Diagnostic Value and Molecular Function of MicroRNAs in Endometrial Diseases: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Protocol
2.2. Data Sources
2.3. Eligibility Criteria
2.4. Source Selection
2.5. Quality Assessment
3. Results
Risk of Bias
4. Discussion
4.1. Regulatory Functions
4.2. Inflammatory Response
4.3. Angiogenesis
4.4. Disorders
4.4.1. miRNAs in Endometriosis
4.4.2. miRNAs in Recurrent Implantation Failure (RIF)
4.4.3. miRNAs in Ectopic Pregnancy (EP)
4.5. Study Strengths and Limitations
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Klicka, K.; Grzywa, T.M.; Klinke, A.; Mielniczuk, A.; Włodarski, P.K. The Role of miRNAs in the Regulation of Endometrial Cancer Invasiveness and Metastasis-A Systematic Review. Cancers 2021, 13, 3393. [Google Scholar] [CrossRef] [PubMed]
- Sianou, A.; Galyfos, G.; Moragianni, D.; Andromidas, P.; Kaparos, G.; Baka, S.; Kouskouni, E. The role of microRNAs in the pathogenesis of endometrial cancer: A systematic review. Arch. Gynecol. Obstet. 2015, 292, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Widodo; Djati, M.S.; Rifa’i, M. Role of MicroRNAs in carcinogenesis that potential for biomarker of endometrial cancer. Ann. Med. Surg. 2016, 7, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Wilczynski, M.; Danielska, J.; Dzieniecka, M.; Szymanska, B.; Wojciechowski, M.; Malinowski, A. Prognostic and Clinical Significance of miRNA-205 in Endometrioid Endometrial Cancer. PLoS ONE 2016, 11, e0164687. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, Q.; Kong, B. miRNA-576-5p promotes endometrial cancer cell growth and metastasis by targeting ZBTB4. Clin. Transl. Oncol. 2023, 25, 706–720. [Google Scholar] [CrossRef]
- Passarello, K.; Kurian, S.; Villanueva, V. Endometrial Cancer: An Overview of Pathophysiology, Management, and Care. Semin. Oncol. Nurs. 2019, 35, 157–165. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network Kandoth, C.; Schultz, N.; Cherniack, A.D.; Akbani, R.; Liu, Y.; Shen, H.; Robertson, A.G.; Pashtan, I.; Shen, R.; Benz, C.C.; et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013, 497, 67–73, Erratum in Nature 2013, 500, 242. [Google Scholar] [CrossRef]
- Makker, V.; MacKay, H.; Ray-Coquard, I.; Levine, D.A.; Westin, S.N.; Aoki, D.; Oaknin, A. Endometrial cancer. Nat. Rev. Dis. Primers 2021, 7, 88. [Google Scholar] [CrossRef]
- Di Martino, M.T.; Arbitrio, M.; Caracciolo, D.; Cordua, A.; Cuomo, O.; Grillone, K.; Riillo, C.; Caridà, G.; Scionti, F.; Labanca, C.; et al. miR-221/222 as biomarkers and targets for therapeutic intervention on cancer and other diseases: A systematic review. Mol. Ther. Nucleic Acids 2022, 27, 1191–1224. [Google Scholar] [CrossRef]
- Obermair, A.; Baxter, E.; Brennan, D.J.; McAlpine, J.N.; Muellerer, J.J.; Amant, F.; van Gent, M.D.J.M.; Coleman, R.L.; Westin, S.N.; Yates, M.S.; et al. Fertility-sparing treatment in early endometrial cancer: Current state and future strategies. Obstet. Gynecol. Sci. 2020, 63, 417–431. [Google Scholar] [CrossRef]
- Chapron, C.; Marcellin, L.; Borghese, B.; Santulli, P. Rethinking mechanisms, diagnosis and management of endometriosis. Nat. Rev. Endocrinol. 2019, 15, 666–682. [Google Scholar] [CrossRef]
