 |
ALT | 1 | |
WDLPS | 6 | |
LPS | 3 | |
DDLPS | 4 | |
myxLPS | 8 | |
FIBROBLASTIC/MYOFIBROBLASTIC TUMOURS | cellular angiofibroma | 1 |
desmoid tumor | 5 | |
DFSP | 2 | |
myxoinflammatory fibroblastic sarcoma | 1 | |
Low-grade FMS | 3 | |
MFS | 3 | |
SFT | 5 | |
VASCULAR TUMOURS | EHE | 4 |
AS | 4 | |
SMOOTH MUSCLE TUMOURS | Leiomyoma | 2 |
uLMS | 1 | |
LMS | 5 | |
SKELETAL MUSCLE TUMOURS | RMS | 4 |
GIST | GIST | 2 |
CHONDRO-OSSEOUS TUMOURS | Chordoma | 1 |
CS | 2 | |
OS | 3 | |
PERIPHERAL NERVE SHEATH TUMOURS | MPNST | 8 |
TUMOURS OF UNCERTAIN DIFFERENTIATION | atypical ossifying fibromyxoid tumor | 1 |
atypical fibroxanthoma | 1 | |
CCS | 3 | |
ES | 3 | |
SS | 3 | |
EMC | 1 | |
ASPS | 1 | |
UPS | 8 | |
undifferentiated sarcoma | 1 | |
USRC SARCOMAS OF BONE AND SOFT TISSUE | Ewing-like | 4 |
OTHER SARCOMA | sinonasal biphenotypic sarcoma | 1 |
dendritic cell sarcoma | 1 | |
myxoid sarcoma | 1 | |
sarcoma | 5 | |
OTHER LESIONS | low-grade tumor | 1 |
myxoid spindle cell lesion | 1 | |
sex cord tumor (v. sclerosing SS) | 1 | |
benign lesion | 3 | |
NA | 8 |
No Discordance | Minor Discordance | Major Discordance | |
---|---|---|---|
Number | 63 | 38 | 18 |
% | 52.9 | 31.9 | 15.1 |
Initial Diagnosis | Expert Diagnosis | Modification in Management |
---|---|---|
AS | undifferentiated spindle-cell Sa G3 | different CT for metastatic disease |
atypical fibroxanthoma | pleomorphic dermal sarcoma | wider excision |
benign | FMS G1 | wider excision |
DDLPS | UPS G2 | no (surgery + adjuvant RT) |
desmoid tumor | myofibroblastic tumor | no (surgery already performed) |
desmoid tumor | fibrous dysplasia | no (active surveillance decided) |
Ewing-like | ASPS | avoidance of adjuvant CT |
Ewing-like | dedif. CS, mesench.CS, or small cell OS | no (CT for metastatic disease) |
fibromatosis | UPS or DDLPS | yes (CT for inoperable disease) |
interdigitating dendritic cell Sa | MPNST G2 | avoidance of adjuvant CT |
lipoma | ES | tazemetostat instead of CT for metastatic disease |
LMS | DDLPS with MFS G3 differentiation | no (surgery only) |
MPNST | DDLPS | no (surgery + adjuvant RT) |
MPNST | dermatic melanocytoma | no |
MPNST, RMS, or Ewing Sa | Ewing Sa | Ewing-type CT for metastatic disease |
myx spindle cell lesion | FMS G1 or MFS G1 | no (adjuvant RT) |
myxLPS | DDLPS | no |
myxoinflammatory fibroblastic Sa | MFS G2 | no |
myxSa | DDLPS | no |
OS | sarcomatoid mesothelioma | different CT for advanced disease |
OS | CS G2 | avoidance of adjuvant CT |
RMS | mesenchymal neoplasm of myoblastic differentiation | no (surgery + adjuvant CT, RT) |
RMS | MPNST G2 | different CT for metastatic disease |
sarcoma or spindle cell Ca | intimal Sa | no |
sex cord tumor (Sertoli) or sclerosing SS | sclerosing epithelioid FS | different CT for advanced disease |
SFT | MPNST G2 | no (surgery + adjuvant RT) |
SFT | epithelioid AS | different CT for inoperable disease |
SS | meta from thyroid Ca | completely different management |
SS | URCS (SS or Ewing) | no |
undifferentiated Sa | pleomorphic lipoma | avoidance of adjuvant treatment or wider excision |
UPS | LMS or DDLPS | no (CT for metastatic disease) |
UPS | epithelioid AS | different CT for metastatic disease |
UPS | MFS G3 | no |
UPS | LMS G3 | no (surgery + adjuvant RT) |
WDLPS | DDLPS | no (CT for metastatic disease) |
WDLPS | probaly myxLPS of breast | no |
