The Target Therapy Hyperbole: “KRAS (p.G12C)”—The Simplification of a Complex Biological Problem
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Structural Analysis of KRAS Isoforms
2.2. Analysis of KRAS Variants
2.3. Aggregation Propensity Analysis
3. Results
3.1. Analysis of KRAS4A and KRAS4B Changes in the Pocket Domain
3.2. Aggregation Propensity Analysis
3.3. Exploring Druggable Sites: KRAS4A and KRAS4B Regions as Potential Drug Targets
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, C.; Guan, X.; Zhang, X.; Luan, X.; Song, Z.; Cheng, X.; Zhang, W.; Qin, J.J. Targeting KRAS mutant cancers: From druggable therapy to drug resistance. Mol. Cancer 2022, 21, 159. [Google Scholar] [CrossRef] [PubMed]
- Reita, D.; Pabst, L.; Pencreach, E.; Guérin, E.; Dano, L.; Rimelen, V.; Voegeli, A.C.; Vallat, L.; Mascaux, C.; Beau-Faller, M. Direct Targeting KRAS Mutation in Non-Small Cell Lung Cancer: Focus on Resistance. Cancers 2022, 14, 1321. [Google Scholar] [CrossRef] [PubMed]
- Batrash, F.; Kutmah, M.; Zhang, J. The current landscape of using direct inhibitors to target KRASG12C-mutated NSCLC. Exp. Hematol. Oncol. 2023, 12, 93. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nuevo-Tapioles, C.; Philips, M.R. The role of KRAS splice variants in cancer biology. Front. Cell Dev. Biol. 2022, 10, 1033348. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aran, V. K-RAS4A: Lead or Supporting Role in Cancer Biology? Front. Mol. Biosci. 2021, 8, 729830. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wright, L.P.; Philips, M.R. Thematic review series: Lipid posttranslational modifications. CAAX modification and membrane targeting of Ras. J. Lipid Res. 2006, 47, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Tsai, F.D.; Lopes, M.S.; Zhou, M.; Court, H.; Ponce, O.; Fiordalisi, J.J.; Gierut, J.J.; Cox, A.D.; Haigis, K.M.; Philips, M.R. K-Ras4A splice variant is widely expressed in cancer and uses a hybrid membrane-targeting motif. Proc. Natl. Acad. Sci. USA 2015, 112, 779–784. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kattan, W.E.; Hancock, J.F. RAS Function in cancer cells: Translating membrane biology and biochemistry into new therapeutics. Biochem. J. 2020, 477, 2893–2919. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Whitley, M.J.; Zhang, X.; Liu, Y.; Chen, Y.; Burgess, M.R.; Jordan, E.J.; Fennell, M.; Der, C.J.; Cox, A.D.; Solit, D.B.; et al. Comparative analysis of KRAS4a and KRAS4b splice variants reveals distinctive structural and functional properties. Sci. Adv. 2024, 10, eadj4137. [Google Scholar] [CrossRef]
- Adams, L.M.; DeHart, C.J.; Drown, B.S.; Anderson, L.C.; Bocik, W.; Boja, E.S.; Hiltke, T.M.; Hendrickson, C.L.; Rodriguez, H.; Caldwell, M.; et al. Mapping the KRAS proteoform landscape in colorectal cancer identifies truncated KRAS4B that decreases MAPK signaling. J. Biol. Chem. 2023, 299, 102768. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Farina, A.R.; Cappabianca, L.; Sebastiano, M.; Zelli, V.; Guadagni, S.; Mackay, A.R. Hypoxia-induced alternative splicing: The 11th Hallmark of Cancer. J. Exp. Clin. Cancer Res. 2020, 39, 110. [Google Scholar] [CrossRef]
- Stephens, R.M.; Yi, M.; Kessing, B.; Nissley, D.V.; McCormick, F. Tumor RAS Gene Expression Levels Are Influenced by the Mutational Status of RAS Genes and Both Upstream and Downstream RAS Pathway Genes. Cancer Inform. 2017, 16, 1176935117711944. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Newlaczyl, A.; Coulson, J.; Prior, I. Quantification of spatiotemporal patterns of Ras isoform expression during development. Sci. Rep. 2017, 7, 41297. [Google Scholar] [CrossRef]
- Zuberi, M.; Khan, I.; O’Bryan, J.P. Inhibition of RAS: Proven and potential vulnerabilities. Biochem. Soc. Trans. 2020, 48, 1831–1841. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Seale, T.; Misale, S. RAS G12C Inhibitors: Three Birds with One Stone. Cancer Discov. 2024, 14, 698–700. [Google Scholar] [CrossRef] [PubMed]
- Rubinson, D.A.; Tanaka, N.; Fece de la Cruz, F.; Kapner, K.S.; Rosenthal, M.H.; Norden, B.L.; Barnes, H.; Ehnstrom, S.; Morales-Giron, A.A.; Brais, L.K.; et al. Sotorasib Is a Pan-RASG12C Inhibitor Capable of Driving Clinical Response in NRASG12C Cancers. Cancer Discov. 2024, 14, 727–736. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, J.; Kang, R.; Tang, D. The KRAS-G12C inhibitor: Activity and resistance. Cancer Gene Ther. 2022, 29, 875–878. [Google Scholar] [CrossRef]
