Evolution of Systemic Treatment for Hepatocellular Carcinoma: Changing Treatment Strategies and Concepts
Abstract
:Simple Summary
Abstract
1. Introduction
2. Systemic Therapy
2.1. First-Line Treatment
2.2. Second-Line Treatment
2.3. Switching from First-Line to Second-Line Treatment
2.4. Intermediate Stage
2.5. Early Stage
3. Combination and Collaboration of Systemic and Locoregional Therapies
3.1. Combined Therapy with Systemic Therapy and TACE
3.1.1. Intermediate Stage
Study Name | Phase | Site | Regimen | Primary Endpoint | Key Results |
---|---|---|---|---|---|
Japan-Korea Post-TACE [68] | 3 | Japan, Korea | TACE + Sorafenib vs. TACE | TTP ♭ | TTP; sorafenib/placebo: 5.4 [95% CI, 3.8–7.2] months/3.7 [95% CI, 3.5–4.0 months], HR 0.87 [95% CI, 0.70–1.09], p = 0.252 |
SPACE [69] | 3 | US, Europe Asia–Pacific | DEB-TACE + Sorafenib vs. DEB-TACE | TTP (mRECIST) | TTP; sorafenib plus DEB-TACE/DEB-TACE: 169 [95% CI, 166–219] days/166 [95% CI, 113–168] days, HR 0.797 [95% CI, 0.588–1.080], one sided p = 0.072 |
BRISK-TA [70] | 3 | Global | TACE + Brivanib vs. TACE | OS | OS; TACE + Brivanib/TACE: 26.4 [95% CI, 19.1-not reached] months/26.1 [95% CI, 19.0–30.9] months, HR 0.90 [95% CI, 0.66–1.23], p = 0.5280 |
ORIENTAL [71] | 3 | Japan, Korea, Taiwan | TACE + Orantinib vs. TACE | OS | OS; 31.1 [95% CI 26.5–34.5) months/32.3 [95% CI, 28.4–not reached] months, HR 1.090 [95% CI 0.878–1.352] p = 0.435 |
EMERALD-1 [79] | 3 | Global | TACE + Durvalumab ± Bevacizumab vs. TACE | PFS (RECIST v1.1); TACE + Durvalumab + Bevacizumab vs. TACE | PFS; durvalumab + bevacizumab + TACE/TACE: 15.0 [95% CI 11.1–18.9] months/8.2 [95% CI 6.9–11.1] months, HR 0.77 [95% CI 0.61–0.98], p = 0.032 |
LEAP-012 [80] | 3 | Global | TACE + Lenvatinib + Pembrolizumab vs. TACE | PFS (RECIST v1.1) | Unpublished |
TALENTACE (NCT04712643) | 3 | China, Japan | TACE + Atezolizumab + Bevacizumab vs. TACE | TACE PFS * | Unpublished |
TACE-3 (NCT04268888) | 3 | UK | TACE + Nivolumab vs. TACE | OS | Recruiting |
CA209-74W (NCT04340193) | 3 | Global | TACE + Nivolumab + Ipilimumab vs. TACE + Nivolumab vs. TACE | Safety and tolerability | Unpublished |
TACTICS [73] | 2 | Japan | TACE + Sorafenib vs. TACE | OS, PFS # (RECICL) | OS; TACE + sorafenib/TACE: 36.2/30.8 HR 0.861 (95% CI 0.607–1.223), p = 0.40, PFS; TACE + sorafenib/TACE: 22.8/13.5 HR0.661 (95% CI 0.466–0.938), p = 0.02 |
TACTICS-L [60] | 2 | Japan | TACE + Lenvatinib | PFS # (RECICL) | PFS; 28.0 (90% CI 25.1–31.0), OS not reached |
3.1.2. Advanced Stage
3.2. Combined Therapy with Systemic Therapy and Hepatic Arterial Infusion Chemotherapy (HAIC)
4. New Treatment Concepts and Challenges
Study Name | Phase | Site | Regimen | Subject | Primary Endpoint | Key Results |
---|---|---|---|---|---|---|
IMPACT [90] | 3 | Japan | Atezolizumab + Bevacizumab | Unresectable, excluding Vp3/Vp4 | SD randomized cohort; OS ABC conversion cohort; conversion rate | Recruiting |
LENS-HCC [93] | 2 | Japan | Lenvatinib | Oncologically or technically unresectable | Surgical resection rate | Resection rate: oncologically unresectable; 76.2% technically unresectable; 14.3% |
LEOPARD-NEO (jRCTs031230128) | 2 | Japan | Lenvatinib + HAIC with Cisplatin | Borderline resectable | Resection rate | Recruiting |
Case reports [96] | Immunotherapy | As a neoadjuvant treatment before liver transplantation | There were cases of good outcome, cases of re-transplantation, and a case of fatal hepatic necrosis |
5. Current Status and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; De Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef]
- Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 389, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef]
- Zhu, A.X.; Kang, Y.K.; Yen, C.J.; Finn, R.S.; Galle, P.R.; Llovet, J.M.; Assenat, E.; Brandi, G.; Pracht, M.; Lim, H.Y.; et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 282–296. [Google Scholar] [CrossRef] [PubMed]
- Abou-Alfa, G.K.; Meyer, T.; Cheng, A.L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B.Y.; Cicin, I.; Merle, P.; Chen, Y.; Park, J.W.; et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N. Engl. J. Med. 2018, 379, 54–63. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Lau, G.; Kudo, M.; Chan, S.L.; Kelley, R.K.; Furuse, J.; Sukeepaisarnjaroen, W.; Kang, Y.K.; Van Dao, T.; De Toni, E.N.; et al. Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. NEJM Evid. 2022, 1, EVIDoa2100070. [Google Scholar] [CrossRef]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Mellman, I.; Chen, D.S.; Powles, T.; Turley, S.J. The cancer-immunity cycle: Indication, genotype, and immunotype. Immunity 2023, 56, 2188–2205. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.C.; Levine, J.H.; Cogdill, A.P.; Zhao, Y.; Anang, N.A.S.; Andrews, M.C.; Sharma, P.; Wang, J.; Wargo, J.A.; Pe’er, D.; et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 2017, 170, 1120–1133.e17. [Google Scholar] [CrossRef]
