Improved Pancreatic Cancer Detection and Localization on CT Scans: A Computer-Aided Detection Model Utilizing Secondary Features
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection and Labelling
2.2. PDAC Segmentation for Classification Framework
2.3. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Segmentation of Secondary Features
3.3. Performance of Tumor Detection Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States. Cancer Res. 2014, 74, 2913–2921. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef]
- De La Cruz, M.S.D.; Young, A.P.; Ruffin, M.T. Diagnosis and management of pancreatic cancer. Am. Fam. Physician 2014, 89, 626–632. Available online: http://www.ncbi.nlm.nih.gov/pubmed/24784121 (accessed on 23 May 2024).
- van der Geest, L.G.M.; Lemmens, V.E.P.P.; de Hingh, I.H.J.T.; van Laarhoven, C.J.H.M.; Bollen, T.L.; Nio, C.Y.; van Eijck, C.H.J.; Busch, O.R.C.; Besselink, M.G. Dutch Pancreatic Cancer Group Nationwide Outcomes in Patients Undergoing Surgical Exploration without Resection for Pancreatic Cancer. Br. J. Surg. 2017, 104, 1568–1577. [Google Scholar] [CrossRef] [PubMed]
- Treadwell, J.R.; Zafar, H.M.; Mitchell, M.D.; Tipton, K.; Teitelbaum, U.; Jue, J. Imaging Tests for the Diagnosis and Staging of Pancreatic Adenocarcinoma: A Meta-Analysis. Pancreas 2016, 45, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Elbanna, K.Y.; Jang, H.-J.; Kim, T.K. Imaging Diagnosis and Staging of Pancreatic Ductal Adenocarcinoma: A Comprehensive Review. Insights Imaging 2020, 11, 58. [Google Scholar] [CrossRef]
- Allan, B.J.; Novak, S.M.; Hogg, M.E.; Zeh, H.J. Robotic Vascular Resections during Whipple Procedure. J. Vis. Surg. 2018, 4, 13. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.C.; Raman, S. Surgical Resectability of Pancreatic Adenocarcinoma: CTA. Abdom. Imaging 2010, 35, 471–480. [Google Scholar] [CrossRef]
- Yoon, S.H.; Lee, J.M.; Cho, J.Y.; Lee, K.B.; Kim, J.E.; Moon, S.K.; Kim, S.J.; Baek, J.H.; Kim, S.H.; Kim, S.H.; et al. Small (≤20 Mm) Pancreatic Adenocarcinomas: Analysis of Enhancement Patterns and Secondary Signs with Multiphasic Multidetector CT. Radiology 2011, 259, 442–452. [Google Scholar] [CrossRef]
- Singh, D.P.; Sheedy, S.; Goenka, A.H.; Wells, M.; Lee, N.J.; Barlow, J.; Sharma, A.; Kandlakunta, H.; Chandra, S.; Garg, S.K.; et al. Computerized Tomography Scan in Pre-Diagnostic Pancreatic Ductal Adenocarcinoma: Stages of Progression and Potential Benefits of Early Intervention: A Retrospective Study. Pancreatology 2020, 20, 1495–1501. [Google Scholar] [CrossRef]
- Agarwal, B.; Correa, A.M.; Ho, L. Survival in Pancreatic Carcinoma Based on Tumor Size. Pancreas 2008, 36, e15–e20. [Google Scholar] [CrossRef] [PubMed]
