Statistical Analysis of Gastric Cancer Cells Response to Broadband Terahertz Radiation with and without Contrast Nanoparticles
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Characterization Equipment
2.2. Contrast Agents Description
2.3. Test Cells Description
3. Results and Discussion
3.1. ATR Analysis
3.2. Transmission Analysis
- -
- At low frequencies (0–1 THz), one can see a clear difference when adding nanoparticles in all situations and for all sample types.
- -
- At 1–2 THz, the addition of nanoparticles has a significant effect only on normal cells.
- -
- The domain of 2–3 THz frequencies is not suitable for the proposed analysis.
- -
- At 3–4 THz, the difference between normal cells and tumor cells is significant only when adding nanoparticles, an aspect also suggested by Figure 19.
- -
- At low frequencies (0–1 THz), we can see a difference when adding nanoparticles in all situations and for all sample types.
- -
- At 1–2 THz, the addition of and for all sample types has a significant effect on tumor cells–opposite to the ATR results.
- -
- At 2–3 THz, the addition of and for all sample types has a significant effect on normal cells, and the difference between normal cells and tumor cells is significant only when adding nanoparticles.
- -
- At 3–4 THz, the difference between normal cells and tumor cells is significant only when adding nanoparticles.
- -
- At low frequencies (0–1 THz), the ATR measurement procedure is generally superior to the transmission measurement procedure in all cases when nanoparticles are added, but the difference between them is low.
- -
- -
- At 2–3 THz, the ATR measurement procedure is superior to the transmission measurement procedure only in the case of discriminating tumor cells from normal cells by using nanoparticles; in rest, they practically present the same results. The result is consistent with the observations from Figure 19.
- -
- At 3–4 THz, the ATR measurement procedure is superior to the transmission measurement procedure only in the case of discriminating tumor cells in general by using nanoparticles; in the rest, they practically present the same results. The result is consistent with the observations from Figure 18 and Figure 19.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, K.S.; Suh, M. Screening for gastric cancer: The usefulness of endoscopy. Clin. Endosc. 2014, 47, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Stomach Cancer Screening. 2023. Available online: https://www.cancer.gov/types/stomach/screening (accessed on 17 April 2024).
- Hibino, M.; Hamashima, C.; Iwata, M.; Terasawa, T. Radiographic and endoscopic screening to reduce gastric cancer mortality: A systematic review and meta-analysis. Lancet Reg. Health 2023, 35, 100741. [Google Scholar] [CrossRef] [PubMed]
- Mabe, K.; Inoue, K.; Kamada, T.; Kato, K.; Kato, M.; Haruma, K. Endoscopic screening for gastric cancer in Japan: Current status and future perspectives. Dig. Endosc. 2022, 34, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, J.; Li, Y.; Ozcan, A.; Jarrahi, M. High-throughput terahertz imaging: Progress and challenges. Light: Sci. Appl. 2023, 12, 233. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Fan, S.; Sun, Y.; Pickwell-MacPherson, E. The potential of terahertz imaging for cancer diagnosis: A review of investigations to date. Quant. Imaging Med. Surg. 2012, 2, 33. [Google Scholar] [PubMed]
- Oh, S.J.; Huh, Y.-M.; Suh, J.-S.; Choi, J.; Haam, S.; Son, J.-H.C. Cancer Diagnosis by Terahertz Molecular Imaging Technique. J. Infrared Millim. Terahertz Waves 2012, 33, 74–81. [Google Scholar] [CrossRef]