- Brackenier, C.; Kinget, L.; Cappuyns, S.; Verslype, C.; Beuselinck, B.; Dekervel, J. Unraveling the synergy between atezolizumab and bevacizumab for the treatment of hepatocellular carcinoma. Cancers 2023, 15, 348. [Google Scholar] [CrossRef] [PubMed]
- Lassau, N.; Koscielny, S.; Chami, L.; Chebil, M.; Benatsou, B.; Roche, A.; Ducreux, M.; Malka, D.; Boige, V. Advanced hepato-cellular carcinoma: Early evaluation of response to bevacizumab therapy at dynamic contrast-enhanced US with quantification—preliminary results. Radiology 2011, 258, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Krishna, P.; Nidoni, R.; Adarsh, C.K.; Arun, M.G.; Shetty, A.; Mathangi, J.; Sandhya; Gopasetty, M.; Venugopal, B. Atezolizumab plus bevacizumab as a downstaging therapy for liver transplantation in hepatocellular carcinoma with portal vein thrombosis: The first report. Am. J. Transplant. 2024, 24, 1087–1090. [Google Scholar] [CrossRef] [PubMed]
- Tomonari, T.; Tani, J.; Sato, Y.; Tanaka, H.; Tanaka, T.; Taniguchi, T.; Kawano, Y.; Morishita, A.; Okamoto, K.; Sogabe, M.; et al. Clinical features and outcomes of conversion therapy in patients with unresectable hepatocellular carcinoma. Cancers 2023, 5, 5221. [Google Scholar] [CrossRef] [PubMed]
- Galle, P.R.; Finn, R.S.; Qin, S.; Ikeda, M.; Zhu, A.X.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.; et al. Patient-reported outcomes with atezolizumab plus bevacizumab versus sorafenib in patients with unresectable hepatocellular carcinoma (IMbrave150): An open-label, randomised, phase 3 trial. Lancet Oncol. 2021, 22, 991–1001. [Google Scholar] [CrossRef]
- McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of hepatocellular carcinoma. Hepatology 2021, 73, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Sangro, B.; Chan, S.L.; Kelley, R.K.; Lau, G.; Kudo, M.; Sukeepaisarnjaroen, W.; Yarchoan, M.; De Toni, E.N.; Furuse, J.; Kang, Y.K.; et al. Four-year overall survival update from the phase III HIMALAYA study of tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. Ann. Oncol. 2024, 35, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Martins, F.; Sofiya, L.; Sykiotis, G.P.; Lamine, F.; Maillard, M.; Fraga, M.; Shabafrouz, K.; Ribi, C.; Cairoli, A.; Guex-Crosier, Y.; et al. Adverse effects of immune-checkpoint inhibitors: Epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 2019, 16, 563–580. [Google Scholar] [CrossRef]
- Llovet, J.M.; Pinyol, R.; Kelley, R.K.; El-Khoueiry, A.; Reeves, H.L.; Wang, X.W.; Gores, G.J.; Villanueva, A. Molecular patho-genesis and systemic therapies for hepatocellular carcinoma. Nat. Cancer 2022, 3, 386–401. [Google Scholar] [CrossRef]
- Bejjani, A.C.; Finn, R.S. Hepatocellular carcinoma: Pick the winner-tyrosine kinase inhibitor versus immuno-oncology agent-based combinations. J. Clin. Oncol. 2022, 40, 2763–2773. [Google Scholar] [CrossRef] [PubMed]
- Moriguchi, M.; Okuda, K.; Horiguchi, G.; Kataoka, S.; Seko, Y.; Yamaguchi, K.; Nishimura, T.; Fujii, H.; Mitsumoto, Y.; Miyagawa, M.; et al. Safety/efficacy of atezolizumab + bevacizumab during anti-platelet/anticoagulation therapy in unresectable hepatocellular carcinoma. Liver Int. 2024, in press. [CrossRef] [PubMed]
- Rimini, M.; Rimassa, L.; Ueshima, K.; Burgio, V.; Shigeo, S.; Tada, T.; Suda, G.; Yoo, C.; Cheon, J.; Pinato, D.J.; et al. Atezolizumab plus bevacizumab versus lenvatinib or sorafenib in non-viral unresectable hepatocellular carcinoma: An international propensity score matching analysis. ESMO Open 2022, 7, 100591. [Google Scholar] [CrossRef] [PubMed]
- Casadei-Gardini, A.; Rimini, M.; Tada, T.; Suda, G.; Shimose, S.; Kudo, M.; Cheon, J.; Finkelmeier, F.; Lim, H.Y.; Rimassa, L.; et al. Atezolizumab plus bevacizumab versus lenvatinib for unresectable hepatocellular carcinoma: A large real-life worldwide population. Eur. J. Cancer 2023, 180, 9–20. [Google Scholar] [CrossRef]
- Pfister, D.; Núñez, N.G.; Pinyol, R.; Govaere, O.; Pinter, M.; Szydlowska, M.; Gupta, R.; Qiu, M.; Deczkowska, A.; Weiner, A.; et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 2021, 592, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, M.; Muquith, M.; Lim, M.; Zhu, H.; Singal, A.G.; Hsiehchen, D. Disease Etiology and Outcomes After Atezolizumab Plus Bevacizumab in Hepatocellular Carcinoma: Post-Hoc Analysis of IMbrave150. Gastroenterology 2023, 165, 286–288.e4. [Google Scholar] [CrossRef]
- Finn, R.S.; Ryoo, B.Y.; Merle, P.; Kudo, M.; Bouattour, M.; Lim, H.Y.; Breder, V.; Edeline, J.; Chao, Y.; Ogasawara, S.; et al. Pembrolizumab As Second-Line Therapy in Patients with Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2020, 38, 193–202. [Google Scholar] [CrossRef]