- Burns, T.F.; Borghaei, H.; Ramalingam, S.S.; Mok, T.S.; Peters, S. Targeting KRAS-Mutant Non-Small-Cell Lung Cancer: One Mutation at a Time, With a Focus on KRAS G12C Mutations. J. Clin. Oncol. 2020, 38, 4208–4218. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef]
- Baek, M.; Park, T.; Heo, L.; Seok, C. Modeling Protein Homo-Oligomer Structures with Galaxy Homomer Web Server. Methods Mol. Biol. 2020, 2165, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Park, T.; Won, J.; Baek, M.; Seok, C. GalaxyHeteromer: Protein heterodimer structure prediction by template-based and ab initio docking. Nucleic Acids Res. 2021, 49, W237–W241. [Google Scholar] [CrossRef]
- Lanman, B.A.; Allen, J.R.; Allen, J.G.; Amegadzie, A.K.; Ashton, K.S.; Booker, S.K.; Chen, J.J.; Frohn, M.J.; Goodman, G.; Kopecky, D.J.; et al. Discovery of a Covalent Inhibitor of KRASG12C (AMG 510) for the Treatment of Solid Tumors. J. Med. Chem. 2020, 63, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Lanman, B.A.; Parsons, A.T.; Zech, S.G. Addressing Atropisomerism in the Development of Sotorasib, a Covalent Inhibitor of KRAS G12C: Structural, Analytical, and Synthetic Considerations. Acc. Chem. Res. 2022, 55, 2892–2903. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, L.; Guo, Z.; Wang, F.; Fu, L. KRAS mutation: From undruggable to druggable in cancer. Signal Transduct. Target. Ther. 2021, 6, 386. [Google Scholar] [CrossRef]
- de Jesus, V.H.F.; Mathias-Machado, M.C.; de Farias, J.P.F.; Aruquipa, M.P.S.; Jácome, A.A.; Peixoto, R.D. Targeting KRAS in Pancreatic Ductal Adenocarcinoma: The Long Road to Cure. Cancers 2023, 15, 5015. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, D.; Herdeis, L.; Rudolph, D.; Zhao, Y.; Böttcher, J.; Vides, A.; Ayala-Santos, C.I.; Pourfarjam, Y.; Cuevas-Navarro, A.; Xue, J.Y.; et al. Pan-KRAS inhibitor disables oncogenic signalling and tumour growth. Nature 2023, 619, 160–166. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Molina-Arcas, M.; Downward, J. Exploiting the therapeutic implications of KRAS inhibition on tumor immunity. Cancer Cell 2024, 42, 338–357. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Vander Heiden, M.G.; McCormick, F. The Metabolic Landscape of RAS-Driven Cancers from biology to therapy. Nat. Cancer 2021, 2, 271–283. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lou, K.; Steri, V.; Ge, A.Y.; Hwang, Y.C.; Yogodzinski, C.H.; Shkedi, A.R.; Choi, A.L.M.; Mitchell, D.C.; Swaney, D.L.; Hann, B.; et al. KRASG12C inhibition produces a driver-limited state revealing collateral dependencies. Sci. Signal. 2019, 12, eaaw9450. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mukhopadhyay, S.; Huang, H.Y.; Lin, Z.; Ranieri, M.; Li, S.; Sahu, S.; Liu, Y.; Ban, Y.; Guidry, K.; Hu, H.; et al. Genome-Wide CRISPR Screens Identify Multiple Synthetic Lethal Targets That Enhance KRASG12C Inhibitor Efficacy. Cancer Res. 2023, 83, 4095–4111. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chetta, M.; Basile, A.; Tarsitano, M.; Rivieccio, M.; Oro, M.; Capitanio, N.; Bukvic, N.; Priolo, M.; Rosati, A. The Target Therapy Hyperbole: “KRAS (p.G12C)”—The Simplification of a Complex Biological Problem. Cancers 2024, 16, 2389. https://doi.org/10.3390/cancers16132389
Chetta M, Basile A, Tarsitano M, Rivieccio M, Oro M, Capitanio N, Bukvic N, Priolo M, Rosati A. The Target Therapy Hyperbole: “KRAS (p.G12C)”—The Simplification of a Complex Biological Problem. Cancers. 2024; 16(13):2389. https://doi.org/10.3390/cancers16132389
Chicago/Turabian StyleChetta, Massimiliano, Anna Basile, Marina Tarsitano, Maria Rivieccio, Maria Oro, Nazzareno Capitanio, Nenad Bukvic, Manuela Priolo, and Alessandra Rosati. 2024. "The Target Therapy Hyperbole: “KRAS (p.G12C)”—The Simplification of a Complex Biological Problem" Cancers 16, no. 13: 2389. https://doi.org/10.3390/cancers16132389
APA StyleChetta, M., Basile, A., Tarsitano, M., Rivieccio, M., Oro, M., Capitanio, N., Bukvic, N., Priolo, M., & Rosati, A. (2024). The Target Therapy Hyperbole: “KRAS (p.G12C)”—The Simplification of a Complex Biological Problem. Cancers, 16(13), 2389. https://doi.org/10.3390/cancers16132389