- Li, H.; Zhang, K.; Zhou, Q.; Mao, W.; Dong, P.; Tian, F. Case Report: Terahertz spectroscopy for cancer diagnosis. Int. J. Clin. Exp. Med. 2017, 10, 3766–3773. [Google Scholar]
- Oh, S.J.; Choi, J.; Maeng, I.; Park, J.Y.; Lee, K.; Huh, Y.-M.; Suh, J.-S.; Haam, S.; Son, J.-H. Molecular imaging with terahertz waves. Opt. Express 2011, 19, 4009–4016. [Google Scholar] [CrossRef]
- Hellebust, A.; Richards-Kortum, R. Advances in molecular imaging: Targeted optical contrast agents for cancer diagnostics. Nanomedicine 2012, 7, 429–445. [Google Scholar] [CrossRef]
- Son, J.-H. Terahertz electromagnetic interactions with biological matter their applications. J. Appl. Phys. 2009, 105, 102033. [Google Scholar] [CrossRef]
- Parrott, E.P.; Sy, S.M.; Blu, T.; Wallace, V.P.; Pickwell-MacPherson, E. Terahertz pulsed imaging in vivo: Measurements processing methods. J. Biomed. Opt. 2011, 16, 106010. [Google Scholar] [CrossRef] [PubMed]
- Tatematsu, H.; Miyahara, R.; Shimoyama, Y.; Funasaka, K.; Ohno, E.; Nakamura, M.; Kawashima, H.; Itoh, A.; Ohmiya, N.; Hirooka, Y.; et al. Correlation between magnifying narrow-band imaging endoscopy results and organoid differentiation indicated by cancer cell differentiation and its distribution in depressed-type early gastric carcinoma. Asian Pac. J. Cancer Prev. 2013, 14, 2765–2769. [Google Scholar] [CrossRef] [PubMed]
- Bin Ji, Y.; Lee, E.S.; Kim, S.-H.; Son, J.-H.; Jeon, T.-I. A miniaturized fiber-coupled terahertz endoscope system. Opt. Express 2009, 17, 17082–17087. [Google Scholar]
- Woodward, R.M.; Wallae, V.P.; Pye, R.J.; Cole, B.E.; Arnone, D.D.; Linfield, E.H.; Pepper, M. Terahertz pulse imaging of ex vivo basal cell carcinoma. J. Investig. Dermatol. 2003, 120, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Doradla, P.; Alavi, K.; Joseph, C.; Giles, R. Detection of colon cancer by continuous-wave terahertz polarization imaging technique. J. Biomed. Opt. 2013, 18, 090504. [Google Scholar] [CrossRef]
- Chen, H.; Ma, S.; Wu, X.; Yang, W.; Zhao, T. Diagnose human colonic tissues by terahertz near-field imaging. J. Biomed. Opt. 2015, 20, 036017. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhao, X.; Yang, K.; Liu, Y.; Fu, W.; Luo, Y. Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol. 2016, 34, 810–824. [Google Scholar] [CrossRef] [PubMed]
- Pickwell-MacPherson, E.; Wallace, V.P. Terahertz pulsed imaging—A potential medical imaging modality? Photodiagnosis Photodyn. Ther. 2009, 6, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Brun, M.-A.; Formanek, F.; Yasuda, A.; Sekine, M.; Ando, N.; Eishii, Y. Terahertz imaging applied to cancer diagnosis. Phys. Med. Biol. 2010, 55, 4615–4623. [Google Scholar] [CrossRef] [PubMed]
- Reese, G.; Reid, C.; Goldin, R.; Tran-Dang, M.-A.; Fitzgerald, A.; Tekkis, P.; Wallace, V.P. Using terahertz pulsed imaging (TPI) to identify colonic pathology. In Proceedings of the 33rd International Conference on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, 15–19 September 2008. [Google Scholar]
- Wahaia, F.; Valusis, G.; Bernardo, L.M.; Almeida, A.; Moreira, J.A.; Lopes, P.C.; Macutkevic, J.; Kasalynas, I.; Seliuta, D.; Adomavicius, R.; et al. Detection of colon cancer by terahertz techniques. J. Mol. Struct. 2011, 1006, 77–82. [Google Scholar] [CrossRef]
- Terahertz Imaging Advances Toward Medical Diagnostics. 2022. Available online: https://www.laserfocusworld.com/test-measurement/article/14235398/terahertz-imaging-advances-toward-medical-diagnostics (accessed on 1 July 2024).
