Current and Future of Robotic Surgery in Thyroid Cancer Treatment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Robotic Surgical Techniques in Thyroid Cancer Treatment
2.1. Transaxillary Approach
- (1)
- Position
- (2)
- Skin flap creation
- (3)
- Robot docking
- (4)
- RT
- (5)
- Single-port (SP) transaxillary robotic thyroidectomy
- (6)
- Gas-insufflation one-step single-port transaxillary (GOSTA) approach
2.2. Bilateral Axillo–Breast Approach
- (1)
- Position
- (2)
- Skin flap creation
- (3)
- Robot docking
- (4)
- RT
2.3. Transoral Approach
- (1)
- Position
- (2)
- Skin flap creation
- (3)
- Robot docking
- (4)
- RT
3. Advantages of Robotic Thyroidectomy
3.1. Cosmetic Benefits
3.2. Enhanced Precision
3.3. Reduced Postoperative Pain
3.4. Low Complication Rates
3.5. Postoperative Recovery
3.6. Oncologic Outcome
3.7. Comparable Training Requirements
4. Limitations of Robotic Thyroidectomy
4.1. Longer Operative Time
4.2. High Costs
4.3. New Complications
5. Comparisons between Different Approaches of RT
5.1. Postoperative Pain
5.2. Operating Time
5.3. Cosmetic Satisfaction
6. Future Directions and Innovations in Robotic Thyroid Surgery
6.1. Technological Advancements
6.2. Tele-Surgery and Remote Assistance
6.3. Single-Port Surgery
6.4. The Role of Fluorescence
6.5. Potential Applications of Artificial Intelligence (AI)
6.6. Integration with Precision Medicine Approaches
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Davies, L.; Welch, H.G. Current thyroid cancer trends in the United States. JAMA Otolaryngol.-Head Neck Surg. 2014, 140, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Devesa, S.S.; Sosa, J.A.; Check, D.; Kitahara, C.M. Trends in thyroid cancer incidence and mortality in the United States, 1974–2013. Jama 2017, 317, 1338–1348. [Google Scholar] [CrossRef] [PubMed]
- Dal Maso, L.; Panato, C.; Franceschi, S.; Serraino, D.; Buzzoni, C.; Busco, S.; Ferretti, S.; Torrisi, A.; Falcini, F.; Zorzi, M. The impact of overdiagnosis on thyroid cancer epidemic in Italy, 1998–2012. Eur. J. Cancer 2018, 94, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Davies, L.; Welch, H.G. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA 2006, 295, 2164–2167. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Dal Maso, L.; Vaccarella, S. Global trends in thyroid cancer incidence and the impact of overdiagnosis. Lancet Diabetes Endocrinol. 2020, 8, 468–470. [Google Scholar] [CrossRef] [PubMed]
- Sipos, J.; Mazzaferri, E.L. Thyroid cancer epidemiology and prognostic variables. Clin. Oncol. 2010, 22, 395–404. [Google Scholar] [CrossRef]
- Townsend, C.M.; Beauchamp, R.D.; Evers, B.M.; Mattox, K.L. Sabiston Textbook of Surgery: The Biological Basis of Modern Surgical Practice; Elsevier Health Sciences: Amsterdam, The Netherlands, 2016. [Google Scholar]
- De Palma, M.; Rosato, L.; Zingone, F.; Orlando, G.; Antonino, A.; Vitale, M.; Puzziello, A. Post-thyroidectomy complications. The role of the device: Bipolar vs ultrasonic device: Collection of data from 1,846 consecutive patients undergoing thyroidectomy. Am. J. Surg. 2016, 212, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Bang, H.S.; Jeong, J.H.; Kwak, S.G.; Choi, Y.Y.; Tae, K. Cosmetic outcomes after transoral robotic thyroidectomy: Comparison with transaxillary, postauricular, and conventional approaches. Oral Oncol. 2021, 114, 105139. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.W.; Jung, J.H.; Park, H.Y. A single surgeon’s experience and surgical outcomes of 300 robotic thyroid surgeries using a bilateral axillo-breast approach. J. Surg. Oncol. 2015, 111, 135–140. [Google Scholar] [CrossRef]
