Current Applications and Future Directions of Circulating Tumor Cells in Colorectal Cancer Recurrence
Abstract
:Simple Summary
Abstract
1. Prevention and Detection of Colorectal Cancer Recurrence
1.1. History Taking and Physical Examinations
1.2. Carcinoembryonic Antigen (CEA)
1.3. Colonoscopy
1.4. Computed Tomography (CT)
1.5. Positron Emission Tomography (PET)
2. Characteristics of CTCs and the Prognostic Value of CTCs in CRC Recurrence
2.1. Circulating Tumor Cells
2.2. Presence of CTCs and Postoperative CRC Recurrence
3. Novel Utility of CTCs in Stage II CRC Patients Who Need to Receive Adjuvant Chemotherapy and in Advanced Rectal Cancer Patients Who Have Undergone Neoadjuvant Therapy
3.1. Clinical Application of CTCs as A Therapeutic Marker for Stage II CRC Patients Receiving Adjuvant Chemotherapy
3.2. The Clinical Value of CTCs in Rectal Cancer Patients Who Undergo Neoadjuvant Chemotherapy
3.2.1. Predicting Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer Patients
3.2.2. Predicting Recurrence in Rectal Cancer Patients Who Undergo Neoadjuvant Chemo-Radiotherapy
4. Recent Progress in Advanced CTC Detection and CRC Recurrence
4.1. CTC Subtypes and the Prognostic Value of CTC Subtypes in CRC Recurrence
4.1.1. Epithelial–Mesenchymal Transition (EMT)-Related CTCs
4.1.2. Circulating Cancer Stem Cells
4.1.3. Circulating Tumor Cell Clusters
Study | CTC Subtypes | Technique | Blood Sample Timing | Definition of Subtype CTC Positive | Results |
---|---|---|---|---|---|
Yokobori et al., 2013 [114] | M-correlated CTC | RT-PCR | Before surgery | CTC presentation |
|
Chen et al., 2022 [115] | M-CTC | CanPatrol | Multiple times | M-CTCs ≥ 5 |
|
Shi et al., 2020 [116] | M-CTC | ISET CTCBIOPSY® | Multiple times | M-CTCs ≥ 1 |
|
Katoh et al., 2015 [120] | CCSC | RT-PCR | N/A | CSC presentation |
|
Lieto et al., 2015 [122] | CCSC | Flow cytometry | Multiple times | CSC ≥ 1 |
|
Chu et al., 2021 [124] | CTC-Clusters | SACA | N/A | Clusters presentation |
|
Hao et al., 2024 [126] | CTC-Clusters | SACA | During surgery | Clusters presentation |
|
Xu et al., 2022 [127] | CTC-WBC Clusters | CanPatrol | Before surgery | Clusters presentation |
|
4.2. Combination of other Clinicopathological Markers and CTC-Related Factors to Predict CRC Recurrence
4.2.1. CTCs Combined with Multiple Markers for the Detection of CRC Recurrence
4.2.2. CTCs Combined with Multiple Markers for the Risk Evaluation of CRC Recurrence
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut 2023, 72, 338–344. [Google Scholar] [CrossRef]
- Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017, 66, 683–691. [Google Scholar] [CrossRef]
- Biller, L.H.; Schrag, D. Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. JAMA 2021, 325, 669–685. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. Rectal Cancer (Version 1.2024). Available online: https://www.nccn.org/professionals/physician_gls/pdf/rectal.pdf (accessed on 16 March 2024).
- National Comprehensive Cancer Network. Colon Cancer (Version 1.2024). Available online: https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf (accessed on 16 March 2024).
- Nors, J.; Iversen, L.H.; Erichsen, R.; Gotschalck, K.A.; Andersen, C.L. Incidence of Recurrence and Time to Recurrence in Stage I to III Colorectal Cancer: A Nationwide Danish Cohort Study. JAMA Oncol. 2024, 10, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Scheer, A.; Auer, R.A. Surveillance after curative resection of colorectal cancer. Clin. Colon Rectal Surg. 2009, 22, 242–250. [Google Scholar] [CrossRef]
- Guraya, S.Y. Pattern, Stage, and Time of Recurrent Colorectal Cancer After Curative Surgery. Clin. Color. Cancer 2019, 18, e223–e228. [Google Scholar] [CrossRef]
- Young, P.E.; Womeldorph, C.M.; Johnson, E.K.; Maykel, J.A.; Brucher, B.; Stojadinovic, A.; Avital, I.; Nissan, A.; Steele, S.R. Early detection of colorectal cancer recurrence in patients undergoing surgery with curative intent: Current status and challenges. J. Cancer 2014, 5, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Balboa-Barreiro, V.; Pertega-Diaz, S.; Garcia-Rodriguez, T.; Gonzalez-Martin, C.; Pardeiro-Pertega, R.; Yanez-Gonzalez-Dopeso, L.; Seoane-Pillado, T. Colorectal cancer recurrence and its impact on survival after curative surgery: An analysis based on multistate models. Dig. Liver Dis. 2023. [Google Scholar] [CrossRef]
- Chan, G.H.J.; Chee, C.E. Making sense of adjuvant chemotherapy in colorectal cancer. J. Gastrointest. Oncol. 2019, 10, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Taieb, J.; Gallois, C. Adjuvant Chemotherapy for Stage III Colon Cancer. Cancers 2020, 12, 2679. [Google Scholar] [CrossRef]
- Baxter, N.N.; Kennedy, E.B.; Bergsland, E.; Berlin, J.; George, T.J.; Gill, S.; Gold, P.J.; Hantel, A.; Jones, L.; Lieu, C.; et al. Adjuvant Therapy for Stage II Colon Cancer: ASCO Guideline Update. J. Clin. Oncol. 2022, 40, 892–910. [Google Scholar] [CrossRef]
- Osterman, E.; Hammarstrom, K.; Imam, I.; Osterlund, E.; Sjoblom, T.; Glimelius, B. Recurrence Risk after Radical Colorectal Cancer Surgery—Less Than before, but How High Is It? Cancers 2020, 12, 3308. [Google Scholar] [CrossRef]
- Paik, J.H.; Ryu, C.G.; Hwang, D.Y. Risk factors of recurrence in TNM stage I colorectal cancer. Ann. Surg. Treat Res. 2023, 104, 281–287. [Google Scholar] [CrossRef]
- Iveson, T.J.; Sobrero, A.F.; Yoshino, T.; Souglakos, I.; Ou, F.S.; Meyers, J.P.; Shi, Q.; Grothey, A.; Saunders, M.P.; Labianca, R.; et al. Duration of Adjuvant Doublet Chemotherapy (3 or 6 months) in Patients With High-Risk Stage II Colorectal Cancer. J. Clin. Oncol. 2021, 39, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Gertler, R.; Rosenberg, R.; Schuster, T.; Friess, H. Defining a high-risk subgroup with colon cancer stages I and II for possible adjuvant therapy. Eur. J. Cancer 2009, 45, 2992–2999. [Google Scholar] [CrossRef]