- Rolla, E. Endometriosis: Advances and controversies in classification, pathogenesis, diagnosis, and treatment. F1000 Res. 2019, 8, 529. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, Y.; Steinthorsdottir, V.; Morris, A.P.; Fassbender, A.; Rahmioglu, N.; De Vivo, I.; Buring, J.E.; Zhang, F.; Edwards, T.L.; Jones, S.; et al. Meta-analysis identifies five novel loci associated with endometriosis highlighting key genes involved in hormone metabolism. Nat. Commun. 2017, 8, 15539. [Google Scholar] [CrossRef]
- Ma, J.; Gao, W.; Li, D. Recurrent implantation failure: A comprehensive summary from etiology to treatment. Front. Endocrinol. 2023, 13, 1061766. [Google Scholar] [CrossRef] [PubMed]
- Bashiri, A.; Halper, K.I.; Orvieto, R. Recurrent Implantation Failure-update overview on etiology, diagnosis, treatment and future directions. Reprod. Biol. Endocrinol. 2018, 16, 121. [Google Scholar] [CrossRef] [PubMed]
- Ravo, M.; Cordella, A.; Rinaldi, A.; Bruno, G.; Alexandrova, E.; Saggese, P.; Nassa, G.; Giurato, G.; Tarallo, R.; Marchese, G.; et al. Small non-coding RNA deregulation in endometrial carcinogenesis. Oncotarget 2015, 6, 4677–4691. [Google Scholar] [CrossRef]
- Zheng, X.; Xu, K.; Zhu, L.; Mao, M.; Zhang, F.; Cui, L. MiR-486-5p Act as a Biomarker in Endometrial Carcinoma: Promotes Cell Proliferation, Migration, Invasion by Targeting MARK1. OncoTargets Ther. 2020, 13, 4843–4853. [Google Scholar] [CrossRef]
- Prospero International Prospective Register of Systematic Reviews. Available online: https://www.crd.york.ac.uk/prospero/ (accessed on 28 May 2024).
- Hong, Q.N.; Pluye, P.; Fàbregues, S.; Bartlett, G.; Boardman, F.; Cargo, M.; Dagenais, P.; Gagnon, M.-P.; Griffiths, F.; Nicolau, B.; et al. Mixed Methods Appraisal Tool (MMAT), Version 2018. Registration of Copyright (#1148552); Canadian Intellectual Property Office, Industry Canada: Gatineau, QC, Canada, 2018. [Google Scholar]
- Kuokkanen, S.; Chen, B.; Ojalvo, L.; Benard, L.; Santoro, N.; Pollard, J.W. Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium. Biol. Reprod. 2010, 82, 791–801. [Google Scholar] [CrossRef]
- Chen, X.; Yan, Q.; Li, S.; Zhou, L.; Yang, H.; Yang, Y.; Liu, X.; Wan, X. Expression of the tumor suppressor miR-206 is associated with cellular proliferative inhibition and impairs invasion in ERα-positive endometrioid adenocarcinoma. Cancer Lett. 2012, 314, 41–53. [Google Scholar] [CrossRef]
- Donkers, H.; Hirschfeld, M.; Weiß, D.; Erbes, T.; Jaeger, M.; Pijnenborg, J.M.A.; Bekkers, R.; Galaal, K.; ENITEC-consortium. Usefulness of microRNA detection in the diagnostics of endometrial cancer. Acta Obstet. Gynecol. Scand. 2021, 100, 1148–1154. [Google Scholar] [CrossRef]
- Bogaczyk, A.; Potocka, N.; Paszek, S.; Skrzypa, M.; Zuchowska, A.; Kośny, M.; Kluz, M.; Zawlik, I.; Kluz, T. Absolute Quantification of Selected microRNAs Expression in Endometrial Cancer by Digital PCR. Int. J. Mol. Sci. 2024, 25, 3286. [Google Scholar] [CrossRef] [PubMed]
- Myatt, S.S.; Wang, J.; Monteiro, L.J.; Christian, M.; Ho, K.K.; Fusi, L.; Dina, R.E.; Brosens, J.J.; Ghaem-Maghami, S.; Lam, E.W. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res. 2010, 70, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.; Wang, F.; Wan, J. MicroRNA-381 inhibits cell proliferation and invasion in endometrial carcinoma by targeting the IGF-1R. Mol. Med. Rep. 2018, 17, 4090–4098. [Google Scholar] [CrossRef] [PubMed]