- Shi, S.; Yuan, S.; Zhou, J.; Jiang, P. Terahertz technology and its applications in head and neck diseases. iScience 2023, 26, 107060. [Google Scholar] [CrossRef] [PubMed]
- Gezimati, M.; Singh, G. Terahertz imaging technology for localization of cancer tumours: A technical review. Multimedia Tools Appl. 2024, 83, 33675–33711. [Google Scholar] [CrossRef]
- Oh, S.J.; Maeng, I.; Shin, H.J.; Lee, J.; Kang, J.; Haam, S.; Huh, Y.-M.; Suh, J.-s.; Son, J.-H. Nanoparticle contrast agents for Terahertz medical imaging. In Proceedings of the 33rd International Conference on Millimeter and Terahertz Waves, Pasadena, CA, USA, 15–19 September 2008. [Google Scholar]
- Oh, S.J.; Kang, J.; Maeng, I.; Suh, J.-S.; Huh, Y.-M.; Haam, S.; Son, J.-H. Nanoparticle-enabled Terahertz Imaging for Cancer Diagnosis. Opt. Express 2009, 17, 3469–3475. [Google Scholar] [CrossRef] [PubMed]
- Stylianou, A.; Talias, M.A. Nanotechnology-supported THz medical imaging. F1000Research 2013, 2, 100. [Google Scholar] [CrossRef] [PubMed]
- Yousafa, M.Z.; Yu Jing, Y.; Yang-Long, H.; Song, G. Magnetic nanoparticle-based cancer nanodiagnostics. Chin. Phys. B 2013, 22, 058702. [Google Scholar] [CrossRef]
- Lee, J.; Yang, J.; Ko, H.; Oh, S.; Kang, J.; Son, J.; Lee, K.; Lee, S.; Yoon, H.; Suh, J.; et al. Multifunctional magnetic gold nanocomposites: Human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy. Adv. Funct. Mater. 2008, 18, 258–264. [Google Scholar] [CrossRef]
- Yan, G.; Ai, C.; Li, L.; Zong, R.; Liu, F. Dendrimers as carriers for contrast agents in magnetic resonance imaging. Chin. Sci. Bull. 2010, 55, 3085–3093. [Google Scholar] [CrossRef]
- Verma, J.; Warsame, C.; Seenivasagam, R.K.; Katiyar, N.K.; Aleem, E.; Goel, S. Nanoparticle-mediated cancer cell therapy: Basic science to clinical applications. Cancer Metastasis Rev. 2023, 42, 601–627. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, A.; Naghavi, S.M.H.; Mozafari, M.; Afshari, E. Nanoscale biomaterials for terahertz imaging: A non-invasive approach for early cancer detection. Transl. Oncol. 2023, 27, 101565. [Google Scholar] [CrossRef]
- Bowman, T.; Walter, A.; Shenderova, O.; Nunn, N.; McGuire, G.; El-Shenawee, M. A phantom study of terahertz spectroscopy and imaging of micro- and nano-diamonds and nano-onions as contrast agents for breast cancer. Biomed. Phys. Eng. Express 2017, 3, 055001. [Google Scholar] [CrossRef]
- Lee, S.; Baek, S.; Kim, T.; Cho, H.; Lee, S.; Kang, J.; Min, B. Metamaterials for enhanced optical responses and their application to active control of terahertz waves. Adv. Mater. 2020, 32, 2000250. [Google Scholar] [CrossRef]
- Zhou, Z.; Lu, Z. Gadolinium-Based Contrast Agents for MR Cancer Imaging. Nanomed. Nanobiotechnol. 2013, 5, 1–18. [Google Scholar] [CrossRef]
- Mihai, C.T.; Luca, A.; Danciu, M.; Alexa-Stratulat, T.; Ciobanu, R.; Tamba, B.I.; Stanciu, G.D.; Ciortescu, I.; Mihai, C.; Stefanescu, G.; et al. In vitro evaluation of novel functionalized nanoparticles for Terahertz imaging. Med.-Surg. J. 2018, 123, 139–146. [Google Scholar]
- Cristian, C.R.; Thomas, S.; Vasile, D.; Stanciu, G.-D.; Alexa-Stratulat, T.; Luca, A.; Mihai, C.-T.; Tamba, B.-I.; Ciortescu, I. Research on Functionalized Gadolinium Oxide Nanoparticles for MRI and THz Imaging. In Proceedings of the IEEE International Conference and Exposition on Electrical And Power Engineering (EPE), Iasi, Romania, 18–19 October 2018; pp. 646–649. [Google Scholar] [CrossRef]
- Lee, D.K.; Kim, H.; Kim, T.; Cho, B.; Lee, K.; Son, J.H. Characteristics of Gadolinium Oxide Nanoparticles as Contrast Agents for Terahertz Imaging. J. Infrared Millim. Terahertz Waves 2011, 32, 506–512. [Google Scholar] [CrossRef]
- Schreiner, T.G.; Mihai, C.T. Development and characterisation of novel nano-contrast particles for medical imaging. Bul. Institutului Politeh. Din Iaşi 2019, 65, 4. [Google Scholar]
- Researchers Develop Terahertz Imaging Systems for Cancer Detection. 2023. Available online: https://www.news-medical.net/news/20230814/Researchers-develop-terahertz-imaging-systems-for-cancer-detection.aspx (accessed on 1 July 2024).