- Bockelman, C.; Engelmann, B.E.; Kaprio, T.; Hansen, T.F.; Glimelius, B. Risk of recurrence in patients with colon cancer stage II and III: A systematic review and meta-analysis of recent literature. Acta Oncol. 2015, 54, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Paschke, S.; Jafarov, S.; Staib, L.; Kreuser, E.D.; Maulbecker-Armstrong, C.; Roitman, M.; Holm, T.; Harris, C.C.; Link, K.H.; Kornmann, M. Are Colon and Rectal Cancer Two Different Tumor Entities? A Proposal to Abandon the Term Colorectal Cancer. Int. J. Mol. Sci. 2018, 19, 2577. [Google Scholar] [CrossRef]
- Keane, C.; Wells, C.; O’Grady, G.; Bissett, I.P. Defining low anterior resection syndrome: A systematic review of the literature. Color. Dis. 2017, 19, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Feeney, G.; Sehgal, R.; Sheehan, M.; Hogan, A.; Regan, M.; Joyce, M.; Kerin, M. Neoadjuvant radiotherapy for rectal cancer management. World J. Gastroenterol. 2019, 25, 4850–4869. [Google Scholar] [CrossRef]
- Papaccio, F.; Rosello, S.; Huerta, M.; Gambardella, V.; Tarazona, N.; Fleitas, T.; Roda, D.; Cervantes, A. Neoadjuvant Chemotherapy in Locally Advanced Rectal Cancer. Cancers 2020, 12, 3611. [Google Scholar] [CrossRef]
- Dagogo-Jack, I.; Shaw, A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2018, 15, 81–94. [Google Scholar] [CrossRef]
- Braun, R.; Anthuber, L.; Hirsch, D.; Wangsa, D.; Lack, J.; McNeil, N.E.; Heselmeyer-Haddad, K.; Torres, I.; Wangsa, D.; Brown, M.A.; et al. Single-Cell-Derived Primary Rectal Carcinoma Cell Lines Reflect Intratumor Heterogeneity Associated with Treatment Response. Clin. Cancer Res. 2020, 26, 3468–3480. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Ma, X.; Tan, L.; Yan, Y.; Xue, C.; Hui, B.; Liu, R.; Ma, H.; Ren, J. A Review of Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer. Int. J. Biol. Sci. 2016, 12, 1022–1031. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xiao, Q.; Venkatachalam, N.; Hofheinz, R.D.; Veldwijk, M.R.; Herskind, C.; Ebert, M.P.; Zhan, T. Predicting response to neoadjuvant chemoradiotherapy in rectal cancer: From biomarkers to tumor models. Ther. Adv. Med. Oncol. 2022, 14, 17588359221077972. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; He, Y.; Wang, Y.; Li, X.; Young, J.; Ioannidis, J.P.A.; Dunlop, M.G.; Theodoratou, E. Risk factors and risk prediction models for colorectal cancer metastasis and recurrence: An umbrella review of systematic reviews and meta-analyses of observational studies. BMC Med. 2020, 18, 172. [Google Scholar] [CrossRef]
- Ryu, H.S.; Kim, J.; Park, Y.R.; Cho, E.H.; Choo, J.M.; Kim, J.S.; Baek, S.J.; Kwak, J.M. Recurrence Patterns and Risk Factors after Curative Resection for Colorectal Cancer: Insights for Postoperative Surveillance Strategies. Cancers 2023, 15, 5791. [Google Scholar] [CrossRef] [PubMed]
- Steele, S.R.; Chang, G.J.; Hendren, S.; Weiser, M.; Irani, J.; Buie, W.D.; Rafferty, J.F.; Clinical Practice Guidelines Committee of the American Society of Colon and Rectal Surgeons; Rectal, S. Practice Guideline for the Surveillance of Patients After Curative Treatment of Colon and Rectal Cancer. Dis. Colon Rectum 2015, 58, 713–725. [Google Scholar] [CrossRef]
- Hardiman, K.M.; Felder, S.I.; Friedman, G.; Migaly, J.; Paquette, I.M.; Feingold, D.L.; Prepared on behalf of the Clinical Practice Guidelines Committee of the American Society of Colon and Rectal Surgeons; Rectal, S. The American Society of Colon and Rectal Surgeons Clinical Practice Guidelines for the Surveillance and Survivorship Care of Patients after Curative Treatment of Colon and Rectal Cancer. Dis. Colon Rectum 2021, 64, 517–533. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Moranta, F.; Salo, J.; Arcusa, A.; Boadas, J.; Pinol, V.; Bessa, X.; Batiste-Alentorn, E.; Lacy, A.M.; Delgado, S.; Maurel, J.; et al. Postoperative surveillance in patients with colorectal cancer who have undergone curative resection: A prospective, multicenter, randomized, controlled trial. J. Clin. Oncol. 2006, 24, 386–393. [Google Scholar] [CrossRef]
- Gold, P.; Freedman, S.O. Specific carcinoembryonic antigens of the human digestive system. J. Exp. Med. 1965, 122, 467–481. [Google Scholar] [CrossRef]
- Sorensen, C.G.; Karlsson, W.K.; Pommergaard, H.C.; Burcharth, J.; Rosenberg, J. The diagnostic accuracy of carcinoembryonic antigen to detect colorectal cancer recurrence—A systematic review. Int. J. Surg. 2016, 25, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.; Gouvas, N.; Nicholls, R.J.; Ziprin, P.; Xynos, E.; Tekkis, P.P. Diagnostic precision of carcinoembryonic antigen in the detection of recurrence of colorectal cancer. Surg. Oncol. 2009, 18, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Litvak, A.; Cercek, A.; Segal, N.; Reidy-Lagunes, D.; Stadler, Z.K.; Yaeger, R.D.; Kemeny, N.E.; Weiser, M.R.; Pessin, M.S.; Saltz, L. False-positive elevations of carcinoembryonic antigen in patients with a history of resected colorectal cancer. J. Natl. Compr. Cancer Netw. 2014, 12, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Nozawa, H.; Yokota, Y.; Emoto, S.; Yokoyama, Y.; Sasaki, K.; Murono, K.; Abe, S.; Sonoda, H.; Shinagawa, T.; Ishihara, S. Unexplained increases in serum carcinoembryonic antigen levels in colorectal cancer patients during the postoperative follow-up period: An analysis of its incidence and longitudinal pattern. Ann. Med. 2023, 55, 2246997. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.; Teague, R. Colonoscopy. Gut 1973, 14, 990–1003. [Google Scholar] [CrossRef] [PubMed]