- Hirata, H.; Ueno, K.; Shahryari, V.; Deng, G.; Tanaka, Y.; Tabatabai, Z.L.; Hinoda, Y.; Dahiya, R. MicroRNA-182-5p promotes cell invasion and proliferation by down regulating FOXF2, RECK and MTSS1 genes in human prostate cancer. PLoS ONE 2013, 8, e55502. [Google Scholar] [CrossRef]
- Yao, H.; Kong, F.; Zhou, Y. MiR-182 promotes cell proliferation, migration and invasion by targeting FoxF2 in endometrial carcinoma cells. Int. J. Clin. Exp. Pathol. 2019, 12, 1248–1259. [Google Scholar] [PubMed]
- Bjorkman, S.; Taylor, H.S. MicroRNAs in endometriosis: Biological function and emerging biomarker candidates. Biol. Reprod. 2019, 100, 1135–1146, Erratum in Biol. Reprod. 2019, 101, 1179. [Google Scholar] [CrossRef] [PubMed]
- Burney, R.O.; Hamilton, A.E.; Aghajanova, L.; Vo, K.C.; Nezhat, C.N.; Lessey, B.A.; Giudice, L.C. MicroRNA expression profiling of eutopic secretory endometrium in women with versus without endometriosis. Mol. Hum. Reprod. 2009, 15, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, W.; Fu, J.; Xu, Y.; Gu, R.; Qu, R.; Li, L.; Sun, Y.; Sun, X. MicroRNA-451 is downregulated in the follicular fluid of women with endometriosis and influences mouse and human embryonic potential. Reprod. Biol. Endocrinol. 2019, 17, 96. [Google Scholar] [CrossRef]
- Zhou, M.; Fu, J.; Xiao, L.; Yang, S.; Song, Y.; Zhang, X.; Feng, X.; Sun, H.; Xu, W.; Huang, W. miR-196a overexpression activates the MEK/ERK signal and represses the progesterone receptor and decidualization in eutopic endometrium from women with endometriosis. Hum. Reprod. 2016, 31, 2598–2608. [Google Scholar] [CrossRef]
- Chen, H.X.; Xu, X.X.; Tan, B.Z.; Zhang, Z.; Zhou, X.D. MicroRNA-29b Inhibits Angiogenesis by Targeting VEGFA through the MAPK/ERK and PI3K/Akt Signaling Pathways in Endometrial Carcinoma. Cell Physiol. Biochem. 2017, 41, 933–946. [Google Scholar] [CrossRef]
- Pan, Q.; Chegini, N. MicroRNA signature and regulatory functions in the endometrium during normal and disease states. Semin. Reprod. Med. 2008, 26, 479–493. [Google Scholar] [CrossRef]
- Yanokura, M.; Banno, K.; Iida, M.; Irie, H.; Umene, K.; Masuda, K.; Kobayashi, Y.; Tominaga, E.; Aoki, D. MicroRNAS in endometrial cancer: Recent advances and potential clinical applications. EXCLI J. 2015, 14, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Hon, J.X.; Wahab, N.A.; Karim, A.K.A.; Mokhtar, N.M.; Mokhtar, M.H. MicroRNAs in Endometriosis: Insights into Inflammation and Progesterone Resistance. Int. J. Mol. Sci. 2023, 24, 15001. [Google Scholar] [CrossRef] [PubMed]
- Abbaszadeh, M.; Karimi, M.; Rajaei, S. The landscape of non-coding RNAs in the immunopathogenesis of Endometriosis. Front. Immunol. 2023, 14, 1223828. [Google Scholar] [CrossRef] [PubMed]
- Ferlita, A.; Battaglia, R.; Andronico, F.; Caruso, S.; Cianci, A.; Purrello, M.; Pietro, C.D. Non-Coding RNAs in Endometrial Physiopathology. Int. J. Mol. Sci. 2018, 19, 2120. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Askari, A.; Hussen, B.M.; Taheri, M.; Akbari Dilmaghani, N. Role of miR-424 in the carcinogenesis. Clin. Transl. Oncol. 2024, 26, 16–38. [Google Scholar] [CrossRef]