- Cristian, C.R.; Oliver, S.; Nicolae, L.; Vasile, D.; Ciortescu, I.; Mihai, C.; Stefanescu, G.; Emil, D. Advanced Image Processing in Support of THz Imaging for Early Detection of Gastric Cancer, In Proceedings of the International Conference and Exposition on Electrical And Power Engineering (EPE), Iasi, Romania, 18–19 October 2018. [CrossRef]
- Schreiner, T.G.; Ciobanu, R. THz-spectroscopy of brain cancer and normal cell lines using contrast nano-particles. Bul. Institutului Politeh. Din Iaşi 2019, 65, 3. [Google Scholar]
- Rahman, A.; Rahman, A.K.; Rao, B. Early detection of skin cancer via terahertz spectral profiling and 3D imaging. Biosens. Bioelectron. 2016, 82, 64–70. [Google Scholar] [CrossRef]
- Zhang, C.H.; Zhao, G.F.; Jin, B.B.; Hou, Y.Y.; Jia, H.H.; Chen, J.; Wu, P.H. Terahertz Imaging on Subcutaneous Tissues and Liver Inflamed by Liver Cancer Cells. Terahertz Sci. Technol. 2012, 5, 114–123. [Google Scholar]
- Fitzgerald, A.J.; Wallace, V.P.; Jimenez-Linan, M.; Bobrow, L.; Pye, R.J.; Purushotham, A.D.; Arnone, D.D. Terahertz pulsed imaging of human breast tumor. Radiology 2006, 2, 3533–3540. [Google Scholar] [CrossRef]
- Chen, H.; Chen, T.-H.; Tseng, T.-F.; Lu, J.-T.; Kuo, C.-C.; Fu, S.-C.; Lee, W.-J.; Tsai, Y.-F.; Huang, Y.-Y.; Chuang, E.Y.; et al. High-sensitivity in vivo THz transmission imaging of early human breast cancer in a subcutaneous xenograft mouse model. Opt. Express 2011, 19, 21552–21562. [Google Scholar] [CrossRef]
- Jung, E.-A.; Lim, M.-H.; Moon, K.-W.; Do, Y.-W.; Lee, S.-S.; Han, H.-W.; Choi, H.-J.; Cho, K.-S.; Kim, K.-R. Terahertz Pulse Imaging of Micrometastatic Lymph Nodes in Early-stage Cervical Cancer Patients. J. Opt. Soc. Korea 2011, 15, 155–160. [Google Scholar] [CrossRef]
- Joseph, C.S.; Patel, R.; Neel, V.A.; Giles, R.H.; Yaroslavsky, A.N. Imaging of ex vivo nonmelanoma skin cancers in the optical terahertz spectral regions. J. Biophotonics 2012, 7, 295–303. [Google Scholar] [CrossRef]
- Yagi, K.; Saka, A.; Nozawa, Y.; Nakamura, A. Prediction of Helicobacter pylori status by conventional endoscopy, narrow-band imaging magnifying endoscopy in stomach after endoscopic resection of gastric cancer. Helicobacter 2014, 19, 111–115. [Google Scholar] [CrossRef]
- Miyaki, R.; Yoshida, S.; Tanaka, S.; Kominami, Y.; Sanomura, Y.; Matsuo, T.; Oka, S.; Raytchev, B.; Tamaki, T.; Koide, T.; et al. Quantitative identification of mucosal gastric cancer under magnifying endoscopy with flexible spectral imaging color enhancement. J. Gastroenterol. Hepatol. 2013, 28, 841–847. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, J.; Huang, P.; Ge, W.; Hou, D.; Zhang, G. Inspecting human colon adenocarcinoma cell lines by using terahertz time-domain reflection spectroscopy. Spectrochim. Acta Mol. Biomol. Spectrosc. 2019, 211, 356–362. [Google Scholar] [CrossRef]
- Zhang, J.; Mu, N.; Liu, L.; Xie, J.; Feng, H.; Yao, J.; Chen, T.; Zhu, W. Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency. Biosens. Bioelectron. 2021, 185, 113241. [Google Scholar] [CrossRef]
- Chavez, T.; Bowman, T.; Wu, J.; Bailey, K.; El-Shenawee, M. Assessment of terahertz imaging for excised breast cancer tumors with image morphing. J. Infrared Millim. Terahertz Waves 2018, 39, 1283–1302. [Google Scholar] [CrossRef]