- Lam, A.K.; Chan, S.S.; Leung, M. Synchronous colorectal cancer: Clinical, pathological and molecular implications. World J. Gastroenterol. 2014, 20, 6815–6820. [Google Scholar] [CrossRef] [PubMed]
- Westberg, K.; Palmer, G.; Hjern, F.; Johansson, H.; Holm, T.; Martling, A. Management and prognosis of locally recurrent rectal cancer—A national population-based study. Eur. J. Surg. Oncol. 2018, 44, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Hagemans, J.A.W.; van Rees, J.M.; Alberda, W.J.; Rothbarth, J.; Nuyttens, J.; van Meerten, E.; Verhoef, C.; Burger, J.W.A. Locally recurrent rectal cancer; long-term outcome of curative surgical and non-surgical treatment of 447 consecutive patients in a tertiary referral centre. Eur. J. Surg. Oncol. 2020, 46, 448–454. [Google Scholar] [CrossRef]
- Lauretta, A.; Montori, G.; Guerrini, G.P. Surveillance strategies following curative resection and non-operative approach of rectal cancer: How and how long? Review of current recommendations. World J. Gastrointest. Surg. 2023, 15, 177–192. [Google Scholar] [CrossRef]
- Maas, M.; Rutten, I.J.; Nelemans, P.J.; Lambregts, D.M.; Cappendijk, V.C.; Beets, G.L.; Beets-Tan, R.G. What is the most accurate whole-body imaging modality for assessment of local and distant recurrent disease in colorectal cancer? A meta-analysis: Imaging for recurrent colorectal cancer. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 1560–1571. [Google Scholar] [CrossRef]
- Brenner, D.J.; Hall, E.J. Computed tomography—An increasing source of radiation exposure. N. Engl. J. Med. 2007, 357, 2277–2284. [Google Scholar] [CrossRef] [PubMed]
- Berger, A. How does it work? Positron emission tomography. BMJ 2003, 326, 1449. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Chen, X. Positron emission tomography imaging of cancer biology: Current status and future prospects. Semin. Oncol. 2011, 38, 70–86. [Google Scholar] [CrossRef] [PubMed]
- Dawood, Z.S.; Alaimo, L.; Lima, H.A.; Moazzam, Z.; Shaikh, C.; Ahmed, A.S.; Munir, M.M.; Endo, Y.; Pawlik, T.M. Circulating Tumor DNA, Imaging, and Carcinoembryonic Antigen: Comparison of Surveillance Strategies Among Patients Who Underwent Resection of Colorectal Cancer-A Systematic Review and Meta-analysis. Ann. Surg. Oncol. 2023, 30, 259–274. [Google Scholar] [CrossRef] [PubMed]
- Pretzsch, E.; Bosch, F.; Neumann, J.; Ganschow, P.; Bazhin, A.; Guba, M.; Werner, J.; Angele, M. Mechanisms of Metastasis in Colorectal Cancer and Metastatic Organotropism: Hematogenous versus Peritoneal Spread. J. Oncol. 2019, 2019, 7407190. [Google Scholar] [CrossRef] [PubMed]
- Calaluce, R.; Miedema, B.W.; Yesus, Y.W. Micrometastasis in colorectal carcinoma: A review. J. Surg. Oncol. 1998, 67, 194–202. [Google Scholar] [CrossRef]
- Petrik, J.; Verbanac, D.; Fabijanec, M.; Hulina-Tomaskovic, A.; Ceri, A.; Somborac-Bacura, A.; Petlevski, R.; Grdic Rajkovic, M.; Rumora, L.; Kruslin, B.; et al. Circulating Tumor Cells in Colorectal Cancer: Detection Systems and Clinical Utility. Int. J. Mol. Sci. 2022, 23, 13582. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Nakanishi, H.; Hirai, T.; Kato, T.; Kodera, Y.; Feng, Z.; Kasai, Y.; Ito, K.; Akiyama, S.; Nakao, A.; et al. Quantitative detection of CEA expressing free tumor cells in the peripheral blood of colorectal cancer patients during surgery with real-time RT-PCR on a LightCycler. Cancer Lett. 2002, 183, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Alix-Panabieres, C.; Pantel, K. Circulating tumor cells: Liquid biopsy of cancer. Clin. Chem. 2013, 59, 110–118. [Google Scholar] [CrossRef]
- Adams, A.A.; Okagbare, P.I.; Feng, J.; Hupert, M.L.; Patterson, D.; Gottert, J.; McCarley, R.L.; Nikitopoulos, D.; Murphy, M.C.; Soper, S.A. Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor. J. Am. Chem. Soc. 2008, 130, 8633–8641. [Google Scholar] [CrossRef]
- Zhan, Q.; Liu, B.; Situ, X.; Luo, Y.; Fu, T.; Wang, Y.; Xie, Z.; Ren, L.; Zhu, Y.; He, W.; et al. New insights into the correlations between circulating tumor cells and target organ metastasis. Signal Transduct. Target. Ther. 2023, 8, 465. [Google Scholar] [CrossRef] [PubMed]
- Engell, H.C. Cancer cells in the circulating blood; a clinical study on the occurrence of cancer cells in the peripheral blood and in venous blood draining the tumour area at operation. Acta Chir. Scand Suppl. 1955, 201, 1–70. [Google Scholar] [PubMed]
- Zhou, H.; Zhu, L.; Song, J.; Wang, G.; Li, P.; Li, W.; Luo, P.; Sun, X.; Wu, J.; Liu, Y.; et al. Liquid biopsy at the frontier of detection, prognosis and progression monitoring in colorectal cancer. Mol. Cancer 2022, 21, 86. [Google Scholar] [CrossRef] [PubMed]
- Peach, G.; Kim, C.; Zacharakis, E.; Purkayastha, S.; Ziprin, P. Prognostic significance of circulating tumour cells following surgical resection of colorectal cancers: A systematic review. Br. J. Cancer 2010, 102, 1327–1334. [Google Scholar] [CrossRef] [PubMed]
- Allen-Mersh, T.G.; McCullough, T.K.; Patel, H.; Wharton, R.Q.; Glover, C.; Jonas, S.K. Role of circulating tumour cells in predicting recurrence after excision of primary colorectal carcinoma. Br. J. Surg. 2007, 94, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.; Kienle, P.; Kastrati, D.; Antolovic, D.; Schmidt, J.; Herfarth, C.; von Knebel Doeberitz, M.; Weitz, J. Prognostic impact of hematogenous tumor cell dissemination in patients with stage II colorectal cancer. Int. J. Cancer 2006, 118, 3072–3077. [Google Scholar] [CrossRef]