- Indumati, S.; Apurva, B.; Gaurav, G.; Nehakumari, S.; Nishant, V. The Role of MicroRNAs in Development of Endometrial Cancer: A Literature Review. J. Reprod. Infertil. 2023, 24, 147–165. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, Y.; Pan, D. miR-30c may serve a role in endometriosis by targeting plasminogen activator inhibitor-1. Exp. Ther. Med. 2017, 14, 4846–4852. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Q.; Zhang, R.; Dai, X.; Chen, W.; Xing, D. Circulating microRNAs: Biomarkers of disease. Clin. Chim. Acta 2021, 516, 46–54. [Google Scholar] [CrossRef]
- Nazri, H.M.; Greaves, E.; Quenby, S.; Dragovic, R.; Tapmeier, T.T.; Becker, C.M. The role of small extracellular vesicle-miRNAs in endometriosis. Hum. Reprod. 2023, 38, 2296–2311. [Google Scholar] [CrossRef]
- Bogaczyk, A.; Zawlik, I.; Zuzak, T.; Kluz, M.; Potocka, N.; Kluz, T. The Role of miRNAs in the Development, Proliferation, and Progression of Endometrial Cancer. Int. J. Mol. Sci. 2023, 24, 11489. [Google Scholar] [CrossRef] [PubMed]
- Ohlsson Teague, E.M.; Van der Hoek, K.H.; Van der Hoek, M.B.; Perry, N.; Wagaarachchi, P.; Robertson, S.A.; Print, C.G.; Hull, L.M. MicroRNA-regulated pathways associated with endometriosis. Mol. Endocrinol. 2009, 23, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Joshi, N.R.; Miyadahira, E.H.; Afshar, Y.; Jeong, J.W.; Young, S.L.; Lessey, B.A.; Serafini, P.C.; Fazleabas, A.T. Progesterone Resistance in Endometriosis Is Modulated by the Altered Expression of MicroRNA-29c and FKBP4. J. Clin. Endocrinol. Metab. 2017, 102, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Nothnick, W.B. MicroRNAs and Progesterone Receptor Signaling in Endometriosis Pathophysiology. Cells 2022, 11, 1096. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Li, H.; He, Y. MicroRNA-17 downregulates expression of the PTEN gene to promote the occurrence and development of adenomyosis. Exp. Ther. Med. 2017, 14, 3805–3811. [Google Scholar] [CrossRef] [PubMed]
- Revel, A.; Achache, H.; Stevens, J.; Smith, Y.; Reich, R. MicroRNAs are associated with human embryo implantation defects. Hum. Reprod. 2011, 26, 2830–2840. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Shen, H.; Fan, L.J.; Guan, J.; Zheng, X.B.; Chen, X.; Liang, R.; Zhang, X.W.; Cui, Q.H.; Sun, K.K.; et al. Endometrial MicroRNA Signature during the Window of Implantation Changed in Patients with Repeated Implantation Failure. Chin. Med. J. 2017, 130, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Jahanbakhsh, J.; Farid Mojtahedi, M.; Moradi, N.; Fadaei, R.; Tehranian, A.; Rostami, R.; Kashani, L.; Moeini, A.; Alizadeh-Fanalou, S.; Barzin Tond, S.; et al. Circulating and Endometrial Profiles of miR-145, miR-155-5p, miR-224, MPP-5, and PECAM-1 Expression in Patients with Repeated Implantation Failure: A Case Control Study. Cell J. 2023, 25, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhao, Q.; Warrick, J.; Lockwood, C.M.; Woodworth, A.; Moley, K.H.; Gronowski, A.M. Circulating microRNA miR-323-3p as a biomarker of ectopic pregnancy. Clin. Chem. 2012, 58, 896–905. [Google Scholar] [CrossRef]
- Miura, K.; Higashijima, A.; Mishima, H.; Miura, S.; Kitajima, M.; Kaneuchi, M.; Yoshiura, K.; Masuzaki, H. Pregnancy-associated microRNAs in plasma as potential molecular markers of 681 ectopic pregnancy. Fertil. Steril. 2015, 103, 1202–1208.e1. [Google Scholar] [CrossRef]