- Ramaekers, M.; Viviers, C.G.A.; Janssen, B.V.; Hellström, T.A.E.; Ewals, L.; van der Wulp, K.; Nederend, J.; Jacobs, I.; Pluyter, J.R.; Mavroeidis, D.; et al. Computer-Aided Detection for Pancreatic Cancer Diagnosis: Radiological Challenges and Future Directions. J. Clin. Med. 2023, 12, 4209. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berkelmans, G.H.K.; Fransen, L.F.C.; Dolmans-Zwartjes, A.C.P.; Kouwenhoven, E.A.; van Det, M.J.; Nilsson, M.; Nieuwenhuijzen, G.A.P.; Luyer, M.D.P. Direct Oral Feeding Following Minimally Invasive Esophagectomy (NUTRIENT II trial): An International, Multicenter, Open-label Randomized Controlled Trial. Ann. Surg. 2020, 271, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Simpson, A.L.; Antonelli, M.; Bakas, S.; Bilello, M.; Farahani, K.; van Ginneken, B.; Kopp-Schneider, A.; Landman, B.A.; Litjes, G.; Menze, B.; et al. A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv 2019, arXiv:1902.09063. [Google Scholar] [CrossRef]
- Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016, Athens, Greece, 17–21 October 2016; Part II 19. Springer International Publishing: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Hellström, T.A.E.; Viviers, C.G.A.; Ramaekers, M.; Tasios, N.; Nederend, J.; Luyer, M.D.P.; de With, P.H.N.; van der Sommen, F. Clinical segmentation for improved pancreatic ductal adenocarcinoma detection and segmentation. In Medical Imaging 2023: Computer-Aided Diagnosis; Iftekharuddin, K.M., Chen, W., Eds.; SPIE: Bellingham, DC, USA, 2023; p. 94. [Google Scholar] [CrossRef]
- Petrov, Y.; Malik, B.; Fredrickson, J.; Jemaa, S.; Carano, R.A.D. Deep Ensembles Are Robust to Occasional Catastrophic Failures of Individual DNNs for Organs Segmentations in CT Images. J. Digit. Imaging 2023, 36, 2060–2074. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Viviers, C.G.A.; Ramaekers, M.; de With, P.H.N.; Mavroeidis, D.; Nederend, J.; Luyer, M.D.P.; van der Sommen, F. Improved Pancreatic Tumor Detection by Utilizing Clinically-Relevant Secondary Features. arXiv 2022, arXiv:2208.03581. Available online: http://arxiv.org/abs/2208.03581 (accessed on 23 May 2024).
- Alves, N.; Schuurmans, M.; Litjens, G.; Bosma, J.S.; Hermans, J.; Huisman, H. Fully Automatic Deep Learning Framework for Pancreatic Ductal Adenocarcinoma Detection on Computed Tomography. Cancers 2022, 14, 376. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.T.; Wu, T.; Wang, P.; Chang, D.; Liu, K.L.; Wu, M.S.; Roth, H.R.; Lee, P.C.; Liao, W.C.; Wang, W. Pancreatic Cancer Detection on CT Scans with Deep Learning: A Nationwide Population-based Study. Radiology 2023, 306, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, P.; Zhou, Y.; Shen, W.; Fishman, E.K.; Yuille, A.L. Learning Inductive Attention Guidance for Partially Supervised Pancreatic Ductal Adenocarcinoma Prediction. IEEE Trans. Med. Imaging 2021, 40, 2723–2735. [Google Scholar] [CrossRef]
- Zhu, Z.; Lu, Y.; Shen, W.; Fishman, E.K.; Yuille, A.L. Segmentation for Classification of Screening Pancreatic Neuroendocrine Tumors. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seattle, DC, USA, 14–19 June 2020. [Google Scholar] [CrossRef]
- Zhu, Z.; Xia, Y.; Xie, L.; Fishman, E.K.; Yuille, A.L. Multi-Scale Coarse-to-Fine Segmentation for Screening Pancreatic Ductal Adenocarcinoma. In Proceedings of the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention–MICCAI 2019, Shenzhen, China, 13–17 October 2019; Part VI 22. Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 3–12. [Google Scholar] [CrossRef]