- Yau, T.; Park, J.W.; Finn, R.S.; Cheng, A.L.; Mathurin, P.; Edeline, J.; Kudo, M.; Harding, J.J.; Merle, P.; Rosmorduc, O.; et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): A randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2022, 23, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Facciorusso, A.; Tartaglia, N.; Villani, R.; Serviddio, G.; Ramai, D.; Mohan, B.P.; Chandan, S.; Abd El Aziz, M.A.; Evangelista, J.; Cotsoglou, C.; et al. Lenvatinib versus sorafenib as first-line therapy of advanced hepatocellular carcinoma: A systematic review and meta-analysis. Am. J. Transl. Res. 2021, 13, 2379–2387. [Google Scholar]
- Kudo, M.; Matilla, A.; Santoro, A.; Melero, I.; Gracián, A.C.; Acosta-Rivera, M.; Choo, S.P.; El-Khoueiry, A.B.; Kuromatsu, R.; El-Rayes, B.; et al. CheckMate 040 cohort 5: A phase I/II study of nivolumab in patients with advanced hepatocellular carcinoma and Child-Pugh B cirrhosis. J. Hepatol. 2021, 75, 600–609. [Google Scholar] [CrossRef]
- Kobayashi, K.; Ogasawara, S.; Maruta, S.; Okubo, T.; Itokawa, N.; Haga, Y.; Seko, Y.; Moriguchi, M.; Watanabe, S.; Shiko, Y.; et al. A prospective study exploring the safety and efficacy of lenvatinib for patients with advanced hepatocellular carcinoma and high tumor burden: The LAUNCH Study. Clin. Cancer Res. 2023, 29, 4760–4769. [Google Scholar] [CrossRef]
- Kelley, R.K.; Rimassa, L.; Cheng, A.L.; Kaseb, A.; Qin, S.; Zhu, A.X.; Chan, S.L.; Melkadze, T.; Sukeepaisarnjaroen, W.; Breder, V.; et al. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2022, 23, 995–1008. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Kudo, M.; Merle, P.; Meyer, T.; Qin, S.; Ikeda, M.; Xu, R.; Edeline, J.; Ryoo, B.Y.; Ren, Z.; et al. Lenvatinib plus pembrolizumab versus lenvatinib plus placebo for advanced hepatocellular carcinoma (LEAP-002): A randomised, double-blind, phase 3 trial. Lancet Oncol. 2023, 24, 1399–1410. [Google Scholar] [CrossRef]
- Galle, P.R.; Decaens, T.; Kudo, M.; Qin, S.; Da Fonseca, L.; Sangro, B.; Karachiwala, H.; Park, J.W.; Gane, E.; Pinter, M.; et al. Nivolumab plus ipilimumab vs lenvatinib or sorafenib as first-line treatment for unresectable hepatocellular carcinoma: First results from CheckMate 9DW. J. Clin. Oncol. 2024, 42 (Suppl. S17), 17. [Google Scholar] [CrossRef]
- Rossari, F.; Tada, T.; Suda, G.; Shimose, S.; Kudo, M.; Yoo, C.; Cheon, J.; Finkelmeier, F.; Lim, H.Y.; Presa, J.; et al. Disease etiology impact on outcomes of hepatocellular carcinoma patients treated with atezolizumab plus bevacizumab: A real-world, multi-center study. Liver Cancer 2024. [Google Scholar] [CrossRef]
- Persano, M.; Rimini, M.; Tada, T.; Suda, G.; Shimose, S.; Kudo, M.; Cheon, J.; Finkelmeier, F.; Lim, H.Y.; Presa, J.; et al. Se-quential therapies after atezolizumab plus bevacizumab or lenvatinib first-line treatments in hepatocellular carcinoma patients. Eur. J. Cancer 2023, 189, 112933. [Google Scholar] [CrossRef]
- Hiraoka, A.; Kumada, T.; Tada, T.; Hirooka, M.; Kariyama, K.; Tani, J.; Atsukawa, M.; Takaguchi, K.; Itobayashi, E.; Fukunishi, S.; et al. Lenvatinib as Second-Line Treatment after Atezolizumab plus Bevacizumab for Unresectable Hepatocellular Carcinoma: Clinical Results Show Importance of Hepatic Reserve Function. Oncology 2023, 101, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Toh, H.C.; Galle, P.R.; Zhu, A.X.; Nicholas, A.; Gaillard, V.E.; Ducreux, M.; Cheng, A.L.; Finn, R.S. IMbrave150: Exploratory efficacy and safety in patients with unresectable hepatocellular carcinoma (HCC) treated with atezolizumab beyond radiological progression until loss of clinical benefit in a global phase III study. J. Clin. Oncol. 2022, 40, 470. [Google Scholar] [CrossRef]
- Shigefuku, R.; Yoshikawa, K.; Tsukimoto, M.; Owa, H.; Tamai, Y.; Tameda, M.; Ogura, S.; Sugimoto, R.; Tanaka, H.; Eguchi, A.; et al. A case of hepatocellular carcinoma pseudoprogression involving the main portal vein, right ventricular invasion, and exacerbation of lung metastases in a patient on atezolizumab plus bevacizumab. Intern. Med. 2023, 62, 539–543. [Google Scholar] [CrossRef]
- Dromain, C.; Beigelman, C.; Pozzessere, C.; Duran, R.; Digklia, A. Imaging of tumour response to immunotherapy. Eur. Radiol. Exp. 2020, 4, 2. [Google Scholar] [CrossRef]
- Maesaka, K.; Sakamori, R.; Yamada, R.; Tahata, Y.; Imai, Y.; Ohkawa, K.; Miyazaki, M.; Mita, E.; Ito, T.; Hagiwara, H.; et al. Hyperprogressive disease in patients with unresectable hepatocellular carcinoma receiving atezolizumab plus bevacizumab therapy. Hepatol. Res. 2022, 52, 298–307. [Google Scholar] [CrossRef]
- Yumita, S.; Ogasawara, S.; Nakagawa, M.; Maruta, S.; Okubo, T.; Itokawa, N.; Iino, Y.; Obu, M.; Haga, Y.; Seki, A.; et al. Hy-perprogressive disease during atezolizumab plus bevacizumab treatment in patients with advanced hepatocellular carcinoma from Japanese real-world practice. BMC Gastroenterol. 2023, 23, 101. [Google Scholar] [CrossRef]
- Tanabe, N.; Saeki, I.; Aibe, Y.; Matsuda, T.; Hanazono, T.; Nishi, M.; Hidaka, I.; Kuwashiro, S.; Shiratsuki, S.; Matsuura, K.; et al. Early Prediction of Response Focused on Tumor Markers in Atezolizumab plus Bevacizumab Therapy for Hepatocellular Carcinoma. Cancers 2023, 15, 2927. [Google Scholar] [CrossRef]