- Palmeri, V.; Colamesta, V.; La Torre, G. Evaluation of methodological quality of studies. Senses Sci. 2016; 3, 235–241. [Google Scholar] [CrossRef]
- Arora, T.; Kausar, M.A.; Aboelnaga, S.M.; Anwar, S.; Hussain, M.A.; Sadaf, S.; Kaur, S.; Eisa, A.A.; Shingatgeri, V.M.M.; Najm, M.Z.; et al. miRNAs and the Hippo pathway in cancer: Exploring the therapeutic potential (Review). Oncol. Rep. 2022, 48, 135. [Google Scholar] [CrossRef] [PubMed]
- Kolenda, T.; Guglas, K.; Kopczyńska, M.; Sobocińska, J.; Teresiak, A.; Bliźniak, R.; Lamperska, K. Good or not good: Role of miR-18a in cancer biology. Rep. Pract. Oncol. Radiother. 2020, 25, 808–819. [Google Scholar] [CrossRef] [PubMed]
- Shetty, A.; Venkatesh, T.; Kabbekodu, S.P.; Tsutsumi, R.; Suresh, P.S. LncRNA-miRNA-mRNA regulatory axes in endometrial cancer: A comprehensive overview. Arch. Gynecol. Obstet. 2022, 306, 1431–1447. [Google Scholar] [CrossRef] [PubMed]
- Jurcevic, S.; Klinga-Levan, K.; Olsson, B.; Ejeskär, K. Verification of microRNA expression in human endometrial adenocarcinoma. BMC Cancer 2016, 16, 261. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xie, Y.; Wu, M.; Geng, Y.; Li, R.; Xu, L.; Liu, X.; Pan, Y. Expression of mmu-miR-96 in the endometrium during early pregnancy and its regulatory effects on stromal cell apoptosis via Bcl2. Mol. Med. Rep. 2017, 15, 1547–1554. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Torres, K.; Pesci, A.; Ceccaroni, M.; Paszkowski, T.; Cassandrini, P.; Zamboni, G.; Maciejewski, R. Diagnostic and prognostic significance of miRNA signatures in tissues and plasma of endometrioid endometrial carcinoma patients. Int. J. Cancer 2013, 132, 1633–1645. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Wang, H.H.; Tian, F.J.; He, X.Y.; Qiu, M.T.; Wang, J.Y.; Zhang, H.J.; Wang, L.H.; Wan, X.P. A TrkB-STAT3-miR-204-5p regulatory circuitry controls proliferation and invasion of endometrial carcinoma cells. Mol. Cancer 2013, 12, 155. [Google Scholar] [CrossRef] [PubMed]
- Shu, W.; Wang, Z.; Zhao, R.; Shi, R.; Zhang, J.; Zhang, W.; Wang, H. Exploration of the Effect and Potential Mechanism of Echinacoside Against Endometrial Cancer Based on Network Pharmacology and in vitro Experimental Verification. Drug Des. Devel Ther. 2022, 16, 1847–1863. [Google Scholar] [CrossRef]
- Strickland, A.L.; Rivera, G.; Lucas, E.; John, G.; Cuevas, I.; Castrillon, D.H. PI3K Pathway Effectors pAKT and FOXO1 as Novel Markers of Endometrioid Intraepithelial Neoplasia. Int. J. Gynecol. Pathol. 2019, 38, 503–513. [Google Scholar] [CrossRef]
- Liu, Q.W.; Ying, Y.M.; Zhou, J.X.; Zhang, W.J.; Liu, Z.X.; Jia, B.B.; Gu, H.C.; Zhao, C.Y.; Guan, X.H.; Deng, K.Y.; et al. Human amniotic mesenchymal stem cells-derived IGFBP-3, DKK-3, and DKK-1 attenuate liver fibrosis through inhibiting hepatic stellate cell activation by blocking Wnt/β-catenin signaling pathway in mice. Stem Cell Res. Ther. 2022, 13, 224. [Google Scholar] [CrossRef]
- Kraljevic Pavelic, S.; Sedic, M.; Bosnjak, H.; Spaventi, S.; Pavelic, K. Metastasis: New perspectives on an old problem. Mol. Cancer 2011, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Yanokura, M.; Banno, K.; Kobayashi, Y.; Kisu, I.; Ueki, A.; Ono, A.; Masuda, K.; Nomura, H.; Hirasawa, A.; Susumu, N.; et al. MicroRNA and endometrial cancer: Roles of small RNAs in human tumors and clinical applications (Review). Oncol. Lett. 2010, 1, 935–940. [Google Scholar] [CrossRef] [PubMed]