- Paek, S.H.; Kang, K.H.; Park, S.J. A comparison of robotic versus open thyroidectomy for papillary thyroid cancer. Surg. Laparosc. Endosc. Percutaneous Tech. 2018, 28, 170–173. [Google Scholar] [CrossRef]
- de Vries, L.H.; Aykan, D.; Lodewijk, L.; Damen, J.A.; Borel Rinkes, I.H.; Vriens, M.R. Outcomes of minimally invasive thyroid surgery–a systematic review and meta-analysis. Front. Endocrinol. 2021, 12, 719397. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, P.; Viani, L.; Montana, C.M.; Cozzani, F.; Sianesi, M. Minimally invasive thyroidectomy: A ten years experience. Gland Surg. 2016, 5, 295. [Google Scholar] [CrossRef]
- Duek, I.; Duek, O.S.; Fliss, D.M. Minimally invasive approaches for thyroid surgery—Pitfalls and promises. Curr. Oncol. Rep. 2020, 22, 77. [Google Scholar] [CrossRef]
- Sun, G.H.; Peress, L.; Pynnonen, M.A. Systematic review and meta-analysis of robotic vs conventional thyroidectomy approaches for thyroid disease. Otolaryngol.-Head Neck Surg. 2014, 150, 520–532. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Ahmad, Z.F.; Carleton, J.D.; Agarwala, A. Robotic surgery: Current perceptions and the clinical evidence. Surg. Endosc. 2017, 31, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.-W.; Jeong, J.J.; Nam, K.-H.; Chang, H.S.; Chung, W.Y.; Park, C.S. Robot-assisted endoscopic thyroidectomy for thyroid malignancies using a gasless transaxillary approach. J. Am. Coll. Surg. 2009, 209, e1–e7. [Google Scholar] [CrossRef]
- Fregoli, L.; Materazzi, G.; Miccoli, M.; Papini, P.; Guarino, G.; Wu, H.-S.; Miccoli, P. Postoperative pain evaluation after robotic transaxillary thyroidectomy versus conventional thyroidectomy: A prospective study. J. Laparoendosc. Adv. Surg. Tech. 2017, 27, 146–150. [Google Scholar] [CrossRef]
- Ryu, H.R.; Lee, J.; Park, J.-H.; Kang, S.-W.; Jeong, J.J.; Hong, J.-Y.; Chung, W.Y. A comparison of postoperative pain after conventional open thyroidectomy and transaxillary single-incision robotic thyroidectomy: A prospective study. Ann. Surg. Oncol. 2013, 20, 2279–2284. [Google Scholar] [CrossRef] [PubMed]
- Kandil, E.H.; Noureldine, S.I.; Yao, L.; Slakey, D.P. Robotic transaxillary thyroidectomy: An examination of the first one hundred cases. J. Am. Coll. Surg. 2012, 214, 558–564. [Google Scholar] [CrossRef]
- Kang, S.-W.; Lee, S.C.; Lee, S.H.; Lee, K.Y.; Jeong, J.J.; Lee, Y.S.; Nam, K.-H.; Chang, H.S.; Chung, W.Y.; Park, C.S. Robotic thyroid surgery using a gasless, transaxillary approach and the da Vinci S system: The operative outcomes of 338 consecutive patients. Surgery 2009, 146, 1048–1055. [Google Scholar] [CrossRef]
- Chae, S.; Min, S.Y.; Park, W.S. Comparison study of robotic thyroidectomies through a bilateral axillo-breast approach and a transoral approach. J. Laparoendosc. Adv. Surg. Tech. 2020, 30, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Chai, Y.J.; Dionigi, G.; Anuwong, A.; Richmon, J.D. Transoral robotic thyroidectomy: Lessons learned from an initial consecutive series of 24 patients. Surg. Endosc. 2018, 32, 688–694. [Google Scholar] [CrossRef]
- Lee, K.E.; Choi, J.Y.; Youn, Y.-K. Bilateral axillo-breast approach robotic thyroidectomy. Surg. Laparosc. Endosc. Percutaneous Tech. 2011, 21, 230–236. [Google Scholar] [CrossRef]