- Tamaki, N.; Tada, T.; Kurosaki, M.; Yasui, Y.; Ochi, H.; Mashiba, T.; Sakamoto, A.; Marusawa, H.; Narita, R.; Uchida, Y.; et al. Optimal threshold of alpha-fetoprotein response in patients with unresectable hepatocellular carcinoma treated with atezolizumab and bevacizumab. Investig. New Drugs 2022, 40, 1290–1297. [Google Scholar] [CrossRef]
- Kodama, K.; Kawaoka, T.; Namba, M.; Uchikawa, S.; Ohya, K.; Morio, K.; Nakahara, T.; Murakami, E.; Yamauchi, M.; Hiramatsu, A.; et al. Correlation between Early Tumor Marker Response and Imaging Response in Patients with Advanced Hepatocellular Carci-noma Treated with Lenvatinib. Oncology 2019, 97, 75–81. [Google Scholar] [CrossRef]
- Kudo, M.; Matsui, O.; Izumi, N.; Iijima, H.; Kadoya, M.; Imai, Y.; Okusaka, T.; Miyayama, S.; Tsuchiya, K.; Ueshima, K.; et al. JSH Consensus-Based Clinical Practice Guidelines for the Management of Hepatocellular Carcinoma: 2014 Update by the Liver Cancer Study Group of Japan. Liver Cancer 2014, 3, 458–468. [Google Scholar] [CrossRef]
- Kudo, M.; Han, K.H.; Ye, S.L.; Zhou, J.; Huang, Y.H.; Lin, S.M.; Wang, C.K.; Ikeda, M.; Chan, S.L.; Choo, S.P.; et al. A Changing Paradigm for the Treatment of Intermediate-Stage Hepatocellular Carcinoma: Asia-Pacific Primary Liver Cancer Expert Consensus Statements. Liver Cancer 2020, 9, 245–260. [Google Scholar] [CrossRef]
- Kudo, M.; Ueshima, K.; Chan, S.; Minami, T.; Chishina, H.; Aoki, T.; Takita, M.; Hagiwara, S.; Minami, Y.; Ida, H.; et al. Len-vatinib as an Initial Treatment in Patients with Intermediate-Stage Hepatocellular Carcinoma Beyond Up-To-Seven Criteria and Child-Pugh A Liver Function: A Proof-Of-Concept Study. Cancers 2019, 11, 1084. [Google Scholar] [CrossRef]
- Kim, J.H.; Shim, J.H.; Lee, H.C.; Sung, K.B.; Ko, H.K.; Ko, G.Y.; Gwon, D.I.; Kim, J.W.; Lim, Y.S.; Park, S.H. New intermediate-stage subclassification for patients with hepatocellular carcinoma treated with transarterial chemoembolization. Liver Int. 2017, 37, 1861–1868. [Google Scholar] [CrossRef]
- Koroki, K.; Ogasawara, S.; Ooka, Y.; Kanzaki, H.; Kanayama, K.; Maruta, S.; Maeda, T.; Yokoyama, M.; Wakamatsu, T.; Inoue, M.; et al. Analyses of intermediate-stage hepatocellular carcinoma patients receiving transarterial chemoembolization prior to designing clinical trials. Liver Cancer 2020, 9, 596–612. [Google Scholar] [CrossRef] [PubMed]
- Asano, K.; Kageyama, K.; Yamamoto, A.; Jogo, A.; Uchida-Kobayashi, S.; Sohgawa, E.; Murai, K.; Kawada, N.; Miki, Y. Transcatheter arterial chemoembolization for treatment-naive hepatocellular carcinoma has different treatment effects depending on central or peripheral tumor location. Liver Cancer 2023, 12, 576–589. [Google Scholar] [CrossRef]
- Hung, Y.W.; Lee, I.C.; Chi, C.T.; Lee, R.C.; Liu, C.A.; Chiu, N.C.; Hwang, H.E.; Chao, Y.; Hou, M.C.; Huang, Y.H. Radiologic Patterns Determine the Outcomes of Initial and Subsequent Transarterial Chemoembolization in Intermediate-Stage Hepatocellular Carcinoma. Liver Cancer 2023, 13, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, Y.; Kobayashi, M.; Shindoh, J.; Kobayashi, Y.; Kasuya, K.; Sano, T.; Fujiyama, S.; Hosaka, T.; Saitoh, S.; Sezaki, H.; et al. Pretreatment Heterogeneous Enhancement Pattern of Hepatocellular Carcinoma May Be a Useful New Predictor of Early Response to Lenvatinib and Overall Prognosis. Liver Cancer 2020, 9, 275–292. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Ogasawara, S.; Takahashi, A.; Seko, Y.; Unozawa, H.; Sato, R.; Watanabe, S.; Moriguchi, M.; Morimoto, N.; Tsuchiya, S.; et al. Evolution of Survival Impact of Molecular Target Agents in Patients with Advanced Hepatocellular Carcinoma. Liver Cancer 2021, 11, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Ueshima, K.; Tsuchiya, K.; Kato, N.; Yamashita, T.; Shimose, S.; Numata, K.; Kodama, Y.; Tanaka, Y.; Kuroda, H.; et al. Efficacy and safety analysis of a phase II study of atezolizumab plus bevacizumab for TACE-unsuitable patients with tumor burden beyond up-to-seven criteria in intermediate-stage hepatocellular carcinoma: REPLACEMENT study. In Proceedings of the ILCA 2023, Amsterdam, The Netherlands, 7–9 September 2023. [Google Scholar]
- Shimose, S.; Kawaguchi, T.; Tanaka, M.; Iwamoto, H.; Miyazaki, K.; Moriyama, E.; Suzuki, H.; Niizeki, T.; Shirono, T.; Nakano, M.; et al. Lenvatinib prolongs the progression-free survival time of patients with intermediate-stage hepatocellular carcinoma refractory to transarterial chemoembolization: A multicenter cohort study using data mining analysis. Oncol. Lett. 2020, 20, 2257–2265. [Google Scholar] [CrossRef] [PubMed]
