Differential Serum Peptidomics Reveal Multi-Marker Models That Predict Breast Cancer Progression
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Serum Samples
2.2. Sample Processing
2.3. Chromatographic Separation
2.4. Mass Spectrometry
2.5. Statistical Analysis
2.6. Peak Identification
2.7. Machine Learning
3. Results
3.1. Biomarker Discovery
3.2. Biomarker Confirmation Study
3.3. Multi-Marker Model Construction and Validation
3.4. Biomarker Identification
3.5. Machine Learning-Based Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fares, J.; Fares, M.Y.; Khachfe, H.H.; Salhab, H.A.; Fares, Y. Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct. Target. Ther. 2020, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, M.; Su, K.; Zong, S.; Zhang, H.; Xiong, L. Pre-metastatic niche: From revealing the molecular and cellular mechanisms to the clinical applications in breast cancer metastasis. Theranostics 2023, 13, 2301–2318. [Google Scholar] [CrossRef] [PubMed]
- Jassem, J.; Ozmen, V.; Bacanu, F.; Drobniene, M.; Eglitis, J.; Lakshmaiah, K.C.; Kahan, Z.; Mardiak, J.; Pieńkowski, T.; Semiglazova, T.; et al. Delays in diagnosis and treatment of breast cancer: A multinational analysis. Eur. J. Public Health 2014, 24, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Sleeman, J.P. The metastatic niche and stromal progression. Cancer Metastasis Rev. 2012, 31, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Sleeman, J.P.; Christofori, G.; Fodde, R.; Collard, J.G.; Berx, G.; Decraene, C.; Rüegg, C. Concepts of metastasis in flux: The stromal progression model. Semin. Cancer Biol. 2012, 22, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Duffy, M.J. Serum tumor markers in breast cancer: Are they of clinical value? Clin Chem. 2006, 52, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Fan, N.J.; Gao, C.F.; Zhao, G.; Wang, X.L.; Liu, Q.Y. Serum peptidome patterns of breast cancer based on magnetic bead separation and mass spectrometry analysis. Diagn. Pathol. 2012, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Tolić, N.; Liu, T.; Zhao, R.; Petritis, B.O.; Gritsenko, M.A.; Camp, D.G.; Moore, R.J.; Purvine, S.O.; Esteva, F.J.; et al. Blood peptidome-degradome profile of breast cancer. PLoS ONE 2010, 5, e13133. [Google Scholar] [CrossRef] [PubMed]
- Lai, Z.W.; Petrera, A.; Schilling, O. The emerging role of the peptidome in biomarker discovery and degradome profiling. Biol. Chem. 2015, 396, 185–192. [Google Scholar] [CrossRef]
- Kay, R.; Barton, C.; Ratcliffe, L.; Matharoo-Ball, B.; Brown, P.; Roberts, J.; Teale, P.; Creaser, C. Enrichment of low molecular weight serum proteins using acetonitrile precipitation for mass spectrometry based proteomic analysis. Rapid Commun. Mass Spectrom. 2008, 22, 3255–3260. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.; Bench Alvarez, T.M.; Johnson, W.E.; Esplin, M.S.; Merrell, K.; Porter, T.F.; Graves, S.W. Serum biomarkers predictive of pre-eclampsia. Biomark. Med. 2015, 9, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Esplin, M.S.; Merrell, K.; Goldenberg, R.; Lai, Y.; Iams, J.D.; Mercer, B.; Spong, C.Y.; Miodovnik, M.; Simhan, H.N.; van Dorsten, P.; et al. Proteomic identification of serum peptides predicting subsequent spontaneous preterm birth. Am. J. Obstet. Gynecol. 2011, 204, 391.e1–391.e8. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, M.T.B.; Shah, D.J.; Thulin, C.D.; Graves, S.W. Tissue proteomics of the low-molecular weight proteome using an integrated cLC-ESI-QTOFMS approach. Proteomics 2013, 13, 1400–1411. [Google Scholar] [CrossRef] [PubMed]
- Leek, J.T.; Scharpf, R.B.; Bravo, H.C.; Simcha, D.; Langmead, B.; Johnson, W.E.; Geman, D.; Baggerly, K.; Irizarry, R.A. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet. 2010, 11, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Grennan, K.; Badner, J.; Zhang, D.; Gershon, E.; Jin, L.; Liu, C. Removing batch effects in analysis of expression microarray data: An evaluation of six batch adjustment methods. PLoS ONE 2011, 6, e17238. [Google Scholar] [CrossRef] [PubMed]
- Johnson, W.E.; Li, C.; Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007, 8, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Bischl, B.; Lang, M.; Kotthof, L.; Schratz, P. Machine Learning in R • mlr. J. Mach. Learn. Res. 2016, 17, 1–150. Available online: https://mlr.mlr-org.com/index.html (accessed on 3 February 2020).