- Iinuma, H.; Watanabe, T.; Mimori, K.; Adachi, M.; Hayashi, N.; Tamura, J.; Matsuda, K.; Fukushima, R.; Okinaga, K.; Sasako, M.; et al. Clinical significance of circulating tumor cells, including cancer stem-like cells, in peripheral blood for recurrence and prognosis in patients with Dukes’ stage B and C colorectal cancer. J. Clin. Oncol. 2011, 29, 1547–1555. [Google Scholar] [CrossRef]
- Liu, Y.; Qian, J.; Feng, J.G.; Ju, H.X.; Zhu, Y.P.; Feng, H.Y.; Li, D.C. Detection of circulating tumor cells in peripheral blood of colorectal cancer patients without distant organ metastases. Cell Oncol. 2013, 36, 43–53. [Google Scholar] [CrossRef]
- Chen, W.S.; Chung, M.Y.; Liu, J.H.; Liu, J.M.; Lin, J.K. Impact of circulating free tumor cells in the peripheral blood of colorectal cancer patients during laparoscopic surgery. World J. Surg. 2004, 28, 552–557. [Google Scholar] [CrossRef]
- Vardakis, N.; Messaritakis, I.; Papadaki, C.; Agoglossakis, G.; Sfakianaki, M.; Saridaki, Z.; Apostolaki, S.; Koutroubakis, I.; Perraki, M.; Hatzidaki, D.; et al. Prognostic significance of the detection of peripheral blood CEACAM5mRNA-positive cells by real-time polymerase chain reaction in operable colorectal cancer. Clin. Cancer Res. 2011, 17, 165–173. [Google Scholar] [CrossRef]
- Sadahiro, S.; Suzuki, T.; Maeda, Y.; Yurimoto, S.; Yasuda, S.; Makuuchi, H.; Kamijo, A.; Murayama, C. Detection of carcinoembryonic antigen messenger RNA-expressing cells in peripheral blood 7 days after curative surgery is a novel prognostic factor in colorectal cancer. Ann. Surg. Oncol. 2007, 14, 1092–1098. [Google Scholar] [CrossRef]
- Wang, J.Y.; Lin, S.R.; Wu, D.C.; Lu, C.Y.; Yu, F.J.; Hsieh, J.S.; Cheng, T.L.; Koay, L.B.; Uen, Y.H. Multiple molecular markers as predictors of colorectal cancer in patients with normal perioperative serum carcinoembryonic antigen levels. Clin. Cancer Res. 2007, 13, 2406–2413. [Google Scholar] [CrossRef]
- Chang, Y.T.; Huang, M.Y.; Yeh, Y.S.; Huang, C.W.; Tsai, H.L.; Cheng, T.L.; Wang, J.Y. A Prospective Study of Comparing Multi-Gene Biomarker Chip and Serum Carcinoembryonic Antigen in the Postoperative Surveillance for Patients with Stage I-III Colorectal Cancer. PLoS ONE 2016, 11, e0163264. [Google Scholar] [CrossRef]
- Allard, W.J.; Matera, J.; Miller, M.C.; Repollet, M.; Connelly, M.C.; Rao, C.; Tibbe, A.G.; Uhr, J.W.; Terstappen, L.W. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 2004, 10, 6897–6904. [Google Scholar] [CrossRef]
- Bork, U.; Rahbari, N.N.; Scholch, S.; Reissfelder, C.; Kahlert, C.; Buchler, M.W.; Weitz, J.; Koch, M. Circulating tumour cells and outcome in non-metastatic colorectal cancer: A prospective study. Br. J. Cancer 2015, 112, 1306–1313. [Google Scholar] [CrossRef]
- van Dalum, G.; Stam, G.J.; Scholten, L.F.; Mastboom, W.J.; Vermes, I.; Tibbe, A.G.; De Groot, M.R.; Terstappen, L.W. Importance of circulating tumor cells in newly diagnosed colorectal cancer. Int. J. Oncol. 2015, 46, 1361–1368. [Google Scholar] [CrossRef]
- Wang, D.; Yang, Y.; Jin, L.; Wang, J.; Zhao, X.; Wu, G.; Zhang, J.; Kou, T.; Yao, H.; Zhang, Z. Prognostic models based on postoperative circulating tumor cells can predict poor tumor recurrence-free survival in patients with stage II-III colorectal cancer. J. Cancer 2019, 10, 4552–4563. [Google Scholar] [CrossRef]
- Yang, C.; Shi, D.; Wang, S.; Wei, C.; Zhang, C.; Xiong, B. Prognostic value of pre- and post-operative circulating tumor cells detection in colorectal cancer patients treated with curative resection: A prospective cohort study based on ISET device. Cancer Manag. Res. 2018, 10, 4135–4144. [Google Scholar] [CrossRef]
- Ma, Y.C.; Wang, L.; Yu, F.L. Recent advances and prospects in the isolation by size of epithelial tumor cells (ISET) methodology. Technol. Cancer Res. Treat 2013, 12, 295–309. [Google Scholar] [CrossRef]
- Uen, Y.H.; Lu, C.Y.; Tsai, H.L.; Yu, F.J.; Huang, M.Y.; Cheng, T.L.; Lin, S.R.; Wang, J.Y. Persistent presence of postoperative circulating tumor cells is a poor prognostic factor for patients with stage I-III colorectal cancer after curative resection. Ann. Surg. Oncol. 2008, 15, 2120–2128. [Google Scholar] [CrossRef]
- Lu, C.Y.; Uen, Y.H.; Tsai, H.L.; Chuang, S.C.; Hou, M.F.; Wu, D.C.; Juo, S.H.; Lin, S.R.; Wang, J.Y. Molecular detection of persistent postoperative circulating tumour cells in stages II and III colon cancer patients via multiple blood sampling: Prognostic significance of detection for early relapse. Br. J. Cancer 2011, 104, 1178–1184. [Google Scholar] [CrossRef]
- Lu, C.Y.; Tsai, H.L.; Uen, Y.H.; Hu, H.M.; Chen, C.W.; Cheng, T.L.; Lin, S.R.; Wang, J.Y. Circulating tumor cells as a surrogate marker for determining clinical outcome to mFOLFOX chemotherapy in patients with stage III colon cancer. Br. J. Cancer 2013, 108, 791–797. [Google Scholar] [CrossRef]
- Yang, C.; Zou, K.; Zheng, L.; Xiong, B. Prognostic and clinicopathological significance of circulating tumor cells detected by RT-PCR in non-metastatic colorectal cancer: A meta-analysis and systematic review. BMC Cancer 2017, 17, 725. [Google Scholar] [CrossRef]
- Wu, J.; Li, Z.; Zou, J.; Li, L.; Cui, N.; Hao, T.; Yi, K.; Yang, J.; Wu, Y. A meta-analysis of the value of circulating tumor cells in monitoring postoperative recurrence and metastasis of colorectal cancer. PLoS ONE 2022, 17, e0274282. [Google Scholar] [CrossRef]
- Veyrune, L.; Naumann, D.N.; Christou, N. Circulating Tumour Cells as Prognostic Biomarkers in Colorectal Cancer: A Systematic Review. Int. J. Mol. Sci. 2021, 22, 3437. [Google Scholar] [CrossRef]