- Saito, N.; Tanaka, T.; Nishiohuku, H.; Sato, T.; Masada, T.; Matsumoto, T.; Anai, H.; Sakaguchi, H.; Sueyoshi, S.; Marugami, N.; et al. Transarterial- chemoembolization remains an effective therapy for intermediate-stage hepatocellular carcinoma with preserved liver function. Hepatol. Res. 2020, 50, 1176–1185. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, N.; Komatsu, S.; Sofue, K.; Ueshima, E.; Yano, Y.; Fujishima, Y.; Ishida, J.; Kido, M.; Gon, H.; Fukushima, K.; et al. Association between tumor morphology and efficacy of atezolizumab plus bevacizumab for advanced hepatocellular carcinoma. Hepatol. Res. 2024, in press. [CrossRef] [PubMed]
- Salem, R.; Li, D.; Sommer, N.; Hernandez, S.; Verret, W.; Ding, B.; Lencioni, R. Characterization of response to atezolizumab + bevacizumab versus sorafenib for hepatocellular carcinoma: Results from the IMbrave150 trial. Cancer Med. 2021, 10, 5437–5447. [Google Scholar] [CrossRef]
- Kudo, M.; Ueshima, K.; Saeki, I.; Ishikawa, T.; Inaba, Y.; Morimoto, N.; Aikata, H.; Tanabe, N.; Wada, Y.; Kondo, Y.; et al. A Phase 2, Prospective, Multicenter, Single-Arm Trial of Transarterial Chemoembolization Therapy in Combination Strategy with Lenvatinib in Patients with Unresectable Intermediate-Stage Hepatocellular Carcinoma: TACTICS-L Trial. Liver Cancer 2023, 13, 99–112. [Google Scholar] [CrossRef]
- Mazzaferro, V.; Romito, R.; Schiavo, M.; Mariani, L.; Camerini, T.; Bhoori, S.; Capussotti, L.; Calise, F.; Pellicci, R.; Belli, G.; et al. Prevention of hepatocellular carcinoma recurrence with alpha-interferon after liver resection in HCV cirrhosis. Hepatology 2006, 44, 1543–1554. [Google Scholar] [CrossRef]
- Wong, J.S.; Wong, G.L.; Tsoi, K.K.; Wong, V.W.; Cheung, S.Y.; Chong, C.N.; Wong, J.; Lee, K.F.; Lai, P.B.; Chan, H.L. Me-ta-analysis: The efficacy of anti-viral therapy in prevention of recurrence after curative treatment of chronic hepatitis B-related hepatocellular carcinoma. Aliment. Pharmacol. Ther. 2011, 33, 1104–1112. [Google Scholar] [CrossRef]
- Ochi, H.; Hiraoka, A.; Hirooka, M.; Koizumi, Y.; Amano, M.; Azemoto, N.; Watanabe, T.; Yoshida, O.; Tokumoto, Y.; Mashiba, T.; et al. Direct-acting antivirals improve survival and recurrence rates after treatment of hepatocellular carcinoma within the Milan criteria. J. Gastroenterol. 2021, 56, 90–100. [Google Scholar] [CrossRef]
- Hasegawa, K.; Takayama, T.; Ijichi, M.; Matsuyama, Y.; Imamura, H.; Sano, K.; Sugawara, Y.; Kokudo, N.; Makuuchi, M. Uracil-tegafur as an adjuvant for hepatocellular carcinoma: A randomized trial. Hepatology 2006, 44, 891–895. [Google Scholar] [CrossRef]
- Bruix, J.; Takayama, T.; Mazzaferro, V.; Chau, G.Y.; Yang, J.; Kudo, M.; Cai, J.; Poon, R.T.; Han, K.H.; Tak, W.Y.; et al. Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): A phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2015, 16, 1344–1354. [Google Scholar] [CrossRef]
- Qin, S.; Chen, M.; Cheng, A.L.; Kaseb, A.O.; Kudo, M.; Lee, H.C.; Yopp, A.C.; Zhou, J.; Wang, L.; Wen, X.; et al. Atezolizumab plus bevacizumab versus active surveillance in patients with resected or ablated high-risk hepatocellular carcinoma (IMbrave050): A randomised, open-label, multicentre, phase 3 trial. Lancet 2023, 402, 1835–1847. [Google Scholar] [CrossRef]
- Tsuchiya, K.; Asahina, Y.; Tamaki, N.; Yasui, Y.; Hosokawa, T.; Ueda, K.; Nakanishi, H.; Itakura, J.; Kurosaki, M.; Enomoto, N.; et al. Risk factors for exceeding the Milan criteria after successful radiofrequency ablation in patients with early-stage hepatocellular carcinoma. Liver Transpl. 2014, 20, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Imanaka, K.; Chida, N.; Nakachi, K.; Tak, W.Y.; Takayama, T.; Yoon, J.H.; Hori, T.; Kumada, H.; Hayashi, N.; et al. Phase III study of sorafenib after transarterial chemoembolisation in Japanese and Korean patients with unresectable hepatocellular carcinoma. Eur. J. Cancer 2011, 47, 2117–2127. [Google Scholar] [CrossRef]
- Lencioni, R.; Llovet, J.M.; Han, G.; Tak, W.Y.; Yang, J.; Guglielmi, A.; Paik, S.W.; Reig, M.; Kim, D.Y.; Chau, G.Y.; et al. So-rafenib or placebo plus TACE with doxorubicin-eluting beads for intermediate stage HCC: The SPACE trial. J. Hepatol. 2016, 64, 1090–1098. [Google Scholar] [CrossRef]
- Kudo, M.; Han, G.; Finn, R.S.; Poon, R.T.; Blanc, J.F.; Yan, L.; Yang, J.; Lu, L.; Tak, W.Y.; Yu, X.; et al. Brivanib as Adjuvant Therapy to Transarterial Chemoembolization in Patients with Hepatocellular Carcinoma: A Randomized Phase III Trial. Hepatology 2014, 60, 1697–1707. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Cheng, A.L.; Park, J.W.; Park, J.H.; Liang, P.C.; Hidaka, H.; Izumi, N.; Heo, J.; Lee, Y.J.; Sheen, I.S.; et al. Orantinib versus placebo combined with transcatheter arterial chemoembolisation in patients with unresectable hepatocellular carcinoma (ORIENTAL): A randomised, double-blind, placebo-controlled, multicentre, phase 3 study. Lancet Gastroenterol. Hepatol. 2018, 3, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Ueshima, K.; Ikeda, M.; Torimura, T.; Tanabe, N.; Aikata, H.; Izumi, N.; Yamasaki, T.; Nojiri, S.; Hino, K.; et al. Randomised, multicentre prospective trial of transarterial chemoembolisation (TACE) plus sorafenib as compared with TACE alone in patients with hepatocellular carcinoma: TACTICS trial. Gut 2020, 69, 1492–1501. [Google Scholar] [CrossRef]