- Chavez, T.; Vohra, N.; Wu, J.; Bailey, K.; El-Shenawee, M. Breast cancer detection with low-dimensional ordered orthogonal projection in terahertz imaging. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 176–189. [Google Scholar] [CrossRef]
- Ashworth, P.C.; Pickwell-MacPherson, E.; Provenzano, E.; Pinder, S.E.; Purushotham, A.D.; Pepper, M.; Wallace, V.P. Terahertz pulsed spectroscopy of freshly excised human breast cancer. Opt. Express 2009, 17, 12444. [Google Scholar] [CrossRef]
- Chen, H.; Han, J.; Wang, D.; Zhang, Y.; Li, X.; Chen, X. In vivo estimation of breast cancer tissue volume in subcutaneous xenotransplantation mouse models by using a high-sensitivity fiber-based terahertz scanning imaging system. Front. Genet. 2021, 12, 700086. [Google Scholar] [CrossRef]
- Bowman, T.; Wu, Y.; Gauch, J.; Campbell, L.K.; El-Shenawee, M. Terahertz imaging of three-dimensional dehydrated breast cancer tumors. J. Infrared Millim. Terahertz Waves 2017, 38, 766–786. [Google Scholar] [CrossRef]
- Bowman, T.; Chavez, T.; Khan, K.; Wu, J.; Chakraborty, A.; Rajaram, N.; Bailey, K.; El-Shenawee, M. Pulsed terahertz imaging of breast cancer in freshly excised murine tumors. J. Biomed. Opt. 2018, 23, 1. [Google Scholar] [CrossRef]
- Vohra, N.; Bowman, T.; Bailey, K.; El-Shenawee, M. Terahertz imaging and characterization protocol for freshly excised breast cancer tumors. J. Vis. Exp. 2020, 158, e61007. [Google Scholar]
- Ke, L.; Wu, Q.Y.S.; Zhang, N.; Liu, H.W.; Teo, E.P.W.; Mehta, J.S.; Liu, Y.C. Ex vivo sensing and imaging of corneal scar tissues using terahertz time domain spectroscopy. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2021, 255, 119667. [Google Scholar] [CrossRef]
- Ke, J.; Jia, L.; Hu, Y.; Jiang, X.; Mo, H.; An, X.; Yuan, W. Clinical and experimental study of a terahertz time-domain system for the determination of the pathological margins of laryngeal carcinoma. World J. Surg. Oncol. 2022, 20, 339. [Google Scholar] [CrossRef]
- Hale, L.; Siday, T.; Mitrofanov, O. Near-field imaging and spectroscopy of terahertz resonators and metasurfaces. Opt. Mater. Express 2023, 13, 3068–3086. [Google Scholar] [CrossRef]
- Bin Ji, Y.; Park, C.H.; Kim, H.; Kim, S.-H.; Lee, G.M.; Noh, S.K.; Jeon, T.-I.; Son, J.-H.; Huh, Y.-M.; Haam, S.; et al. Feasibility of terahertz reflectometry for discrimination of human early gastric cancers. Biomed. Opt. Express 2015, 6, 1398. [Google Scholar]
- Li, D.; Yang, Z.; Fu, A.; Chen, T.; Chen, L.; Tang, M.; Zhang, H.; Mu, N.; Wang, S.; Liang, G.; et al. Detecting melanoma with a terahertz spectroscopy imaging technique. Spectrochim. Acta Mol. Biomol. Spectrosc. 2020, 234, 118229. [Google Scholar] [CrossRef]
- Fitzgerald, A.J.; Pickwell-MacPherson, E.; Wallace, V.P. Use of finite difference time domain simulations and debye theory for modelling the terahertz reflection response of normal and tumour breast tissue. PLoS ONE 2014, 9, e99291. [Google Scholar]
- Wang, Y.; Yang, F.; Zhang, J.; Wang, H.; Yue, X.; Liu, S. Application of artificial intelligence based on deep learning in breast cancer screening and imaging diagnosis. Neural Comput. Appl. 2021, 33, 9637–9647. [Google Scholar] [CrossRef]
- Fitzgerald, A.J. Classification of terahertz-pulsed imaging data from excised breast tissue. J. Biomed. Opt. 2012, 17, e016005. [Google Scholar] [CrossRef]