- Duffy, M.J.; Crown, J. Precision treatment for cancer: Role of prognostic and predictive markers. Crit. Rev. Clin. Lab. Sci. 2014, 51, 30–45. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Abbott, T.; Fishman, D.; McMurray, W.; Mor, G.; Stone, K.; Ward, D.; Williams, K.; Zhao, H. Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics 2003, 19, 1636–1643. [Google Scholar] [CrossRef] [PubMed]
- O’Bryant, S.E.; Xiao, G.; Barber, R.; Reisch, J.; Doody, R.; Fairchild, T.; Adams, P.; Waring, S.; Diaz-Arrastia, R.; Texas Alzheimer’s Research Consortium. A serum protein-based algorithm for the detection of Alzheimer disease. Arch. Neurol. 2010, 67, 1077–1081. [Google Scholar] [CrossRef] [PubMed]
- Binnie, C.G.; Lord, S.T. The fibrinogen sequences that interact with thrombin. Blood 1993, 81, 3186–3192. [Google Scholar] [CrossRef] [PubMed]
- Kwaan, H.C.; Lindholm, P.F. Fibrin and fibrinolysis in cancer. Semin. Thromb. Hemost. 2019, 45, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Li, J.; Shen, J.; Du, F.; Wu, X.; Li, M.; Chen, Y.; Cho, C.H.; Li, X.; Xiao, Z.; et al. The role of fibrinogen-like proteins in cancer. Int. J. Biol. Sci. 2021, 17, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, G.; Zhang, Y.; Cui, X.; Wang, S.; Gao, S.; Wang, Y.; Liu, Y.; Bae, J.H.; Yang, W.-H.; et al. Fibrinogen alpha chain knockout promotes tumor growth and metastasis through integrin-akt signaling pathway in lung cancer. Mol. Cancer Res. 2020, 18, 943–954. [Google Scholar] [CrossRef] [PubMed]
Serial # | Marker m/z | Charge (z) | p-Value | Marker Status |
---|---|---|---|---|
1 | 403.23 | 2 | 0.008 | D |
2 | 409.2 | 2 | 0.04 | D |
3 | 414.23 | 2 | 0.003 | D |
4 | 415.67 | 2 | 0.01 | U |
5 | 421.22 | 2 | 0.002 | D |
6 | 425.25 | 2 | 0.002 | D |
7 | 430.28 | 1 | 0.01 | D |
8 | 436.24 | 2 | 0.004 | D |
9 | 442.23 | 2 | 0.001 | D |
10 | 443.23 | 2 | 0.01 | D |
11 | 447.26 | 2 | 0.012 | D |
12 | 450.3 | 1 | 0.007 | D |
13 | 451.2 | 2 | 0.006 | D |
14 | 458.25 | 2 | 0.004 | D |
15 | 459.24 | 1 | 0.03 | U |
16 | 464.31 | 1 | 0.03 | U |
17 | 465.74 | 2 | 0.014 | D |
18 | 472.3 | 1 | 0.007 | D |
19 | 473.21 | 2 | 0.029 | D |
20 | 482.29 | 1 | 0.005 | D |
21 | 487.25 | 2 | 0.003 | D |
22 | 488.29 | 1 | 0.017 | D |
23 | 494.3 | 1 | 0.006 | D |
24 | 495.23 | 2 | 0.014 | D |
25 | 497.26 | 1 | 0.006 | D |
26 | 522.28 | 1 | 0.03 | D |
27 | 524.26 | 2 | 0.01 | D |
28 | 537.27 | 1 | 0.03 | D |
29 | 541.29 | 1 | 0.01 | D |
30 | 543.31 | 3 | 0.019 | D |
31 | 546.27 | 2 | 0.004 | D |
32 | 555.27 | 1 | 0.0002 | D |
33 | 568.27 | 2 | 0.001 | D |
34 | 571.25 | 1 | 0.0014 | D |
35 | 572.63 | 3 | 0.008 | D |
36 | 575.33 | 1 | 0.04 | D |
37 | 582.3 | 2 | 0.03 | U |
38 | 585.3 | 1 | 0.006 | D |
39 | 590.3 | 2 | 0.007 | D |
40 | 599.29 | 1 | 0.002 | D |
41 | 605.28 | 2 | 0.03 | D |
42 | 629.3 | 1 | 0.003 | D |