- Kudo, M.; Ueshima, K.; Ikeda, M.; Torimura, T.; Tanabe, N.; Aikata, H.; Izumi, N.; Yamasaki, T.; Nojiri, S.; Hino, K.; et al. Final Results of TACTICS: A Randomized, Prospective Trial Comparing Transarterial Chemoembolization Plus Sorafenib to Transarterial Chemoembolization Alone in Patients with Unresectable Hepatocellular Carcinoma. Liver Cancer 2022, 11, 354–367. [Google Scholar] [CrossRef]
- Kuroda, H.; Oikawa, T.; Ninomiya, M.; Fujita, M.; Abe, K.; Okumoto, K.; Katsumi, T.; Sato, W.; Igarashi, G.; Iino, C.; et al. Ob-jective Response by mRECIST to Initial Lenvatinib Therapy Is an Independent Factor Contributing to Deep Response in Hepatocellular Carcinoma Treated with Lenvatinib-Transcatheter Arterial Chemoembolization Sequential Therapy. Liver Cancer. 2022, 11, 383–396. [Google Scholar] [CrossRef]
- Fu, Z.; Li, X.; Zhong, J.; Chen, X.; Cao, K.; Ding, N.; Liu, L.; Zhang, X.; Zhai, J.; Qu, Z. Lenvatinib in combination with transarterial chemoembolization for treatment of unresectable hepatocellular carcinoma (uHCC): A retrospective controlled study. Hepatol. Int. 2021, 15, 663–675. [Google Scholar] [CrossRef]
- Chen, Y.X.; Zhang, J.X.; Zhou, C.G.; Liu, J.; Liu, S.; Shi, H.B.; Zu, Q.Q. Comparison of the Efficacy and Safety of Transarterial Chemoembolization with or without Lenvatinib for Unresectable Hepatocellular Carcinoma: A Retrospective Propensity Score-Matched Analysis. J. Hepatocell. Carcinoma 2022, 9, 68–694. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.K. Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science 2005, 307, 8–62. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Kawamura, Y.; Hasegawa, K.; Tateishi, R.; Kariyama, K.; Shiina, S.; Toyoda, H.; Imai, Y.; Hiraoka, A.; Ikeda, M.; et al. Management of Hepatocellular Carcinoma in Japan: JSH Consensus Statements and Recommendations 2021 Update. Liver Cancer 2021, 10, 81–223. [Google Scholar] [CrossRef]
- Lencioni, R.; Kudo, M.; Erinjeri, J.; Qin, S.; Ren, Z.; Chan, S.; Arai, Y.; Heo, J.; Mai, A.; Escobar, J.; et al. EMERALD-1: A phase 3, randomized, placebo-controlled study of transarterial chemoembolization combined with durvalumab with or without bevacizumab in participants with unresectable hepatocellular carcinoma eligible for embolization. J. Clin. Oncol. 2024, 42, LBA432. [Google Scholar] [CrossRef]
- Llovet, J.M.; Vogel, A.; Madoff, D.C.; Finn, R.S.; Ogasawara, S.; Ren, Z.; Mody, K.; Li, J.J.; Siegel, A.B.; Dubrovsky, L.; et al. Randomized Phase 3 LEAP-012 Study: Transarterial Chemoembolization with or without Lenvatinib Plus Pembrolizumab for Intermediate-Stage Hepatocellular Carcinoma Not Amenable to Curative Treatment. Cardiovasc. Intervent Radiol. 2022, 45, 405–412. [Google Scholar] [CrossRef]
- Peng, Z.; Fan, W.; Zhu, B.; Wang, G.; Sun, J.; Xiao, C.; Huang, F.; Tang, R.; Cheng, Y.; Huang, Z.; et al. Lenvatinib Combined with transarterial Chemoembolization as first-line treatment for Advanced Hepatocellular Carcinoma: A Phase III, Randomized Clinical Trial (LAUNCH). J. Clin. Oncol. 2023, 41, 117–127. [Google Scholar] [CrossRef]
- Kudo, M.; Ueshima, K.; Yokosuka, O.; Ogasawara, S.; Obi, S.; Izumi, N.; Aikata, H.; Nagano, H.; Hatano, E.; Sasaki, Y.; et al. Sorafenib plus low-dose cisplatin and fluorouracil hepatic arterial infusion chemotherapy versus sorafenib alone in patients with advanced hepatocellular carcinoma (SILIUS): A randomised, open label, phase 3 trial. Lancet Gastroenterol. Hepatol. 2018, 3, 424–432. [Google Scholar] [CrossRef]
- He, M.; Li, Q.; Zou, R.; Shen, J.; Fang, W.; Tan, G.; Zhou, Y.; Wu, X.; Xu, L.; Wei, W.; et al. Sorafenib plus hepatic arterial in-fusion of oxaliplatin, fluorouracil, and leucovorin vs sorafenib alone for hepatocellular carcinoma with portal vein invasion: A Randomized Clinical Trial. JAMA Oncol. 2019, 5, 953–960. [Google Scholar] [CrossRef]
- Ikeda, M.; Shimizu, S.; Sato, T.; Morimoto, M.; Kojima, Y.; Inaba, Y.; Hagihara, A.; Kudo, M.; Nakamori, S.; Kaneko, S.; et al. Sorafenib plus hepatic arterial infusion chemotherapy with cisplatin versus sorafenib for advanced hepatocellular carcinoma: Randomized phase II trial. Ann. Oncol. 2016, 27, 2090–2096. [Google Scholar] [CrossRef]
- Ikeda, M.; Yamashita, T.; Ogasawara, S.; Kudo, M.; Inaba, Y.; Morimoto, M.; Tsuchiya, K.; Shimizu, S.; Kojima, Y.; Hiraoka, A.; et al. Multicenter Phase II Trial of Lenvatinib plus Hepatic Intra-Arterial Infusion Chemotherapy with Cisplatin for Advanced Hepaocellular Carcinoma: LEOPARD. Liver Cancer 2024, 13, 193–202. [Google Scholar] [CrossRef]
- Kudo, M.; Aoki, T.; Ueshima, K.; Tsuchiya, K.; Morita, M.; Chishina, H.; Takita, M.; Hagiwara, S.; Minami, Y.; Ida, H.; et al. Achievement of complete response and drug-free status by atezolizumab plus bevacizumab combined with or without curative con-version in patients with transarterial chemoembolization-unsuitable, intermediate-stage hepatocellular carcinoma: A Multicenter Proof-Of-Concept Study. Liver Cancer 2023, 12, 321–328. [Google Scholar]