- Sy, S.; Huang, S.; Wáng, Y.X.; Yu, J.; Ahuja, A.; Zhang, Y.T.; Pickwell-MacPherson, E. Terahertz spectroscopy of liver cirrhosis: Investigating the origin of contrast. Phys. Med. Biol. 2010, 55, 7587–7596. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, J.; Zhang, G.; Fan, S.; Ge, W.; Hu, W.; Huang, P.; Hou, D.; Zheng, S. Characterization and discrimination of human colorectal cancer cells using terahertz spectroscopy. Spectrochim. Acta Mol. Biomol. Spectrosc. 2021, 256, 119713. [Google Scholar] [CrossRef]
- Doradla, P.; Alavi, K.; Joseph, C.S.; Giles, R.H. Continuous-wave terahertz reflection imaging of human colorectal tissue. Proc. SPIE 2013, 8624, 86240. [Google Scholar]
- Peng, Y.; Shi, C.; Wu, X.; Zhu, Y.; Zhuang, S. Terahertz imaging and spectroscopy in cancer diagnostics: A technical review. BME Front. 2020, 2020, 2547609. [Google Scholar] [CrossRef]
- Gezimati, M.; Singh, G. Advances in terahertz technology for cancer detection applications. Opt. Quantum Electron. 2023, 55, 151. [Google Scholar] [CrossRef]
- Cheon, H.; Hur, J.; Hwang, W.; Yang, H.; Son, J. Epigenetic modification of gene expression in cancer cells by terahertz demethylation. Sci. Rep. 2023, 13, 4930. [Google Scholar] [CrossRef]
- Zhan, X.; Liu, Y.; Chen, Z.; Luo, J.; Yang, S.; Yang, X. Revolutionary approaches for cancer diagnosis by terahertz-based spectroscopy and imaging. Talanta 2023, 259, 124483. [Google Scholar] [CrossRef]
- Chen, Y.; Li, D.; Liu, Y.; Hu, L.; Qi, Y.; Huang, Y.; Zhang, Z.; Chen, T.; Wang, C.; Zhong, S.; et al. Optimal frequency determination for terahertz technology-based detection of colitis-related cancer in mice. J. Biophotonics 2023, 16, e202300193. [Google Scholar] [CrossRef]
- Wei, Y.; Le, J.; Huang, L.; Tian, C. Efficient generation of intense broadband terahertz pulses from quartz. Appl. Phys. Lett. 2023, 122, 081105. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, Z.; Wang, X.; Miao, X.; Jiang, X.; Li, A. Tunable and switchable common-frequency broadband terahertz absorption, reflection and transmission based on graphene-photosensitive silicon metamaterials. Opt. Commun. 2023, 541, 129555. [Google Scholar] [CrossRef]
- Perera, P.G.T.; Appadoo, D.R.T.; Cheeseman, S.; Wandiyanto, J.V.; Linklater, D.; Dekiwadia, C.; Truong, V.K.; Tobin, M.J.; Vongsvivut, J.; Bazaka, O.; et al. PC 12 Pheochromocytoma Cell Response to Super High Frequency Terahertz Radiation from Synchrotron Source. Cancers 2019, 11, 162. [Google Scholar] [CrossRef]
- Yu, W.; Shi, J.; Huang, G.; Zhou, J.; Zhan, X.; Guo, Z.; Tian, H.; Xie, F.; Yang, X.; Fu, W. THz-ATR Spectroscopy Integrated with Species Recognition Based on Multi-Classifier Voting for Automated Clinical Microbial Identification. Biosensors 2022, 12, 378. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, R.; Ling, Y.; Tang, H.; She, R.; Wei, G.; Gong, X.; Lu, Y. Automatic recognition of breast invasive ductal carcinoma based on terahertz spectroscopy with wavelet packet transform and machine learning. Biomed. Opt. Express 2020, 11, 971. [Google Scholar] [CrossRef]
- Danciu, M.; Alexa-Stratulat, T.; Stefanescu, C.; Dodi, G.; Tamba, B.I.; Mihai, C.T.; Stanciu, G.D.; Luca, A.; Spiridon, I.A.; Ungureanu, L.B.; et al. Terahertz Spectroscopy and Imaging: A Cutting-Edge Method for Diagnosing Digestive Cancers. Materials 2019, 12, 1519. [Google Scholar] [CrossRef]