- Kwak, H.Y.; Kim, H.Y.; Lee, H.Y.; Jung, S.P.; Woo, S.U.; Son, G.S.; Lee, J.B.; Bae, J.W. Robotic thyroidectomy using bilateral axillo-breast approach: Comparison of surgical results with open conventional thyroidectomy. J. Surg. Oncol. 2015, 111, 141–145. [Google Scholar] [CrossRef]
- Lee, J.; Kwon, I.S.; Bae, E.H.; Chung, W.Y. Comparative analysis of oncological outcomes and quality of life after robotic versus conventional open thyroidectomy with modified radical neck dissection in patients with papillary thyroid carcinoma and lateral neck node metastases. J. Clin. Endocrinol. Metab. 2013, 98, 2701–2708. [Google Scholar] [CrossRef]
- Lee, J.; Nah, K.Y.; Kim, R.M.; Ahn, Y.H.; Soh, E.-Y.; Chung, W.Y. Differences in postoperative outcomes, function, and cosmesis: Open versus robotic thyroidectomy. Surg. Endosc. 2010, 24, 3186–3194. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, J.; Ma, J.; Liu, J.; Cui, X.; Yuan, J.; Zhang, Y.; Qi, X.; Fan, L. Unilateral axilla-bilateral areola approach for thyroidectomy by da Vinci robot vs. open surgery in thyroid cancer: A retrospective observational study. Gland Surg. 2021, 10, 1291. [Google Scholar] [CrossRef] [PubMed]
- Cabot, J.C.; Lee, C.R.; Brunaud, L.; Kleiman, D.A.; Chung, W.Y.; Fahey III, T.J.; Zarnegar, R. Robotic and endoscopic transaxillary thyroidectomies may be cost prohibitive when compared to standard cervical thyroidectomy: A cost analysis. Surgery 2012, 152, 1016–1024. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.N.; Park, W.S.; Min, S.Y.; Han, S.-A.; Song, J.-Y. Surgical outcomes of robotic thyroidectomy vs. conventional open thyroidectomy for papillary thyroid carcinoma. World J. Surg. Oncol. 2016, 14, 181. [Google Scholar] [CrossRef]
- Broome, J.T.; Pomeroy, S.; Solorzano, C.C. Expense of robotic thyroidectomy: A cost analysis at a single institution. Arch. Surg. 2012, 147, 1102–1106. [Google Scholar] [CrossRef]
- Park, J.; Kang, L.K.; Kim, K.; Bae, J.S.; Kim, J.S. The learning curve for single-port transaxillary robotic thyroidectomy (SP-TART): Experience through initial 50 cases of lobectomy. Updates Surg. 2023, 75, 691–700. [Google Scholar] [CrossRef]
- Lee, J.; Yun, J.H.; Choi, U.J.; Kang, S.-W.; Jeong, J.J.; Chung, W.Y. Robotic versus endoscopic thyroidectomy for thyroid cancers: A multi-institutional analysis of early postoperative outcomes and surgical learning curves. J. Oncol. 2012, 2012, 734541. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Yun, J.H.; Nam, K.H.; Soh, E.-Y.; Chung, W.Y. The learning curve for robotic thyroidectomy: A multicenter study. Ann. Surg. Oncol. 2011, 18, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, H.; Xue, W.; Zhang, Z.; Cong, R.; Sun, B.; Xia, F.; Li, X. Learning curve for robotic thyroidectomy using BABA: CUSUM analysis of a single surgeon’s experience. Front. Endocrinol. 2022, 13, 942973. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.-X.; Gao, H.-J.; Ying, X.-Y.; Chen, X.; Li, Q.-Y.; Qiu, W.-H.; Yan, J.-Q. Robotic thyroidectomy via bilateral axillo-breast approach: Experience and learning curve through initial 220 cases. Asian J. Surg. 2020, 43, 482–487. [Google Scholar] [CrossRef]