- Quasar Collaborative, G.; Gray, R.; Barnwell, J.; McConkey, C.; Hills, R.K.; Williams, N.S.; Kerr, D.J. Adjuvant chemotherapy versus observation in patients with colorectal cancer: A randomised study. Lancet 2007, 370, 2020–2029. [Google Scholar] [CrossRef]
- Uen, Y.H.; Lin, S.R.; Wu, D.C.; Su, Y.C.; Wu, J.Y.; Cheng, T.L.; Chi, C.W.; Wang, J.Y. Prognostic significance of multiple molecular markers for patients with stage II colorectal cancer undergoing curative resection. Ann. Surg. 2007, 246, 1040–1046. [Google Scholar] [CrossRef]
- Yu, J.H.; Wang, D.; Jin, L.; Wang, J.; Zhao, X.M.; Wu, G.C.; Yao, H.W.; Yang, Y.C.; Zhang, Z.T. Utility of circulating tumor cells in stage II colorectal cancer patients undergoing curative resection. Transl. Cancer Res. 2020, 9, 1487–1494. [Google Scholar] [CrossRef]
- Yu, J.; Bai, Y.; Jin, L.; Zhang, Z.; Yang, Y. A Prospective Long-Term Follow-Up Study: The Application of Circulating Tumor Cells Analysis to Guide Adjuvant Therapy in Stage II Colorectal Cancer. Ann. Surg. Oncol. 2023, 30, 8495–8500. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, W.; Ye, Z.; Zhong, X.; Zhou, J.; Chen, S.; Liu, W.; Sun, Y.; Ren, L.; Tan, X.; et al. Predictive Value of Circulating Tumor Cells Based on Subtraction Enrichment for Recurrence Risk in Stage II Colorectal Cancer. ACS Appl. Mater. Interfaces 2022, 14, 35389–35399. [Google Scholar] [CrossRef]
- Shin, J.K.; Huh, J.W.; Lee, W.Y.; Yun, S.H.; Kim, H.C.; Cho, Y.B.; Park, Y.A. Clinical prediction model of pathological response following neoadjuvant chemoradiotherapy for rectal cancer. Sci. Rep. 2022, 12, 7145. [Google Scholar] [CrossRef]
- Lee, H.H.; Chen, C.H.; Huang, Y.H.; Chiang, C.H.; Huang, M.Y. Biomarkers of Favorable vs. Unfavorable Responses in Locally Advanced Rectal Cancer Patients Receiving Neoadjuvant Concurrent Chemoradiotherapy. Cells 2022, 11, 1611. [Google Scholar] [CrossRef]
- Cui, Z.; Su, F.; Li, Y.; Yang, D. Circulating tumour cells as prognosis predictive markers of neoadjuvant chemotherapy-treated breast cancer patients. J. Chemother. 2020, 32, 304–309. [Google Scholar] [CrossRef]
- Su, P.J.; Wu, M.H.; Wang, H.M.; Lee, C.L.; Huang, W.K.; Wu, C.E.; Chang, H.K.; Chao, Y.K.; Tseng, C.K.; Chiu, T.K.; et al. Circulating Tumour Cells as an Independent Prognostic Factor in Patients with Advanced Oesophageal Squamous Cell Carcinoma Undergoing Chemoradiotherapy. Sci. Rep. 2016, 6, 31423. [Google Scholar] [CrossRef]
- Dayde, D.; Tanaka, I.; Jain, R.; Tai, M.C.; Taguchi, A. Predictive and Prognostic Molecular Biomarkers for Response to Neoadjuvant Chemoradiation in Rectal Cancer. Int. J. Mol. Sci. 2017, 18, 573. [Google Scholar] [CrossRef]
- Zitt, M.; Zitt, M.; Muller, H.M.; Dinnewitzer, A.J.; Schwendinger, V.; Goebel, G.; De Vries, A.; Amberger, A.; Weiss, H.; Margreiter, R.; et al. Disseminated tumor cells in peripheral blood: A novel marker for therapy response in locally advanced rectal cancer patients undergoing preoperative chemoradiation. Dis. Colon Rectum 2006, 49, 1484–1491. [Google Scholar] [CrossRef]
- Dworak, O.; Keilholz, L.; Hoffmann, A. Pathological features of rectal cancer after preoperative radiochemotherapy. Int. J. Color. Dis. 1997, 12, 19–23. [Google Scholar] [CrossRef]
- Sun, W.; Li, G.; Wan, J.; Zhu, J.; Shen, W.; Zhang, Z. Circulating tumor cells: A promising marker of predicting tumor response in rectal cancer patients receiving neoadjuvant chemo-radiation therapy. Oncotarget 2016, 7, 69507–69517. [Google Scholar] [CrossRef]
- Troncarelli Flores, B.C.; Souza, E.S.V.; Ali Abdallah, E.; Mello, C.A.L.; Gobo Silva, M.L.; Gomes Mendes, G.; Camila Braun, A.; Aguiar Junior, S.; Thome Domingos Chinen, L. Molecular and Kinetic Analyses of Circulating Tumor Cells as Predictive Markers of Treatment Response in Locally Advanced Rectal Cancer Patients. Cells 2019, 8, 641. [Google Scholar] [CrossRef]
- Nesteruk, D.; Rutkowski, A.; Fabisiewicz, S.; Pawlak, J.; Siedlecki, J.A.; Fabisiewicz, A. Evaluation of prognostic significance of circulating tumor cells detection in rectal cancer patients treated with preoperative radiotherapy: Prospectively collected material data. BioMed Res. Int. 2014, 2014, 712827. [Google Scholar] [CrossRef]
- Magni, E.; Botteri, E.; Ravenda, P.S.; Cassatella, M.C.; Bertani, E.; Chiappa, A.; Luca, F.; Zorzino, L.; Bianchi, P.P.; Adamoli, L.; et al. Detection of circulating tumor cells in patients with locally advanced rectal cancer undergoing neoadjuvant therapy followed by curative surgery. Int. J. Color. Dis. 2014, 29, 1053–1059. [Google Scholar] [CrossRef]
- Hinz, S.; Roder, C.; Tepel, J.; Hendricks, A.; Schafmayer, C.; Becker, T.; Kalthoff, H. Cytokeratin 20 positive circulating tumor cells are a marker for response after neoadjuvant chemoradiation but not for prognosis in patients with rectal cancer. BMC Cancer 2015, 15, 953. [Google Scholar] [CrossRef] [PubMed]
- Kienle, P.; Koch, M.; Autschbach, F.; Benner, A.; Treiber, M.; Wannenmacher, M.; von Knebel Doeberitz, M.; Buchler, M.; Herfarth, C.; Weitz, J. Decreased detection rate of disseminated tumor cells of rectal cancer patients after preoperative chemoradiation: A first step towards a molecular surrogate marker for neoadjuvant treatment in colorectal cancer. Ann. Surg. 2003, 238, 324–330, discussion 330-321. [Google Scholar] [CrossRef] [PubMed]
- Vona, G.; Sabile, A.; Louha, M.; Sitruk, V.; Romana, S.; Schutze, K.; Capron, F.; Franco, D.; Pazzagli, M.; Vekemans, M.; et al. Isolation by size of epithelial tumor cells: A new method for the immunomorphological and molecular characterization of circulatingtumor cells. Am. J. Pathol. 2000, 156, 57–63. [Google Scholar] [CrossRef]