- Chung, T.K.; Cheung, T.H.; Huen, N.Y.; Wong, K.W.; Lo, K.W.; Yim, S.F.; Siu, N.S.; Wong, Y.M.; Tsang, P.T.; Pang, M.W.; et al. Dysregulated microRNAs and their predicted targets associated with endometrioid endometrial adenocarcinoma in Hong Kong women. Int. J. Cancer 2009, 124, 1358–1365. [Google Scholar] [CrossRef] [PubMed]
- Mu, F.; Harris, H.R.; Rich-Edwards, J.W.; Hankinson, S.E.; Rimm, E.B.; Spiegelman, D.; Missmer, S.A. A Prospective Study of Inflammatory Markers and Risk of Endometriosis. Am. J. Epidemiol. 2018, 187, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Begum, M.I.A.; Chuan, L.; Hong, S.T.; Chae, H.S. The Pathological Role of miRNAs in Endometriosis. Biomedicines 2023, 11, 3087. [Google Scholar] [CrossRef] [PubMed]
- Moga, M.A.; Bălan, A.; Dimienescu, O.G.; Burtea, V.; Dragomir, R.M.; Anastasiu, C.V. Circulating miRNAs as Biomarkers for Endometriosis and Endometriosis-Related Ovarian Cancer-An Overview. J. Clin. Med. 2019, 8, 735. [Google Scholar] [CrossRef] [PubMed]
- Nisenblat, V.; Bossuyt, P.M.; Shaikh, R.; Farquhar, C.; Jordan, V.; Scheffers, C.S.; Mol, B.W.; Johnson, N.; Hull, M.L. Blood biomarkers for the non-invasive diagnosis of endometriosis. Cochrane Database Syst. Rev. 2016, 2016, CD012179. [Google Scholar] [CrossRef] [PubMed]
- Nothnick, W.B.; Al-Hendy, A.; Lue, J.R. Circulating Micro-RNAs as Diagnostic Biomarkers for Endometriosis: Privation and Promise. J. Minim. Invasive Gynecol. 2015, 22, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Sillen, M.; Declerck, P.J. Targeting PAI-1 in Cardiovascular Disease: Structural Insights Into PAI-1 Functionality and Inhibition. Front. Cardiovasc. Med. 2020, 7, 622473. [Google Scholar] [CrossRef]
- Polanski, L.T.; Baumgarten, M.N.; Quenby, S.; Brosens, J.; Campbell, B.K.; Raine-Fenning, N.J. What exactly do we mean by ‘recurrent implantation failure’? A systematic review and opinion. Reprod. Biomed. Online 2014, 28, 409–423. [Google Scholar] [CrossRef]
- (The Writing Group) for the Participants to the 2022 Lugano RIF Workshop; Pirtea, P.; Cedars, M.I.; Ata, B.; Franasiak, J.; Racowsky, C.; Toner, J.; Scott, R.T.; de Ziegler, D.; Barnhart, K.T. Recurrent implantation failure: Reality or a statistical mirage?: Consensus statement from the 1 July 2022 Lugano Workshop on recurrent implantation failure. Fertil. Steril. 2023, 120, 45–59. [Google Scholar] [CrossRef]
- Moawad, N.S.; Mahajan, S.T.; Moniz, M.H.; Taylor, S.E.; Hurd, W.W. Current diagnosis and treatment of interstitial pregnancy. Am. J. Obstet. Gynecol. 2010, 202, 15–29. [Google Scholar] [CrossRef] [PubMed]
Category of Study Designs | Methodological Quality Criteria | Responses | |||
---|---|---|---|---|---|
Yes | No | Cannot Tell | |||
Screening questions (for all types) | S1. Are there clear research questions? | ✔ | |||
S2. Do the collected data allow me to address the research questions? | ✔ | ||||
Further appraisal may not be feasible or appropriate when the answer is ‘No’ or ‘Cannot tell’ to one or both screening questions. | |||||
Qualitative | 1. Is the qualitative approach appropriate to answer the research question? | ✔ | 1–12,14–17,20–22,29,37,40–45, 47–51,53–58,63,65,68,70,73 | ||
2. Are the qualitative data collection methods adequate to address the research question? | ✔ | ||||