- You, J.Y.; Kim, H.K.; Kim, H.Y.; Fu, Y.; Chai, Y.J.; Dionigi, G.; Tufano, R.P. Bilateral axillo-breast approach robotic thyroidectomy: Review of a single surgeon’s consecutive 317 cases. Gland Surg. 2021, 10, 1962. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-H.; Kim, H.-Y.; Anuwong, A.; Huang, T.-S.; Duh, Q.-Y. Transoral robotic thyroidectomy versus transoral endoscopic thyroidectomy: A propensity-score-matched analysis of surgical outcomes. Surg. Endosc. 2021, 35, 6179–6189. [Google Scholar] [CrossRef]
- Kim, K.-h.; Ji, Y.B.; Song, C.M.; Kim, E.; Kim, K.N.; Tae, K. Learning curve of transoral robotic thyroidectomy. Surg. Endosc. 2023, 37, 535–543. [Google Scholar] [CrossRef]
- Ryu, H.R.; Kang, S.-W.; Lee, S.H.; Rhee, K.Y.; Jeong, J.J.; Nam, K.-H.; Chung, W.Y.; Park, C.S. Feasibility and safety of a new robotic thyroidectomy through a gasless, transaxillary single-incision approach. J. Am. Coll. Surg. 2010, 211, e13–e19. [Google Scholar] [CrossRef]
- Holsinger, F.C.; Chung, W.Y. Robotic thyroidectomy. Otolaryngol. Clin. N. Am. 2014, 47, 373–378. [Google Scholar] [CrossRef]
- Kim, J.K.; Choi, S.H.; Choi, S.M.; Choi, H.R.; Lee, C.R.; Kang, S.-W.; Jeong, J.J.; Nam, K.-H.; Chung, W.Y. Single-port transaxillary robotic thyroidectomy (START): 200-cases with two-step retraction method. Surg. Endosc. 2022, 36, 2688–2696. [Google Scholar] [CrossRef] [PubMed]
- An, S.; Park, J.; Kim, K.; Bae, J.S.; Kim, J.S. Safety and surgical outcomes of single-port trans-axillary robot-assisted thyroidectomy: Experience from a consecutive series of 300 patients. J. Robot. Surg. 2024, 18, 13. [Google Scholar] [CrossRef] [PubMed]
- Ryu, C.H.; Seok, J.; Jung, Y.-S.; Ryu, J. Novel robot-assisted thyroidectomy by a transaxillary gas-insufflation approach (TAGA): A preliminary report. Gland Surg. 2020, 9, 1267. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.Y.; Chang, Y.W.; Ku, D.; Ko, S.Y.; Lee, H.Y.; Son, G.S. Robotic thyroidectomy using gas-insufflation one-step single-port transaxillary (GOSTA) approach. Surg. Endosc. 2023, 37, 8861–8870. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.E.; Rao, J.; Youn, Y.-K. Endoscopic thyroidectomy with the da Vinci robot system using the bilateral axillary breast approach (BABA) technique: Our initial experience. Surg. Laparosc. Endosc. Percutaneous Tech. 2009, 19, e71–e75. [Google Scholar] [CrossRef] [PubMed]
- Richmon, J.D.; Kim, H.Y. Transoral robotic thyroidectomy (TORT): Procedures and outcomes. Gland Surg. 2017, 6, 285. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Ryu, H.R.; Park, J.H.; Kim, K.H.; Kang, S.-W.; Jeong, J.J.; Nam, K.-H.; Chung, W.Y.; Park, C.S. Early surgical outcomes comparison between robotic and conventional open thyroid surgery for papillary thyroid microcarcinoma. Surgery 2012, 151, 724–730. [Google Scholar] [CrossRef]
- Foley, C.S.; Agcaoglu, O.; Siperstein, A.E.; Berber, E. Robotic transaxillary endocrine surgery: A comparison with conventional open technique. Surg. Endosc. 2012, 26, 2259–2266. [Google Scholar] [CrossRef] [PubMed]
- Landry, C.S.; Grubbs, E.G.; Warneke, C.L.; Ormond, M.; Chua, C.; Lee, J.E.; Perrier, N.D. Robot-assisted transaxillary thyroid surgery in the United States: Is it comparable to open thyroid lobectomy? Ann. Surg. Oncol. 2012, 19, 1269–1274. [Google Scholar] [CrossRef]
- Kang, S.-W.; Lee, S.H.; Park, J.H.; Jeong, J.S.; Park, S.; Lee, C.R.; Jeong, J.J.; Nam, K.-H.; Chung, W.Y.; Park, C.S. A comparative study of the surgical outcomes of robotic and conventional open modified radical neck dissection for papillary thyroid carcinoma with lateral neck node metastasis. Surg. Endosc. 2012, 26, 3251–3257. [Google Scholar] [CrossRef]