- Wu, L.; Xu, D.; Wang, Y.; Zhang, Y.; Wang, H.; Liao, B.; Gong, S.; Chen, T.; Wu, N.; Feng, H.; et al. Horizontal-scanning attenuated total reflection terahertz imaging for biological tissues. Neurophotonics 2020, 7, 025005. [Google Scholar] [CrossRef]
- Shiraga, K.; Suzuki, T.; Kondo, N.; Tanaka, K.; Ogawa, Y. Hydration state inside HeLa cell monolayer investigated with terahertz spectroscopy. Appl. Phys. Lett. 2015, 106, 253701. [Google Scholar] [CrossRef]
- Jepsen, P.U.; Cooke, D.G.; Koch, M. Terahertz spectroscopy and imaging–Modern techniques and applications. Laser Photonics Rev. 2011, 5, 124–166. [Google Scholar] [CrossRef]
- Wilcoxon, F. Individual Comparisons by Ranking Methods. Biom. Bull. 1945, 1, 80–83. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Pearson Prentice-Hall: Old Bridge, NJ, USA, 2010; pp. 179–188. [Google Scholar]
- Sadeghi, L.; Yousefi Babadi, V.; Espanani, H.R. Toxic effects of the Fe2O3 nanoparticles on the liver and lung tissue. Bratisl. Lek. Listy 2015, 116, 373–378. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, J.; Wang, D.; Li, X.; Qiu, T.; Chen, H.; Chen, X. Application of THz Time-Domain Spectroscopy to Diagnose Gastric Cancer Tissues in Surgical Resected Specimens. J. Infrared Millim. Terahertz Waves 2021, 42, 802–812. [Google Scholar]
- Grigorev, R.; Kuzikova, A.; Kurasova, A.; Khodzitsky, M.; Demchenko, P.S.; Zakharenko, A.; Senyuk, A.; Khamid, A.; Belolipetskaya, J. Terahertz time-domain spectroscopy for human gastric cancer diagnosis. In Proceedings of the European Conference on Biomedical Optics 2019, Munich, Germany, 23–25 June 2019. [Google Scholar] [CrossRef]
- Shi, H.; Li, T.; Liu, Z.; Zhao, J.; Qi, F. Early detection of gastric cancer via high-resolution terahertz imaging system. Front. Bioeng. Biotechnol. 2022, 10, 1052069. [Google Scholar] [CrossRef]
- Hernandez-Cardoso, G.G.; Amador-Medina, L.F.; Gutierrez-Torres, G.; Reyes-Reyes, E.S.; Martínez, C.A.B.; Espinoza, C.C.; Cruz, J.A.; Salas-Gutierrez, I.; Murillo-Ortíz, B.O.; Castro-Camus, E. Terahertz imaging demonstrates its diagnostic potential and reveals a relationship between cutaneous dehydration and neuropathy for diabetic foot syndrome patients. Sci. Rep. 2022, 12, 3110. [Google Scholar] [PubMed]
- Nikitkina, A.I.; Bikmulina, P.Y.; Gafarova, E.R.; Kosheleva, N.V.; Efremov, Y.M.; Bezrukov, E.A.; Butnaru, D.V.; Dolganova, I.N.; Chernomyrdin, N.V.; Cherkasova, O.P.; et al. Terahertz radiation and the skin: A review. J. Biomed. Opt. 2021, 26, 043005. [Google Scholar] [CrossRef]
- Kucheryavenko, A.S.; Zhelnov, V.A.; Melikyants, D.G.; Chernomyrdin, N.V.; Lebedev, S.P.; Bukin, V.V.; Garnov, S.V.; Kurlov, V.N.; Zaytsev, K.I.; Katyba, G.M. Super-resolution THz endoscope based on a hollow-core sapphire waveguide and a solid immersion lens. Opt. Express 2023, 31, 13366–13373. [Google Scholar] [CrossRef]
- Zhang, X. Discussion on the Possibility of Using Terahertz Enhanced Endoscope to Detect Early-Stage Cancer. 2023. Available online: https://ssrn.com/abstract=4679748 (accessed on 25 June 2024). [CrossRef]
- Doradla, P.; Joseph, C.; Giles, R. Terahertz endoscopic imaging for colorectal cancer detection: Current status and future perspectives. World J. Gastrointest. Endosc. 2017, 16–19, 346–358. [Google Scholar] [CrossRef]