3. Are the findings adequately derived from the data? | ✔ | ||||
4. Is the interpretation of results sufficiently substantiated by data? | ✔ | ||||
5. Is there coherence between qualitative data sources, collection, analysis and interpretation? | ✔ | ||||
Quantitative | 1. Is the sampling strategy relevant to address the research question? | ✔ | 13,23–28,30–36,38,39,46,52,59–62, 64,66,67,71,72, 74 | ||
2. Is the sample representative of the target population? | ✔ | ||||
3. Are the measurements appropriate? | ✔ | ||||
4. Is the risk of nonresponse bias low? | ✔ | ||||
5. Is the statistical analysis appropriate to answer the research question? | ✔ |
Name of miRNA | Trend |
Function of microRNA in Healthy Cells | References |
---|---|---|---|
miR-29b, miR-29c, miR-30b, miR-30d, miR-31, miR-193a-3p, miR-203, miR-204, miR-200c, miR-210, miR-582-5p, miR-345 | Up | Reducing the expression of cell cycle genes in mid-secretory phase of the endometrium | [20] |
miR-206 | Down | Inhibiting ERα-dependent proliferation of the endometrium, impairing invasiveness and inducing cell cycle arrest of ERα-positive EEC cell lines | [21] |
miR-205 | Up | Inhibiting PTEN gene expression | [22,23] |
miR-9, miR-27, miR-96, miR-153 and miR-182 | Up | Downregulation of tumor suppressor FOXO1—uncontrolled proliferation of EC | [24] |
miR-381 | Down | Downregulation of IGF1R, which plays an anti-apoptotic role by promoting cancer cell survival and tumor metastases | [25] |
miR-182-5p | Up |
Upregulating FOXF2, RECK and MTSS1 genes—promoting cell invasion and proliferation Activating epithelial–mesenchymal transition | [26,27] |
miR-15a-5p, miR-33b, miR-34a-5p, miR-9, miR-199a | Down | Downregulation of VEGF | [28] |
miR-9, miR-34 | Down | Inhibiting p53-suppressor protein-dependent proliferation in EC | [29] |
miR-451 | Down | Promoting pre-implantation embryogenesis by activating the Wnt signaling pathway | [30] |
miR-196a | Up | Inhibiting the MEK/ERK signal and activating the progesterone receptor and decidualization in eutopic endometrium | [31] |
miR-30c | Down | Regulating the expression of PAI-1 in eutopic and ectopic endometrium | [32] |
miR-125b, miR-126-5p, miR-132-3p, miR-15b-5p, miR-152-3p, miR-155-5p, miR-181a-5p, miR-196b-5p, miR-199a-5p, miR-21-5p, miR-214-3p, miR-222a-3p, miR-23a-5p, miR-29b-3p, miR-98-5p | Down | Reducing inflammation in endometrial stromal cells (ESCs) | [33,34] |
miR-138 | Down | Reducing inflammation in endometriosis by minimizing levels of TNF-α, IL-1β, IL-6, and IL-18 through regulation of the NF-κB signaling pathway and VEGF | [35] |
miR-20a | Up | Increasing production of prostaglandin PGE2 and enhancing the activity of extracellular signal-regulated kinases (ERK) | [36] |
miR-200b, miR-200c | Down | Both miRNAs act as suppressive miRNAs on cancer cells. miR-200b has been shown to target TIMP-2 expression, and miR-200c targets FN1 (the fibronectin-coding gene) expression | [1] |
miR-103 | Up | Targeting the expression of TIMP-3 and stimulates tumor growth and invasion. | [1] |
miR-199a, miR-122 | Up | Positive correlation with IL-6 level | [28,36] |
miR-29a-5p, miR-545-3p | Up | Stimulating angiogenesis by targeting the expression of VEGF | [1] |