43 | 643.3 | 1 | 0.003 | D |
44 | 649.32 | 2 | 0.01 | D |
45 | 656.33 | 2 | 0.008 | D |
46 | 673.33 | 1 | 0.0018 | D |
47 | 687.35 | 1 | 0.002 | D |
48 | 700.36 | 2 | 0.003 | D |
49 | 709.4 | 1 | 0.02 | U |
50 | 713.47 | 1 | 0.02 | U |
51 | 717.35 | 1 | 0.002 | D |
52 | 721.37 | 2 | 0.005 | D |
53 | 721.42 | 1 | 0.008 | U |
54 | 722.37 | 2 | 0.002 | D |
55 | 731.37 | 1 | 0.002 | D |
56 | 743.37 | 2 | 0.02 | D |
57 | 744.3 | 2 | 0.04 | U |
58 | 747.3 | 1 | 0.02 | D |
59 | 761.37 | 1 | 0.004 | D |
60 | 792.58 | 1 | 0.019 | U |
61 | 819.43 | 1 | 0.003 | D |
62 | 835.38 | 1 | 0.005 | D |
63 | 863.43 | 1 | 0.002 | D |
64 | 879.43 | 1 | 0.015 | D |
65 | 923.45 | 1 | 0.0085 | D |
ID | m/z | Sensitivity | Specificity | AUC |
---|---|---|---|---|
1 | 497.26 | 0.79 | 0.64 | 0.79 |
2 | 923.45 | 0.65 | 0.66 | 0.72 |
3 | 761.37 | 0.63 | 0.7 | 0.7 |
4 | 425.25a * | 0.66 | 0.66 | 0.69 |
5 | 722.37 | 0.58 | 0.6 | 0.66 |
6 | 585.3 | 0.59 | 0.55 | 0.65 |
7 | 458.25 | 0.55 | 0.64 | 0.65 |
8 | 747.3 | 0.67 | 0.63 | 0.63 |
9 | 555.27 | 0.63 | 0.6 | 0.63 |
10 | 442.23 | 0.59 | 0.7 | 0.62 |
11 | 546.27 | 0.56 | 0.56 | 0.62 |
12 | 879.43 | 0.5 | 0.56 | 0.61 |
Multi-Marker Model | Components | Sensitivity | Specificity | AUC |
---|---|---|---|---|
A | 1–2, 5–6 | 0.875 | 0.915 | 0.915 |
0.286 | 0.875 | 0.84 | ||
B | 1–2, 4–6 | 0.858 | 0.783 | 0.919 |
0.286 | 0.875 | 0.76 | ||
C | 1–2, 5–7 | 0.858 | 0.75 | 0.913 |
0.429 | 0.875 | 0.804 | ||
D | 1–3, 5–6 | 0.875 | 0.742 | 0.912 |
0.429 | 0.875 | 0.77 | ||
E | 1–6 | 0.917 | 0.758 | 0.915 |
0.429 | 0.875 | 0.77 |
Seq | # | B | Y | # (+1) |
---|---|---|---|---|
D | 1 | 116.03481 | 761.38342 | 7 |
L | 2 | 229.11888 | 646.35648 | 6 |
V | 3 | 328.18729 | 533.27242 | 5 |
P | 4 | 425.24005 | 434.204 | 4 |
G | 5 | 482.26152 | 337.15124 | 3 |
N | 6 | 596.30444 | 280.12978 | 2 |
F | 7 | 743.37286 | 166.08685 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlZaabi, A.; Piccolo, S.; Graves, S.; Hansen, M. Differential Serum Peptidomics Reveal Multi-Marker Models That Predict Breast Cancer Progression. Cancers 2024, 16, 2365. https://doi.org/10.3390/cancers16132365
AlZaabi A, Piccolo S, Graves S, Hansen M. Differential Serum Peptidomics Reveal Multi-Marker Models That Predict Breast Cancer Progression. Cancers. 2024; 16(13):2365. https://doi.org/10.3390/cancers16132365
Chicago/Turabian StyleAlZaabi, Adhari, Stephen Piccolo, Steven Graves, and Marc Hansen. 2024. "Differential Serum Peptidomics Reveal Multi-Marker Models That Predict Breast Cancer Progression" Cancers 16, no. 13: 2365. https://doi.org/10.3390/cancers16132365
APA StyleAlZaabi, A., Piccolo, S., Graves, S., & Hansen, M. (2024). Differential Serum Peptidomics Reveal Multi-Marker Models That Predict Breast Cancer Progression. Cancers, 16(13), 2365. https://doi.org/10.3390/cancers16132365