- Si, K.; Xue, Y.; Yu, X.; Zhu, X.; Li, Q.; Gong, W.; Liang, T.; Duan, S. Fully End-to-End Deep-Learning-Based Diagnosis of Pancreatic Tumors. Theranostics 2021, 11, 1982–1990. [Google Scholar] [CrossRef]
- Blouhos, K.; Boulas, K.A.; Tsalis, K.; Hatzigeorgiadis, A. The isoattenuating pancreatic adenocarcinoma: Review of the literature and critical analysis. Surg. Oncol. 2015, 24, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Gangi, S.; Fletcher, J.G.; Nathan, M.A.; Christensen, J.A.; Harmsen, W.S.; Crownhart, B.S.; Chari, S.T. Time Interval between Abnormalities Seen on CT and the Clinical Diagnosis of Pancreatic Cancer: Retrospective Review of CT Scans Obtained before Diagnosis. AJR Am. J. Roentgenol. 2004, 182, 897–903. [Google Scholar] [CrossRef]
- Ahn, S.S.; Kim, M.-J.; Choi, J.-Y.; Hong, H.-S.; Chung, Y.E.; Lim, J.S. Indicative Findings of Pancreatic Cancer in Prediagnostic CT. Eur. Radiol. 2009, 19, 2448–2455. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.D.; Clarke, S.E.; Costa, A.F. Factors Associated with Missed and Misinterpreted Cases of Pancreatic Ductal Adenocarcinoma. Eur. Radiol. 2021, 31, 2422–2432. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Lian, F.; Wang, C.; Guo, S. Accurate pancreas segmentation using multi-level pyramidal pooling residual U-Net with adversarial mechanism. BMC Med. Imaging 2021, 21, 168. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Huang, C.; Yuan, J.; Kong, D. A Semiautomated Deep Learning Approach for Pancreas Segmentation. J. Healthc. Eng. 2021, 2021, 3284493. [Google Scholar] [CrossRef]
- Shen, C.; Roth, H.R.; Hayashi, Y.; Oda, M.; Miyamoto, T.; Sato, G.; Mori, K. A cascaded fully convolutional network framework for dilated pancreatic duct segmentation. Int. J. Comput. Assist. Radiol. Surg. 2022, 17, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.-L.; Wu, T.; Chen, P.-T.; Tsai, Y.M.; Roth, H.; Wu, M.-S.; Liao, W.-C.; Wang, W. Deep Learning to Distinguish Pancreatic Cancer Tissue from Non-Cancerous Pancreatic Tissue: A Retrospective Study with Cross-Racial External Validation. Lancet Digit. Health 2020, 2, e303–e313. [Google Scholar] [CrossRef]
- Dbouk, M.; Katona, B.W.; Brand, R.E.; Chak, A.; Syngal, S.; Farrell, J.J.; Kastrinos, F.; Stoffel, E.M.; Blackford, A.L.; Rustgi, A.K.; et al. The Multicenter Cancer of Pancreas Screening Study: Impact on Stage and Survival. J. Clin. Oncol. 2022, 40, 3257–3266. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giannone, F.; Capretti, G.; Abu Hilal, M.; Boggi, U.; Campra, D.; Cappelli, C.; Casadei, R.; De Luca, R.; Falconi, M.; Giannotti, G.; et al. Resectability of Pancreatic Cancer Is in the Eye of the Observer: A Multicenter, Blinded, Prospective Assessment of Interobserver Agreement on NCCN Resectability Status Criteria. Ann. Surg. Open 2021, 2, e087. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Viviers, C.G.A.; Ramaekers, M.; Valiuddin, A.; Hellström, T.A.E.; Tasios, N.; van der Ven, J.; Jacobs, I.; Ewals, L.; Nederend, J.; de With, P.; et al. Segmentation-based Assessment of Tumor-Vessel Involvement for Surgical Resectability Prediction of Pancreatic Ductal Adenocarcinoma. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 4–6 October 2023. [Google Scholar] [CrossRef]