- Uka, K.; Aikata, H.; Takaki, S.; Shirakawa, H.; Jeong, S.C.; Yamashina, K.; Hiramatsu, A.; Kodama, H.; Takahashi, S.; Chayama, K. Clinical features and prognosis of patients with extrahepatic metastases from hepatocellular carcinoma. World J. Gastroenterol. 2007, 13, 414–420. [Google Scholar] [CrossRef]
- Jung, S.M.; Jang, J.W.; You, C.R.; Yoo, S.H.; Kwon, J.H.; Bae, S.H.; Choi, J.Y.; Yoon, S.K.; Chung, K.W.; Kay, C.S.; et al. Role of intrahepatic tumor control in the prognosis of patients with hepatocellular carcinoma and extrahepatic metastases. J. Gastroenterol. Hepatol. 2012, 27, 684–689. [Google Scholar] [CrossRef]
- Lee, J.I.; Kim, J.K.; Kim, D.Y.; Ahn, S.H.; Park, J.Y.; Kim, S.U.; Kim, B.K.; Han, K.H.; Lee, K.S. Prognosis of hepatocellular carcinoma patients with extrahepatic metastasis and the controllability of intrahepatic lesions. Clin. Exp. Metastasis 2014, 31, 475–482. [Google Scholar] [CrossRef]
- Yamashita, T.; Inaba, Y.; Ikeda, M.; Sone, M.; Yamakado, K.; Nishiofuku, H.; Tsuchiya, K.; Tada, T.; Sato, Y.; Kodama, T.; et al. IMPACT: Randomized, multicenter, phase 3 study evaluating the efficacy of immunotherapy (Atezolizumab) plus anti-VEGF therapy (Bevacizumab) in combination with transcatheter arterial chemoembolization for unresectable hepatocellular carcinoma (HCC). Ann. Oncol. 2023, 34, S1520–S1555. [Google Scholar] [CrossRef]
- Ducreux, M.; Zhu, A.X.; Cheng, A.L.; Galle, P.R.; Ikeda, M.; Nicholas, A.; Verret, W.; Li, L.; Gaillard, V.E.; Lencioni, R.; et al. IMbrave150: Exploratory Analysis to Examine the Association between Treatment Response and Overall Survival (OS) in Patients (Pts) with Unresectable Hepatocellular Carcinoma (HCC) Treated with Atezolizumab + Bevacizumab vs Sorafenib. J. Clin. Oncol. 2021, 39, 15. [Google Scholar] [CrossRef]
- Llovet, J.M.; De Baere, T.; Kulik, L.; Haber, P.K.; Greten, T.F.; Meyer, T.; Lencioni, R. Locoregional therapies in the era of mo-lecular and immune treatments for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 293–313. [Google Scholar] [CrossRef] [PubMed]
- Ichida, A.; Arita, J.; Hatano, E.; Eguchi, S.; Saiura, A.; Nagano, H.; Shindoh, J.; Hashimoto, M.; Takemura, N.; Taura, K.; et al. A multicenter phase 2 trial evaluating the efficacy and safety of preoperative lenvatinib therapy for patients with advanced hepatocellular carcinoma. Liver Cancer 2024, 13, 322–334. [Google Scholar] [CrossRef]
- Akahoshi, K.; Shindoh, J.; Tanabe, M.; Watanabe, S.; Takamizawa, H.; Eguchi, S.; Endo, I.; Kubo, S.; Taketomi, A.; Nagano, H.; et al. Questionnaire survey of Japanese board-certified expert hepatobiliary and pancreatic surgeons and instructors on the surgical indi-cations for hepatocellular carcinoma. J. Hepatobiliary Pancreat. Sci. 2024, 31, 143–151. [Google Scholar] [CrossRef]
- Ueshima, K.; Komemushi, A.; Aramaki, T.; Iwamoto, H.; Obi, S.; Sato, Y.; Tanaka, T.; Matsueda, K.; Moriguchi, M.; Saito, H.; et al. Clinical Practice Guidelines for Hepatic Arterial Infusion Chemotherapy with a Port System Proposed by the Japanese Society of Interventional Radiology and Japanese Society of Implantable Port Assisted Treatment. Liver Cancer 2022, 11, 407–425. [Google Scholar] [CrossRef] [PubMed]
- Katariya, N.N.; Lizaola-Mayo, B.C.; Chascsa, D.M.; Giorgakis, E.; Aqel, B.A.; Moss, A.A.; Uson Junior, P.L.S.; Borad, M.J.; Mathur, A.K. Immune checkpoint inhibitors as therapy to down-stage hepatocellular carcinoma prior to liver transplantation. Cancers 2022, 14, 2056. [Google Scholar] [CrossRef] [PubMed]
Study Name | Phase | Site | Regimen | Primary Endpoint | Key Results |
---|---|---|---|---|---|
COSMIC-312 [32] | 3 | Global | Cabozantinib + Atezolizumab vs. Sorafenib | PFS (RECIST v1.1), OS | PFS; cabozantinib + atezolizumab/sorafenib: 6.8 [99% CI 5.6–8.3]/4.2 [2.8–7.0] months, HR 0.63 [99% CI 0.44–0.91], p = 0.0012 mOS; cabozantinib + atezolizumab/sorafenib 15.4 [96% CI 13.7–17.7]/15.5 [12.1–not estimable] months, HR 0.90 [96% CI 0.69–1.18], p = 0.44 |
CheckMate 9DW (NCT04039607) | 3 | Global | Nivolumab + Ipilimumab vs. Sorafenib or Lenvatinib | OS | mOS; 23.7 months for nivolumab plus ipilimumab vs. 20.6 months for lenvatinib or sorafenib (HR, 0.79; 95% CI, 0.65–0.96; p = 0.0180) ORR; nivolumab plus ipilimumab; 36% vs. 13% for lenvatinib or sorafenib (p < 0.0001). Duration of response of 30.4 months for nivolumab plus ipilimumab compared to 12.9 months for lenvatinib or sorafenib |
LEAP-002 [33] | 3 | Global | Lenvatinib + Pembrolizumab vs. Lenvatinib | PFS (RECIST v1.1), OS | PFS; lenvatinib + pembrolizumab/lenvatinib: 8.2 [95% CI 6.4.–8.4]/8.0 [95% CI 6.3–8.2] months, HR 0.87 [95% CI 0.73–1.02], stratified log-rank p = 0.047 mOS; lenvatinib + pembrolizumab/lenvatinib: 21.2 [95% CI 19.0–23.6]/19.0 [95% CI 17.2–21.7] months, HR 0.84 [95% CI 0.71–1.00] stratified log-rank p = 0.023 Lenvatinib plus pembrolizumab did not meet pre-specified significance for improved OS and PFS compared to lenvatinib alone |