- Silva, V.S.E.; Abdallah, E.A.; Flores, B.C.T.; Braun, A.C.; Costa, D.J.F.; Ruano, A.P.C.; Gasparini, V.A.; Silva, M.L.G.; Mendes, G.G.; Claro, L.C.L.; et al. Molecular and Dynamic Evaluation of Proteins Related to Resistance to Neoadjuvant Treatment with Chemoradiotherapy in Circulating Tumor Cells of Patients with Locally Advanced Rectal Cancer. Cells 2021, 10, 1539. [Google Scholar] [CrossRef]
- Liu, W.Y.; Zhang, W.; Tang, Y.; Chen, S.L.; Li, N.; Lei, J.Q.; Shi, J.M.; Wang, S.L.; Li, Y.X.; Zhang, K.T.; et al. Metastasis risk stratification and response prediction through dynamic viable circulating tumor cell counts for rectal cancer in a neoadjuvant setting. Cancer Med. 2023, 12, 11438–11450. [Google Scholar] [CrossRef]
- Thorsteinsson, M.; Soletormos, G.; Jess, P. Low number of detectable circulating tumor cells in non-metastatic colon cancer. Anticancer Res. 2011, 31, 613–617. [Google Scholar]
- Sotelo, M.J.; Sastre, J.; Maestro, M.L.; Veganzones, S.; Vieitez, J.M.; Alonso, V.; Gravalos, C.; Escudero, P.; Vera, R.; Aranda, E.; et al. Role of circulating tumor cells as prognostic marker in resected stage III colorectal cancer. Ann. Oncol. 2015, 26, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Riethdorf, S.; O’Flaherty, L.; Hille, C.; Pantel, K. Clinical applications of the CellSearch platform in cancer patients. Adv. Drug Deliv. Rev. 2018, 125, 102–121. [Google Scholar] [CrossRef]
- Andree, K.C.; van Dalum, G.; Terstappen, L.W. Challenges in circulating tumor cell detection by the CellSearch system. Mol. Oncol. 2016, 10, 395–407. [Google Scholar] [CrossRef]
- Roche, J. The Epithelial-to-Mesenchymal Transition in Cancer. Cancers 2018, 10, 52. [Google Scholar] [CrossRef] [PubMed]
- Massague, J.; Obenauf, A.C. Metastatic colonization by circulating tumour cells. Nature 2016, 529, 298–306. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, C.A.; Pollett, A.; Gallinger, S.; Dick, J.E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007, 445, 106–110. [Google Scholar] [CrossRef]
- Dalerba, P.; Dylla, S.J.; Park, I.K.; Liu, R.; Wang, X.; Cho, R.W.; Hoey, T.; Gurney, A.; Huang, E.H.; Simeone, D.M.; et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl. Acad Sci. USA 2007, 104, 10158–10163. [Google Scholar] [CrossRef] [PubMed]
- Aceto, N. Bring along your friends: Homotypic and heterotypic circulating tumor cell clustering to accelerate metastasis. BioMed J. 2020, 43, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Aceto, N.; Bardia, A.; Miyamoto, D.T.; Donaldson, M.C.; Wittner, B.S.; Spencer, J.A.; Yu, M.; Pely, A.; Engstrom, A.; Zhu, H.; et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 2014, 158, 1110–1122. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Zhu, J.; Mao, Y.; Li, X.; Hu, B.; Zhang, D. Associations between the Epithelial-Mesenchymal Transition Phenotypes of Circulating Tumor Cells and the Clinicopathological Features of Patients with Colorectal Cancer. Dis. Markers 2017, 2017, 9474532. [Google Scholar] [CrossRef] [PubMed]
- Chaffer, C.L.; San Juan, B.P.; Lim, E.; Weinberg, R.A. EMT, cell plasticity and metastasis. Cancer Metastasis Rev. 2016, 35, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.; Becker, T.M.; Chua, W.; Ng, W.L.; de Souza, P.; Spring, K.J. Circulating tumour cells and the epithelial mesenchymal transition in colorectal cancer. J. Clin. Pathol. 2014, 67, 848–853. [Google Scholar] [CrossRef]
- Yu, J.; Yang, M.; Peng, T.; Liu, Y.; Cao, Y. Author Correction: Evaluation of cell surface vimentin positive circulating tumor cells as a prognostic biomarker for stage III/IV colorectal cancer. Sci. Rep. 2024, 14, 6449. [Google Scholar] [CrossRef]
- Wolff, L.; Strathmann, E.A.; Muller, I.; Mahlich, D.; Veltman, C.; Niehoff, A.; Wirth, B. Plastin 3 in health and disease: A matter of balance. Cell Mol. Life Sci. 2021, 78, 5275–5301. [Google Scholar] [CrossRef] [PubMed]
- Yokobori, T.; Iinuma, H.; Shimamura, T.; Imoto, S.; Sugimachi, K.; Ishii, H.; Iwatsuki, M.; Ota, D.; Ohkuma, M.; Iwaya, T.; et al. Plastin3 is a novel marker for circulating tumor cells undergoing the epithelial-mesenchymal transition and is associated with colorectal cancer prognosis. Cancer Res. 2013, 73, 2059–2069. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Chen, Z.; Ou, M.; Wang, J.; Huang, X.; Wu, Y.; Zhong, W.; Yang, J.; Huang, J.; Huang, M.; et al. Clinical significance of circulating tumor cells in predicating the outcomes of patients with colorectal cancer. Clinics 2022, 77, 100070. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.D.; Yang, C.G.; Han, S.; Wang, S.Y.; Xiong, B. Dynamic evaluation of mesenchymal circulating tumor cells in patients with colorectal cancer: Clinical associations and prognostic value. Oncol. Rep. 2020, 44, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Wang, S.; Fang, Y.; Zheng, L.; Zhi, X.; Cheng, B.; Chen, Y.; Zhang, C.; Shi, D.; Song, H.; et al. Feasibility of a novel one-stop ISET device to capture CTCs and its clinical application. Oncotarget 2017, 8, 3029–3041. [Google Scholar] [CrossRef] [PubMed]
- Ricci-Vitiani, L.; Lombardi, D.G.; Pilozzi, E.; Biffoni, M.; Todaro, M.; Peschle, C.; De Maria, R. Identification and expansion of human colon-cancer-initiating cells. Nature 2007, 445, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Li, X.D.; Ji, M.; Wu, J.; Jiang, J.T.; Wu, C.P. Clinical significance of CD44 variants expression in colorectal cancer. Tumori 2013, 99, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Katoh, S.; Goi, T.; Naruse, T.; Ueda, Y.; Kurebayashi, H.; Nakazawa, T.; Kimura, Y.; Hirono, Y.; Yamaguchi, A. Cancer stem cell marker in circulating tumor cells: Expression of CD44 variant exon 9 is strongly correlated to treatment refractoriness, recurrence and prognosis of human colorectal cancer. Anticancer Res. 2015, 35, 239–244. [Google Scholar] [PubMed]