Sample Type | p-Value |
---|---|
Support medium (without cells) vs. support medium with nanoparticles | 0.000 * |
Normal cells vs. normal cells with nanoparticles | 0.027 * |
Tumor cells vs. tumor cells with nanoparticles | 0.086 |
Normal cells vs. tumor cells | 0.227 |
Normal cells with nanoparticles vs. tumor cells with nanoparticles | 0.731 |
Difference in differences | 0.487 |
Sample Type | 0.06–1 THz | 1–2 THz | 2–3 THz | 3–4 THz |
---|---|---|---|---|
Normal cells vs. normal cells with nanoparticles | 0.000 * | 0.0012 * | 0.145 | 0.016 * |
Tumor cells vs. tumor cells with nanoparticles | 0.000 * | 0.517 | 0.106 | 0.0000 * |
Normal cells vs. tumor cells | 0.000 * | 0.021 * | 0.609 | 0.629 |
Normal cells with nanoparticles vs. tumor cells with nanoparticles | 0.000 * | 0.394 | 0.497 | 0.043 * |
Difference in differences | 0.000 * | 0.168 | 0.981 | 0.243 |
Sample Type | p-Value |
---|---|
Support medium (without cells) vs. support medium with nanoparticles | 0.342 |
Normal cells vs. normal cells with nanoparticles | 0.0000 * |
Tumor cells vs. tumor cells with nanoparticles | 0.0021 * |
Normal cells vs. tumor cells | 0.0000 * |
Normal cells with nanoparticles vs. tumor cells with nanoparticles | 0.123 |
Difference in differences | 0.0000 * |
Sample Type | 0.06–1 THz | 1–2 THz | 2–3 THz | 3–4 THz |
---|---|---|---|---|
Normal cells vs. normal cells with nanoparticles | 0.0000 * | 0.971 | 0.0033 * | 0.0000 * |
Tumor cells vs. tumor cells with nanoparticles | 0.0000 * | 0.0062 * | 0.666 | 0.0107 * |
Normal cells vs. tumor cells | 0.0000 * | 0.0044 * | 0.065 | 0.061 |
Normal cells with nanoparticles vs. tumor cells with nanoparticles | 0.0034 * | 0.0040 * | 0.0000 * | 0.0000 * |
Difference in differences | 0.0000 * | 0.051 * (limit) | 0.055 * (limit) | 0.0000 * |
Frequency | 0.06–1 THz | 1–2 THz | 2–3 THz | 3–4 THz |
---|---|---|---|---|
d1–d2 | 0.097 | 0.0012 * | 0.159 | 0.6099 |
d3–d4 | 0.0039 * | 0.0003 * | 0.544 | 0.7877 |
d5–d6 | 0.0033 * | 0.7009 | 0.7134 | 0.0015 * |
d7–d8 | 0.0000 * | 0.0000 * | 0.0000 * | 0.0000 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schreiner, O.D.; Socotar, D.; Ciobanu, R.C.; Schreiner, T.G.; Tamba, B.I. Statistical Analysis of Gastric Cancer Cells Response to Broadband Terahertz Radiation with and without Contrast Nanoparticles. Cancers 2024, 16, 2454. https://doi.org/10.3390/cancers16132454
Schreiner OD, Socotar D, Ciobanu RC, Schreiner TG, Tamba BI. Statistical Analysis of Gastric Cancer Cells Response to Broadband Terahertz Radiation with and without Contrast Nanoparticles. Cancers. 2024; 16(13):2454. https://doi.org/10.3390/cancers16132454
Chicago/Turabian StyleSchreiner, Oliver Daniel, Diana Socotar, Romeo Cristian Ciobanu, Thomas Gabriel Schreiner, and Bogdan Ionel Tamba. 2024. "Statistical Analysis of Gastric Cancer Cells Response to Broadband Terahertz Radiation with and without Contrast Nanoparticles" Cancers 16, no. 13: 2454. https://doi.org/10.3390/cancers16132454
APA StyleSchreiner, O. D., Socotar, D., Ciobanu, R. C., Schreiner, T. G., & Tamba, B. I. (2024). Statistical Analysis of Gastric Cancer Cells Response to Broadband Terahertz Radiation with and without Contrast Nanoparticles. Cancers, 16(13), 2454. https://doi.org/10.3390/cancers16132454