IMbrave152 (NCT05904886) | 3 | Global | Atezolizumab + Bevacizumab + Tiragolumab vs. Atezolizumab + Bevacizumab | PFS (RECIST v1.1), OS | Recruiting |
SIERRA * (NCT05883644) | 3 | US, Europe, Asia | Duruvalumab + Tremelimumab | Incidence of grade 3 or 4 possibly related to treatment adverse events (PRAEs), ORR | Recruiting |
Sorafenib (%) [1] | Lenvatinib (%) [3] | Atezolizumab + Bevacizumab (%) [6] | Durvalumab + Tremelimumab (%) [7] | Durvalumab (%) [7] | |
---|---|---|---|---|---|
Hypertension | 23 (14) | 15.2 (12.2) | |||
Proteinuria | 6 (2) | 3 (0.6) | |||
Diarrhea | 8 | 4 (4) | 4.4 (4.3) | ||
Aspartate aminotransferase increased | 5 (8) | 7 (5.1) | 5.2 (3.2) | 6.7 (3.2) | |
Alanine aminotransferase increased | 3.6 (1.3) | 3.1 (1.9) | |||
Amylase increased | 3.6 (1.1) | ||||
Lipase increased | 6.2 (2.9) | 4.1 (2.9) | |||
Hyponatremia | 4.1 (2.9) | ||||
Platelet count decrease | 5 (3) | 3.3 (1.3) | |||
Palmar–plantar erythrodysesthesia | 8 | 3 (11) | |||
Decreased appetite | 5 (1) | ||||
Decreased weight | 8 (3) | ||||
Fatigue | 3 | 4 (4) | |||
Increased blood bilirubin | 7 (5) | ||||
Discontinuation rate due to AEs | 11 # | 9 (7) # | 7 (10.3) # | 13.7 (16.8) # | 8.2 (16.8) # |
Systemic steroid use rate due to irAEs/imAEs | 1.9 * | 12.2 | 20.1 * | 9.5 * |
Study Name | Phase | Site | Regimen | Primary Endpoint | Key Results | Remarks |
---|---|---|---|---|---|---|
REPLACEMENT [55] | 2 | Japan | Atezolizumab + Bevacizumab | PFS (mRECIST) | Median PFS 9.1 [95% CI: 7.1–10.2] months | Comparison with TACE historical data using PSM; PFS |
ABC-HCC (NCT04803994) | 3 | Europe, Japan, Korea | TACE vs. Atezolizumab + Bevacizumab | Time to failure of treatment strategy * | Recruiting |
Study Name | Phase | Site | Regimen | Primary Endpoint | Key Results |
---|---|---|---|---|---|
C000000445 * [64] | 3 | Japan | UFT vs. Placebo | RFS | RFS at 5 year; UFT/placebo: 29%/29% HR 1.01 [95% CI: 0.84–1.22], p = 0.87 |
STROM [65] | 3 | Global | Sorafenib vs. Placebo | RFS | RFS; Sorafenib/placebo: 33.3/33.7 months, HR 0.940 [95% CI 0.780–1.134], one-sided p = 0.26 |
IMbrave050 [66] | 3 | Global | ATZ/BEV vs. Placebo | RFS | RFS; ATZ/BEV/placebo NE (not evaluable) [95% CI 22.1-NE]/NE [95% CI 21.4-NE], HR 0.72 [adjusted 95% CI 0.53–0.98], p = 0.012 |
CheckMate 9DX (NCT03383458) | 3 | Global | Nivolumab vs. Placebo | RFS | Unpublished |
EMERALD-2 (NCT03847428) | 3 | Global | Durvalumab ± Bevacizumab vs. Placebo | RFS (Durvalumab + bevacizumab vs. placebo) | Unpublished |
KEYNOTE-937 (NCT03867084) | 3 | Global | Pembrolizumab vs. Placebo | RFS | Unpublished |
Study Name | Phase | Site | Regimen | Primary Endpoint | Key Results |
---|---|---|---|---|---|
SILIUS [82] | 3 | Japan | Sorafenib + HAIC (LFP) vs. Sorafenib | OS | OS; sorafenib + LFP/sorafenib; 11.8 [95% CI, 9.1–14.5] months/11.5 [95% CI, 8.2–14.8] months, HR 1.009 [95% CI, 0.743–1.371], p = 0.955 Vp4: OS; sorafenib + LFP/sorafenib; 11.4 [95% CI, 7.0–15.9] months/6.5 [95% CI, 4.5–8.4] months, HR 0.493 [95% CI, 0.240–1.014], p = 0.050 |
NCT02774187 [83] | 3 | China | Sorafenib + HAIC (FOLFOX) vs. Sorafenib | OS | OS; sorafenib + FOLFOX/sorafenib: 13.37 [95% CI, 10.27–16.46] months/7.13 [95% CI, 6.28–7.98] months, HR 0.35 [95% CI, 0.26–0.48], p < 0.001 |
UMIN000005703 [84] | 2 | Japan | Sorafenib + HAIC (Cisplatin) vs. Sorafenib | OS stratified by the allocation factors, including the presence/absence of portal vein tumor thrombosis and extrahepatic metastases | OS; sorafenib + cisplatin/sorafenib: 10.6 months/8.7 months, stratified HR 0.60 [95% CI, 0.38–0.96], p = 0.031 |
LEOPARD [85] | 2 | Japan | Lenvatinib + HAIC with Cisplatin | Objective response rate (central judgment: modified RECIST) | ORR; 64.7 [95% CI, 46.5–80.3]%, DCR; 76.5 [95% CI, 58.8–89.3]% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moriguchi, M.; Kataoka, S.; Itoh, Y. Evolution of Systemic Treatment for Hepatocellular Carcinoma: Changing Treatment Strategies and Concepts. Cancers 2024, 16, 2387. https://doi.org/10.3390/cancers16132387
Moriguchi M, Kataoka S, Itoh Y. Evolution of Systemic Treatment for Hepatocellular Carcinoma: Changing Treatment Strategies and Concepts. Cancers. 2024; 16(13):2387. https://doi.org/10.3390/cancers16132387
Chicago/Turabian StyleMoriguchi, Michihisa, Seita Kataoka, and Yoshito Itoh. 2024. "Evolution of Systemic Treatment for Hepatocellular Carcinoma: Changing Treatment Strategies and Concepts" Cancers 16, no. 13: 2387. https://doi.org/10.3390/cancers16132387
APA StyleMoriguchi, M., Kataoka, S., & Itoh, Y. (2024). Evolution of Systemic Treatment for Hepatocellular Carcinoma: Changing Treatment Strategies and Concepts. Cancers, 16(13), 2387. https://doi.org/10.3390/cancers16132387