Clinical Characteristics | With Pancreatic Head Cancer | Without Pancreatic Cancer |
---|---|---|
N = | 99 | 98 |
Age (years) | 74.9 ± 7.5 | 71.2 ± 8.1 |
Gender (M/F) | 52/47 | 79/19 |
Tumor stage | ||
I/II/III/IV | 21/55/20/3 | N.A. |
Tumor attenuation on CT | ||
Hypo/Iso/Hyper intens | 77/14/8 | N.A. |
Tumor origin | ||
Pancreas/Cholangio/Ampullary | 54/21/24 | N.A. |
Tumor size (cm) | 2.60 (2.0–3.5) | N.A. |
Internal Test Set | Medical Decathlon Dataset | |
---|---|---|
Pancreas | 0.86 ± 0.05 | 0.88 ± 0.03 |
Common bile duct | 0.61 ± 0.22 | 0.67 ± 0.19 |
Pancreatic duct | 0.49 ± 0.25 | 0.52 ± 0.19 |
Common bile duct (Excluding not annotated) | 0.63 ± 0.18 | 0.69 ± 0.14 |
Pancreatic duct (Excluding not annotated) | 0.60 ± 0.11 | 0.55 ± 0.13 |
GT Input | GT Input—Ensemble | Predicted Input | Predicted Input—Ensemble (ALL) | Predicted Input—Ensemble (<2 cm) | |
---|---|---|---|---|---|
Sensitivity | 1.00 ± 0.00 | 1.00 | 1.00 ± 0.00 | 0.97 | 1.0 |
Specificity | 0.86 ± 0.10 | 1.00 | 0.64 ± 0.15 | 1.00 | 1.0 |
Precision | 0.94 ± 0.04 | 1.00 | 0.87 ± 0.05 | 1.00 | 1.0 |
F1 | 0.97 ± 0.02 | 1.00 | 0.93 ± 0.03 | 0.98 | 1.0 |
Accuracy | 0.96 ± 0.03 | 1.00 | 0.89 ± 0.05 | 0.98 | 1.0 |
ROC | 0.96 ± 0.02 | 0.98 | 0.97 ± 0.03 | 0.99 | 0.98 |
Mean Dice | 0.35 ± 0.04 | 0.37 | 0.31 ± 0.02 | 0.34 | 0.190 ± 0.24 |
GT Input | GT Input—Ensemble | Predicted Input | Predicted Input—Ensemble | |
---|---|---|---|---|
Sensitivity | 1.00 ± 0.00 | 1.00 | 1.00 ± 0.00 | 1.00 |
Mean Dice | 0.37 ± 0.03 | 0.37 | 0.37 ± 0.01 | 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramaekers, M.; Viviers, C.G.A.; Hellström, T.A.E.; Ewals, L.J.S.; Tasios, N.; Jacobs, I.; Nederend, J.; Sommen, F.v.d.; Luyer, M.D.P., on behalf of the E/MTIC Oncology Collaborative Group. Improved Pancreatic Cancer Detection and Localization on CT Scans: A Computer-Aided Detection Model Utilizing Secondary Features. Cancers 2024, 16, 2403. https://doi.org/10.3390/cancers16132403
Ramaekers M, Viviers CGA, Hellström TAE, Ewals LJS, Tasios N, Jacobs I, Nederend J, Sommen Fvd, Luyer MDP on behalf of the E/MTIC Oncology Collaborative Group. Improved Pancreatic Cancer Detection and Localization on CT Scans: A Computer-Aided Detection Model Utilizing Secondary Features. Cancers. 2024; 16(13):2403. https://doi.org/10.3390/cancers16132403
Chicago/Turabian StyleRamaekers, Mark, Christiaan G. A. Viviers, Terese A. E. Hellström, Lotte J. S. Ewals, Nick Tasios, Igor Jacobs, Joost Nederend, Fons van der Sommen, and Misha D. P. Luyer on behalf of the E/MTIC Oncology Collaborative Group. 2024. "Improved Pancreatic Cancer Detection and Localization on CT Scans: A Computer-Aided Detection Model Utilizing Secondary Features" Cancers 16, no. 13: 2403. https://doi.org/10.3390/cancers16132403
APA StyleRamaekers, M., Viviers, C. G. A., Hellström, T. A. E., Ewals, L. J. S., Tasios, N., Jacobs, I., Nederend, J., Sommen, F. v. d., & Luyer, M. D. P., on behalf of the E/MTIC Oncology Collaborative Group. (2024). Improved Pancreatic Cancer Detection and Localization on CT Scans: A Computer-Aided Detection Model Utilizing Secondary Features. Cancers, 16(13), 2403. https://doi.org/10.3390/cancers16132403