- Yi, O.; Yoon, J.H.; Lee, Y.-M.; Sung, T.-Y.; Chung, K.-W.; Kim, T.Y.; Kim, W.B.; Shong, Y.K.; Ryu, J.-S.; Hong, S.J. Technical and oncologic safety of robotic thyroid surgery. Ann. Surg. Oncol. 2013, 20, 1927–1933. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.A.; Kim, K.; Kim, J.K.; Kang, S.-W.; Lee, J.; Jeong, J.J.; Nam, K.-H.; Chung, W.Y. Comparison of surgical outcomes between robotic transaxillary and conventional open thyroidectomy in pediatric thyroid cancer. Cancers 2021, 13, 3293. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.W.; Kim, J.S.; Hur, S.M.; Kim, S.H.; Lee, S.-K.; Choi, J.H.; Kim, S.; Lee, J.E.; Kim, J.-H.; Nam, S.J. Is robotic surgery superior to endoscopic and open surgeries in thyroid cancer? World J. Surg. 2011, 35, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Chai, Y.J.; Suh, H.; Woo, J.-W.; Yu, H.W.; Song, R.-Y.; Kwon, H.; Lee, K.E. Surgical safety and oncological completeness of robotic thyroidectomy for thyroid carcinoma larger than 2 cm. Surg. Endosc. 2017, 31, 1235–1240. [Google Scholar] [CrossRef] [PubMed]
- Bae, D.S.; Koo, D.H. A propensity score-matched comparison study of surgical outcomes in patients with differentiated thyroid cancer after robotic versus open total thyroidectomy. World J. Surg. 2019, 43, 540–551. [Google Scholar] [CrossRef] [PubMed]
- Paek, S.H.; Lee, H.A.; Kwon, H.; Kang, K.H.; Park, S.J. Comparison of robot-assisted modified radical neck dissection using a bilateral axillary breast approach with a conventional open procedure after propensity score matching. Surg. Endosc. 2020, 34, 622–627. [Google Scholar] [CrossRef] [PubMed]
- You, J.Y.; Kim, H.Y.; Chai, Y.J.; Kim, H.K.; Anuwong, A.; Tufano, R.P.; Dionigi, G. Transoral robotic thyroidectomy versus conventional open thyroidectomy: Comparative analysis of surgical outcomes in thyroid malignancies. J. Laparoendosc. Adv. Surg. Tech. 2019, 29, 796–800. [Google Scholar] [CrossRef] [PubMed]
- Tae, K.; Ji, Y.B.; Song, C.M.; Park, J.S.; Park, J.H.; Kim, D.S. Safety and efficacy of transoral robotic and endoscopic thyroidectomy: The first 100 cases. Head Neck 2020, 42, 321–329. [Google Scholar] [CrossRef]
- Song, C.M.; Park, J.S.; Park, H.J.; Tae, K. Voice outcomes of transoral robotic thyroidectomy: Comparison with conventional trans-cervical thyroidectomy. Oral Oncol. 2020, 107, 104748. [Google Scholar] [CrossRef]
- You, J.Y.; Kim, H.Y.; Park, D.W.; Yang, H.W.; Kim, H.K.; Dionigi, G.; Tufano, R.P. Transoral robotic thyroidectomy versus conventional open thyroidectomy: Comparative analysis of surgical outcomes using propensity score matching. Surg. Endosc. 2021, 35, 124–129. [Google Scholar] [CrossRef]
- Lee, S.J.; Ryu, S.R.; Ji, Y.B.; Song, C.M.; Park, J.H.; Kim, D.S.; Tae, K. Five-year oncologic outcome and surgical completeness of transoral robotic thyroidectomy for papillary thyroid carcinoma: Comparison with conventional transcervical thyroidectomy using propensity score matching. Ann. Surg. Oncol. 2023, 30, 2256–2264. [Google Scholar] [CrossRef] [PubMed]