- Kimura, Y.; Goi, T.; Nakazawa, T.; Hirono, Y.; Katayama, K.; Urano, T.; Yamaguchi, A. CD44variant exon 9 plays an important role in colon cancer initiating cells. Oncotarget 2013, 4, 785–791. [Google Scholar] [CrossRef]
- Lieto, E.; Galizia, G.; Orditura, M.; Romano, C.; Zamboli, A.; Castellano, P.; Mabilia, A.; Auricchio, A.; DE Vita, F.; Gemei, M. CD26-positive/CD326-negative circulating cancer cells as prognostic markers for colorectal cancer recurrence. Oncol. Lett. 2015, 9, 542–550. [Google Scholar] [CrossRef]
- Pang, R.; Law, W.L.; Chu, A.C.; Poon, J.T.; Lam, C.S.; Chow, A.K.; Ng, L.; Cheung, L.W.; Lan, X.R.; Lan, H.Y.; et al. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell 2010, 6, 603–615. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.Y.; Yang, C.Y.; Yeh, P.H.; Hsu, C.J.; Chang, L.W.; Chan, W.J.; Lin, C.P.; Lyu, Y.Y.; Wu, W.C.; Lee, C.W.; et al. Highly Correlated Recurrence Prognosis in Patients with Metastatic Colorectal Cancer by Synergistic Consideration of Circulating Tumor Cells/Microemboli and Tumor Markers CEA/CA19-9. Cells 2021, 10, 1149. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.Y.; Lu, L.S.; Cho, W.; Wu, S.Y.; Chang, Y.C.; Lin, C.P.; Yang, C.Y.; Lin, C.H.; Jiang, J.K.; Tseng, F.G. Enumerating Circulating Tumor Cells with a Self-Assembled Cell Array (SACA) Chip: A Feasibility Study in Patients with Colorectal Cancer. Cancers 2019, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.J.; Chang, L.W.; Yang, C.Y.; Lo, L.C.; Lin, C.P.; Jian, Y.W.; Jiang, J.K.; Tseng, F.G. The rare circulating tumor microemboli as a biomarker contributes to predicting early colorectal cancer recurrences after medical treatment. Transl. Res. 2024, 263, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, Q.; Xu, Z.; Xie, Q.; Ding, W.; Liu, H.; Deng, H. Association of circulating tumor cell-white blood cell clusters with survival outcomes in patients with colorectal cancer after curative intent surgery. BMC Gastroenterol. 2022, 22, 503. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.N.A.; Huang, P.S.; Chu, P.Y.; Hsieh, C.H.; Wu, M.H. Recent Progress in Enhanced Cancer Diagnosis, Prognosis, and Monitoring Using a Combined Analysis of the Number of Circulating Tumor Cells (CTCs) and Other Clinical Parameters. Cancers 2023, 15, 5372. [Google Scholar] [CrossRef] [PubMed]
- Bessa, X.; Pinol, V.; Castellvi-Bel, S.; Piazuelo, E.; Lacy, A.M.; Elizalde, J.I.; Pique, J.M.; Castells, A. Prognostic value of postoperative detection of blood circulating tumor cells in patients with colorectal cancer operated on for cure. Ann. Surg. 2003, 237, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Ayude, D.; Rodriguez-Berrocal, F.J.; Ayude, J.; Blanco-Prieto, S.; Vazquez-Iglesias, L.; Vazquez-Cedeira, M.; Paez de la Cadena, M. Preoperative serum CA 72.4 as prognostic factor of recurrence and death, especially at TNM stage II, for colorectal cancer. BMC Cancer 2013, 13, 543. [Google Scholar] [CrossRef]
- Tan, C.R.; Zhou, L.; El-Deiry, W.S. Circulating Tumor Cells Versus Circulating Tumor DNA in Colorectal Cancer: Pros and Cons. Curr. Colo. Cancer Rep. 2016, 12, 151–161. [Google Scholar] [CrossRef]
- Wang, J.Y.; Hsieh, J.S.; Chang, M.Y.; Huang, T.J.; Chen, F.M.; Cheng, T.L.; Alexandersen, K.; Huang, Y.S.; Tzou, W.S.; Lin, S.R. Molecular detection of APC, K- ras, and p53 mutations in the serum of colorectal cancer patients as circulating biomarkers. World J. Surg. 2004, 28, 721–726. [Google Scholar] [CrossRef]
- Frattini, M.; Gallino, G.; Signoroni, S.; Balestra, D.; Battaglia, L.; Sozzi, G.; Leo, E.; Pilotti, S.; Pierotti, M.A. Quantitative analysis of plasma DNA in colorectal cancer patients: A novel prognostic tool. Ann. N. Y. Acad. Sci. 2006, 1075, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Tie, J.; Cohen, J.D.; Lahouel, K.; Lo, S.N.; Wang, Y.; Kosmider, S.; Wong, R.; Shapiro, J.; Lee, M.; Harris, S.; et al. Circulating Tumor DNA Analysis Guiding Adjuvant Therapy in Stage II Colon Cancer. N. Engl. J. Med. 2022, 386, 2261–2272. [Google Scholar] [CrossRef] [PubMed]
- Riesco-Martinez, M.C.; Fernandez-Martos, C.; Gravalos-Castro, C.; Espinosa-Olarte, P.; La Salvia, A.; Robles-Diaz, L.; Modrego-Sanchez, A.; Garcia-Carbonero, R. Impact of Total Neoadjuvant Therapy vs. Standard Chemoradiotherapy in Locally Advanced Rectal Cancer: A Systematic Review and Meta-Analysis of Randomized Trials. Cancers 2020, 12, 3655. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Jiang, T.; Xiao, L.; Yang, S.; Liu, Q.; Gao, Y.; Chen, G.; Xiao, W. Total Neoadjuvant Therapy (TNT) versus Standard Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer: A Systematic Review and Meta-Analysis. Oncologist 2021, 26, e1555–e1566. [Google Scholar] [CrossRef]
- Kasi, A.; Abbasi, S.; Handa, S.; Al-Rajabi, R.; Saeed, A.; Baranda, J.; Sun, W. Total Neoadjuvant Therapy vs Standard Therapy in Locally Advanced Rectal Cancer: A Systematic Review and Meta-analysis. JAMA Netw. Open 2020, 3, e2030097. [Google Scholar] [CrossRef]
Tools | Descriptions | Advantages | Limitations |
---|---|---|---|
Physical examinations | Evaluating objective anatomic findings through observation, palpation, percussion, and auscultation, e.g., digital examination | Costless Risk-free | Diagnosis is complicated and often delayed due to lack of specific symptoms |