Expert Diagnosis | Molecular Result | Molecular Diagnosis |
---|---|---|
ALT | FISH MDM2 neg | lipoma |
atypical ossifying fibromyxoid tumor | ESR1-FLI1 (first time), NGS neg (repeat) | no modification (false positive) |
CCS | ESR1-ATF1 | angiomatoid fibrous histiocytoma |
DDLPS or myxLPS | FISH MDM2 pos | DDLPS with myxoid component |
dedif. CS, or mesench.CS, or small cell OS | NGS neg | probably small cell OS |
ES | BCOR-CCNB3 | no modification |
Ewing-like | NGS neg | URCS |
Ewing-like | NGS neg, BCOR neg | URCS |
Ewing-like | ESR1-FLI1 | Ewing Sa |
Ewing-like or ASPS | NGS neg | ASPS |
Ewing-like or MPNST | EWSR1-FLI1 | Ewing Sa |
Ewing-like, MPNST, or SS | NGS neg | MPNST |
Ewing-like or myoepithelial Ca | NGS neg, BCOR neg | URCS |
Ewing-like or spindle-cell RMS | NGS neg, BCOR neg | RMS |
high-grade Sa | FISH MDM2 pos | DDLPS |
lipoma or ALT | NGS neg, FISH MDM2 pos | ALT |
LMS | ETV6-NTRK3 | NTRK-rearranged LMS |
LMS or DDLPS | NGS neg | LMS |
LMS or GIST | NGS neg, KIT/PDGFRa/BRAF/RAS neg | LMS |
LMS or GIST | METexon14 mut, KITexon10 mut, TP53exon5 mut, PDGFRa/BRAF/RAS neg | LMS |
MFS G1 or intramuscular myxoma | DNA seq GNAS neg | MFS G1 |
MPNST or SS | NGS neg | MPNST |
myofibroblastic tumor | MYH9-USP6 | nodular fasciitis |
myxLPS or MFS | NGS neg, FISH FUS-DDIT3 neg | MFS |
myxLPS or MFS G1 | NGS neg | MFS G1 |
probaly myxLPS | NGS neg, FISH MDM2 pos | WDLPS |
SS | TAF15-NR4A3 | EMC |
UPS or DDLPS | NGS neg, FISH MDM2 neg | UPS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokkali, S.; Boukovinas, I.; de Bree, E.; Koumarianou, A.; Georgoulias, V.; Kyriazoglou, A.; Tsoukalas, N.; Memos, N.; Papanastassiou, J.; Stergioula, A.; et al. The Impact of Expert Pathology Review and Molecular Diagnostics on the Management of Sarcoma Patients: A Prospective Study of the Hellenic Group of Sarcomas and Rare Cancers. Cancers 2024, 16, 2314. https://doi.org/10.3390/cancers16132314
Kokkali S, Boukovinas I, de Bree E, Koumarianou A, Georgoulias V, Kyriazoglou A, Tsoukalas N, Memos N, Papanastassiou J, Stergioula A, et al. The Impact of Expert Pathology Review and Molecular Diagnostics on the Management of Sarcoma Patients: A Prospective Study of the Hellenic Group of Sarcomas and Rare Cancers. Cancers. 2024; 16(13):2314. https://doi.org/10.3390/cancers16132314
Chicago/Turabian StyleKokkali, Stefania, Ioannis Boukovinas, Eelco de Bree, Anna Koumarianou, Vassilis Georgoulias, Anastasios Kyriazoglou, Nikolaos Tsoukalas, Nikolaos Memos, John Papanastassiou, Anastasia Stergioula, and et al. 2024. "The Impact of Expert Pathology Review and Molecular Diagnostics on the Management of Sarcoma Patients: A Prospective Study of the Hellenic Group of Sarcomas and Rare Cancers" Cancers 16, no. 13: 2314. https://doi.org/10.3390/cancers16132314
APA StyleKokkali, S., Boukovinas, I., de Bree, E., Koumarianou, A., Georgoulias, V., Kyriazoglou, A., Tsoukalas, N., Memos, N., Papanastassiou, J., Stergioula, A., Tsapakidis, K., Loga, K., Duran-Moreno, J., Papanastasopoulos, P., Vassos, N., Kontogeorgakos, V., Athanasiadis, I., Mahaira, L., Dimitriadis, E., ... Agrogiannis, G. (2024). The Impact of Expert Pathology Review and Molecular Diagnostics on the Management of Sarcoma Patients: A Prospective Study of the Hellenic Group of Sarcomas and Rare Cancers. Cancers, 16(13), 2314. https://doi.org/10.3390/cancers16132314