miR-199a-5p | Down | Reducing VEGFA expression, as well as decreased cell proliferation and angiogenesis | [28,37] |
miR-424 | Down | This molecule influences the activity of VEGFA, ERBB, mTOR, TGF-β, and PTEN/PI3K/AKT pathways, thereby affecting the process of tumor angiogenesis. | [38,39,40] |
miR-15a-5p | Down | Downregulation of VEGF-A | [41,42] |
miR-29b-3p | Down | Inactivating the MAPK/ERK and PI3K/AKT pathways. | [39,40] |
miR-21-5p | Up | Promoting EMT in endometrial cancer cell lines | [43] |
miRNA-20a | Up | Inducing angiogenesis by inhibition of the expression of DUSP2 and the induction of hyperexpression of genes related to ERK | [33] |
miR-29c | Up | Desensitizing the cells of the endometrium to the impact of progesterone | [44,45] |
miR-143-3p | Up | Desensitizing the cells of the endometrium to the impact of progesterone | [46] |
miR-17 | Up | Promoting cyclin expression through targeted downregulation of the gene phosphatase and tensin homolog (PTEN) | [47] |
miR-23b, miR-99a, and miR-145 | Up | Associated with embryo implantation defects | [48,49,50] |
miR-323-3p | Up | Associated with ectopic pregnancy | [51,52] |
Studies | Newcastle–Ottawa Quality Assessment Scale Score | Score | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Total Number of Stars | |
Case–Control Studies | |||||||||
[20] | A* | A* | A* | A* | A* | A* | B | A* | 7 |
[21] | A* | A* | A* | A* | A* | A* | A* | B | 7 |
[23] | A* | A* | A* | A* | A* | A* | A* | A* | 8 |
[24] | A* | A* | A* | A* | A* | A* | A* | B | 7 |
[25] | A* | A* | A* | A* | A* | A* | A* | B | 7 |
[26] | A* | A* | A* | A* | A* | A* | A* | B | 7 |
[29] | A* | A* | A* | A* | A* | A* | A* | B | 7 |
[30] | A* | A* | A* | A* | A* | A* | A* | A* | 8 |
[31] | A* | A* | A* | A* | A* | A* | A* | A* | 8 |
[32] | A* | A* | A* | A* | A* | A* | A* | A* | 8 |
[43] | A* | A* | A* | B | A* | A* | A* | B | 6 |
[44] | A* | A* | A* | A* | A* | A* | A* | B | 7 |
[45] | A* | A* | A* | A* | A* | A* | A* | B | 7 |
[47] | A* | A* | A* | A* | A* | A* | A* | B | 7 |
[48] | A* | A* | A* | A* | A* | A* | A* | A* | 8 |
[50] | A* | A* | A* | A* | A* | A* | A* | A* | 8 |
[49] | A* | A* | A* | A* | A* | A* | A* | A* | 8 |
[52] | A* | A* | A* | A* | A* | A* | A* | B | 8 |
Cohort Studies | |||||||||
[51] | A* | A* | A* | A* | A* | A* | A* | B | 8 |
[22] | A* | A* | A* | A* | B | A* | A* | A* | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kluz, N.; Kowalczyk, E.; Wasilewska, M.; Gil-Kulik, P. Diagnostic Value and Molecular Function of MicroRNAs in Endometrial Diseases: A Systematic Review. Cancers 2024, 16, 2416. https://doi.org/10.3390/cancers16132416
Kluz N, Kowalczyk E, Wasilewska M, Gil-Kulik P. Diagnostic Value and Molecular Function of MicroRNAs in Endometrial Diseases: A Systematic Review. Cancers. 2024; 16(13):2416. https://doi.org/10.3390/cancers16132416
Chicago/Turabian StyleKluz, Natalia, Emilia Kowalczyk, Małgorzata Wasilewska, and Paulina Gil-Kulik. 2024. "Diagnostic Value and Molecular Function of MicroRNAs in Endometrial Diseases: A Systematic Review" Cancers 16, no. 13: 2416. https://doi.org/10.3390/cancers16132416
APA StyleKluz, N., Kowalczyk, E., Wasilewska, M., & Gil-Kulik, P. (2024). Diagnostic Value and Molecular Function of MicroRNAs in Endometrial Diseases: A Systematic Review. Cancers, 16(13), 2416. https://doi.org/10.3390/cancers16132416