Carcinoembryonic antigen (CEA) | A specific blood tumor marker of CRC recurrence | Cost-effective Dynamic monitor Acceptable sensitivity | Insufficient sensitivity False positive due to many factors (e.g., smoking, inflammation, etc.) |
Colonoscopy | An imaging tool using a fiber-optic flexible instrument inserted through the anus to examine the colon and rectum | Detect local recurrence Remove early adenomatous polyps Detect metachronous cancer | Bowel preparation before procedure Rare but severe risks during procedure (bleeding, perforation) Unable to detect extra-luminal recurrent disease |
Computed tomography (CT) | An imaging tool combining X-rays and computer technology to produce images of the inside of the body. | Whole body survey Detect the presence of new lesions, especially in liver and lung. | Radiation exposure Low accuracy for discriminating postoperative change, extrahepatic metastases, and local recurrence. |
Positron emission tomography (PET) scan | An imaging tool using radioactive drugs to evaluate the atypical metabolic activity of a particular organ or tissue | Whole body survey High sensitivity and specificity Highest accuracy for the detection of distant or local recurrence. | Radiation exposure Expensive Limited availability |
Study | Technique | Blood Sample Timing | Definition of CTC Positive | Results |
---|---|---|---|---|
Koch et al., 2006 [58] | RT-PCR | 24 h after surgery | CTC presentation |
|
Uen et al., 2007 [79] | Membrane-arrays | 7 d after surgery | CTC presentation |
|
Yu et al., 2020 [80] | imFISH | 7 d after surgery | CTCs ≥ 2 |
|
Yu et al., 2023 [81] | imFISH | 7 d after surgery | CTCs ≥ 3 |
|
Chen et al., 2022 [82] | SE-iFISH | 7 d before surgery | CTCs ≥ 4 |
|
Study | Neoadjuvant Setting | Technique | Blood Sample Timing | Definition of CTC Positive | Results |
---|---|---|---|---|---|
Nesteruk 2014 et al., [92] | RT: 25 Gy | RT-PCR | Multiple times | CTC presentation |
|
Magni et al., 2014 [93] | RT: 45 Gy CT: capecitabine | CellSearch | Multiple times | CTC ≥ 1 |
|
Hinz et al., 2015 [94] | RT: 50.4 Gy CT: 5-fluorouracil | RT-PCR | Before surgery | CTC presentation |
|
Silva et al., 2021 [97] | RT: 50.4 Gy CT: 5-fluorouracil or capecitabine | ISET | Multiple times | CTC ≥ 1 |
|
Liu et al., 2023 [98] | RT: 25 Gy CT: XELOX or RT: 50 Gy CT: capecitabine | Image flow cytometry | Multiple times | High risk: CTC > 3 Low risk: CTC ≤ 3 |
|
Study | Combination | Parameter | Definition of Positive | Outcome |
---|---|---|---|---|
Allen-Mersh et al., 2006 [57] | CTC + Pathological parameter | CTCs | Presentation | Hazard ratio: 8.66 |
LNs (+) | Presentation | Hazard ratio: 7.92 | ||
CTCs or LNs (+) or both | Presentation | Hazard ratio: 18.54 | ||
Uen et al., 2007 [79] | CTC + Pathological parameter | Tumor invasion | Presentation | Hazard ratio: 4.08 |
Vascular invasion | Presentation | Hazard ratio: 3.51 | ||
CTCs | Presentation | Hazard ratio: 38.59 | ||
At least one factor described above vs. no factors | Presentation | Hazard ratio: 27.12 | ||
Uen et al., 2008 [72] | CTC + Pathological parameter | LNs metastasis | Presentation | Hazard ratio: 7.65 |
Vascular invasion | Presentation | Hazard ratio: 4.36 | ||
CTCs | Presentation | Hazard ratio: 29.48 | ||
At least one factor described above vs. no factors | Presentation | Hazard ratio: 7.06 | ||
Wang et al., 2019 [69] | CTC + Pathological parameter + Tumor markers | CTCs | Presentation | Sensitivity: 61.11%; Specificity 73.53%; AUC: 0.673 |
TNM + CA72-4 + CTCs | Presentation | Sensitivity: 61.11%; Specificity 83.33%; AUC: 0.722 | ||
CA72-4 + CTCs | Presentation | Sensitivity: 77.78%; Specificity 70.59%; AUC: 0.742 |
Study | Combination | Parameter | Definition of Positive | Outcome |
---|---|---|---|---|
Chu et al. 2021 [124] | CTC + Tumor markers + CTC subtypes | CTCs CEA CA-19-9 Clusters CEA + clusters CA-19-9 + clusters CTCs + CEA CTCs + clusters CTCs + CEA + Clusters | >3 >5 >37 Presentation | Odds ratio: 2.6 Odds ratio: 5.1 Odds ratio: 6.2 Odds ratio: 3.2 Odds ratio: 4.8 Odds ratio: 5.4 Odds ratio: 7.3 Odds ratio: 8.4 Odds ratio: 17.1 |
Hao et al. 2024 [126] | CTC + Tumor markers + CTC subtypes | CTCs CEA CA-19-9 Clusters CA-19-9 + Clusters CTCs + CA19-9 + clusters CTCs + clusters | >1.5 >5 >37 Presentation | Odds ratio: N/A Odds ratio: 1.0 Odds ratio: 3.5 Odds ratio: 19.3 Odds ratio: 24.4 Odds ratio: 24.4 Odds ratio: 26.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, K.-Y.; Huang, P.-S.; Chu, P.-Y.; Nguyen, T.N.A.; Hung, H.-Y.; Hsieh, C.-H.; Wu, M.-H. Current Applications and Future Directions of Circulating Tumor Cells in Colorectal Cancer Recurrence. Cancers 2024, 16, 2316. https://doi.org/10.3390/cancers16132316
Tsai K-Y, Huang P-S, Chu P-Y, Nguyen TNA, Hung H-Y, Hsieh C-H, Wu M-H. Current Applications and Future Directions of Circulating Tumor Cells in Colorectal Cancer Recurrence. Cancers. 2024; 16(13):2316. https://doi.org/10.3390/cancers16132316
Chicago/Turabian StyleTsai, Kun-Yu, Po-Shuan Huang, Po-Yu Chu, Thi Ngoc Anh Nguyen, Hsin-Yuan Hung, Chia-Hsun Hsieh, and Min-Hsien Wu. 2024. "Current Applications and Future Directions of Circulating Tumor Cells in Colorectal Cancer Recurrence" Cancers 16, no. 13: 2316. https://doi.org/10.3390/cancers16132316
APA StyleTsai, K. -Y., Huang, P. -S., Chu, P. -Y., Nguyen, T. N. A., Hung, H. -Y., Hsieh, C. -H., & Wu, M. -H. (2024). Current Applications and Future Directions of Circulating Tumor Cells in Colorectal Cancer Recurrence. Cancers, 16(13), 2316. https://doi.org/10.3390/cancers16132316