- Badani, K.K.; Bhandari, A.; Tewari, A.; Menon, M. Comparison of two-dimensional and three-dimensional suturing: Is there a difference in a robotic surgery setting? J. Endourol. 2005, 19, 1212–1215. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.W.; Lee, H.Y.; Ji, W.B.; Kim, H.Y.; Kim, W.Y.; Lee, J.B.; Son, G.S. Detailed comparison of robotic and endoscopic transaxillary thyroidectomy. Asian J. Surg. 2020, 43, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Hu, Y.; Zhao, Q.; Li, Q. Learning curve for endoscope holder in endoscopic thyroidectomy via complete areola approach: A prospective study. Surg. Endosc. 2015, 29, 1920–1926. [Google Scholar] [CrossRef]
- Kwak, H.Y.; Kim, S.H.; Chae, B.J.; Song, B.J.; Jung, S.S.; Bae, J.S. Learning curve for gasless endoscopic thyroidectomy using the trans-axillary approach: CUSUM analysis of a single surgeon’s experience. Int. J. Surg. 2014, 12, 1273–1277. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.Y.; Oh, D.J.; Kang, K.R.; Kim, M.-S.; Oh, K.H.; Baek, S.-K.; Kwon, S.-Y.; Woo, J.-S.; Jung, K.-Y. Comparison of learning curves for retroauricular and transaxillary endoscopic hemithyroidectomy. Ann. Surg. Oncol. 2016, 23, 4023–4028. [Google Scholar] [CrossRef]
- Liang, T.-J.; Tsai, C.-Y.; Liu, S.-I.; Chen, I.-S. Multidimensional analyses of the learning curve of endoscopic thyroidectomy. World J. Surg. 2021, 45, 1446–1456. [Google Scholar] [CrossRef]
- Liu, S.; Qiu, M.; Jiang, D.-Z.; Zheng, X.-M.; Zhang, W.; Shen, H.-L.; Shan, C.-X. The learning curve for endoscopic thyroidectomy: A single surgeon’s experience. Surg. Endosc. 2009, 23, 1802–1806. [Google Scholar] [CrossRef] [PubMed]
- Razavi, C.R.; Vasiliou, E.; Tufano, R.P.; Russell, J.O. Learning curve for transoral endoscopic thyroid lobectomy. Otolaryngol.-Head Neck Surg. 2018, 159, 625–629. [Google Scholar] [CrossRef]
- Fernandez-Ranvier, G.; Lieberman, B.; Guevara, D.; Voogd, A.; Matsuda, M.E.; Eck, K.; Inabnet, W.B.; Damiano, G.A. Transoral Endoscopic Thyroidectomy Vestibular Approach (TOETVA) learning curve: A regression analysis of complication rates and severity. Surg. Endosc. 2022, 36, 4839–4844. [Google Scholar] [CrossRef]
- Lira, R.B.; Ramos, A.T.; Nogueira, R.M.R.; de Carvalho, G.B.; Russell, J.O.; Tufano, R.P.; Kowalski, L.P. Transoral thyroidectomy (TOETVA): Complications, surgical time and learning curve. Oral Oncol. 2020, 110, 104871. [Google Scholar] [CrossRef]
- Qu, R.; Wang, J.; Li, J.; Dong, Z.; Yang, J.; Liu, D.; Wang, C. The learning curve for surgeons regarding endoscopic thyroidectomy via the oral-vestibular approach. Surg. Laparosc. Endosc. Percutaneous Tech. 2018, 28, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Kuo, T.-C.; Duh, Q.-Y.; Wang, Y.-C.; Lai, C.-W.; Chen, K.-Y.; Lin, M.-T.; Wu, M.-H. Practice patterns and learning curve in transoral endoscopic thyroidectomy vestibular approach with neuromonitoring. Front. Endocrinol. 2021, 12, 744359. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.-H.; Xiang, C.; Wang, P.; Wang, Y. The learning curve for transoral endoscopic thyroid surgery: A single surgeon’s 204 case experience. J. Laparoendosc. Adv. Surg. Tech. 2020, 30, 163–169. [Google Scholar] [CrossRef]
- Chai, Y.J.; Chae, S.; Oh, M.Y.; Kwon, H.; Park, W.S. Transoral endoscopic thyroidectomy vestibular approach (TOETVA): Surgical outcomes and learning curve. J. Clin. Med. 2021, 10, 863. [Google Scholar] [CrossRef]
- Lee, M.J.; Oh, M.Y.; Lee, J.-M.; Sun, J.; Chai, Y.J. Comparative surgical outcomes of transoral endoscopic and robotic thyroidectomy for thyroid carcinoma: A propensity score-matched analysis. Surg. Endosc. 2023, 37, 1132–1139. [Google Scholar] [CrossRef]
- Kiong, K.L.; Iyer, N.G.; Skanthakumar, T.; Ng, J.C.F.; Tan, N.C.; Tay, H.N.; Tan, H.K. Transaxillary thyroidectomies: A comparative learning experience of robotic vs endoscopic thyroidectomies. Otolaryngol.-Head Neck Surg. 2015, 152, 820–826. [Google Scholar] [CrossRef]
- Matteucci, V.; Fregoli, L.; Papini, P.; Rossi, L.; Matrone, A.; Miccoli, M.; Elisei, R.; Materazzi, G. Comparison of surgical completeness in patients operated on conventional open total thyroidectomy (OT) or trans-axillary robot-assisted total thyroidectomy (RATT) by a single axillary approach. Updates Surg. 2023, 75, 1267–1275. [Google Scholar] [CrossRef] [PubMed]
- Tae, K. Transoral robotic thyroidectomy using the da Vinci single-port surgical system. Gland Surg. 2020, 9, 614. [Google Scholar] [CrossRef]
- Tae, K.; Ji, Y.B.; Song, C.M.; Ryu, J. Robotic and endoscopic thyroid surgery: Evolution and advances. Clin. Exp. Otorhinolaryngol. 2019, 12, 1. [Google Scholar] [CrossRef]
- Alkan, U.; Zarchi, O.; Rabinovics, N.; Nachalon, Y.; Feinmesser, R.; Bachar, G. The cause of brachial plexopathy in robot-assisted transaxillary thyroidectomy—A neurophysiological investigation. Laryngoscope 2016, 126, 2187–2193. [Google Scholar] [CrossRef]
- Ban, E.J.; Yoo, J.Y.; Kim, W.W.; Son, H.Y.; Park, S.; Lee, S.H.; Lee, C.R.; Kang, S.-W.; Jeong, J.J.; Nam, K.-H. Surgical complications after robotic thyroidectomy for thyroid carcinoma: A single center experience with 3,000 patients. Surg. Endosc. 2014, 28, 2555–2563. [Google Scholar] [CrossRef]
- Fregoli, L.; Bakkar, S.; Papini, P.; Torregrossa, L.; Ugolini, C.; Rossi, L.; Matrone, A.; Elisei, R.; Materazzi, G. First report of benign track seeding after robot-assisted transaxillary thyroid surgery. Am. J. Otolaryngol. 2021, 42, 102811. [Google Scholar] [CrossRef] [PubMed]
- Rossi, L.; Buoni, V.; Fregoli, L.; Papini, P.; De Palma, A.; Materazzi, G. Postsurgical complications after robot-assisted transaxillary thyroidectomy: Critical analysis of a large cohort of European patients. Updates Surg. 2022, 74, 511–517. [Google Scholar] [CrossRef]
- Tae, K. Complications of transoral thyroidectomy: Overview and update. Clin. Exp. Otorhinolaryngol. 2021, 14, 169–178. [Google Scholar] [CrossRef]
- You, J.Y.; Kim, H.; Yang, H.W.; Dionigi, G.; Tufano, R.P. Prevention of transoral thyroidectomy complications: An analysis of surgical outcomes in 423 consecutive series. Surgery 2021, 170, 1155–1159. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-S.; Folbe, A.J.; Carron, M.A.; Zuliani, G.F.; Chen, W.; Yoo, G.H.; Mathog, R.H. Single-incision transaxillary robotic thyroidectomy: Challenges and limitations in a North American population. Otolaryngol.-Head Neck Surg. 2012, 147, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.W.; Lee, J.; Jung, J.H.; Park, H.Y.; Tufano, R.P.; Kim, H.Y. A comparison study of the transoral and bilateral axillo-breast approaches in robotic thyroidectomy. J. Surg. Oncol. 2018, 118, 381–387. [Google Scholar] [CrossRef]
- Yang, S.M.; Park, W.S.; You, J.Y.; Kangleon-Tan, H.L.; Kim, H.K.; Dionigi, G.; Kim, H.Y.; Tufano, R.P. Comparison of postoperative outcomes between bilateral axillo-breast approach-robotic thyroidectomy and transoral robotic thyroidectomy. Gland Surg. 2020, 9, 1998. [Google Scholar] [CrossRef]
- He, Q.; Zhu, J.; Li, X.; Wang, M.; Wang, G.; Zhou, P.; Wang, D.; Liu, C.; Zheng, L.; Zhuang, D. A comparative study of two robotic thyroidectomy procedures: Transoral vestibular versus bilateral axillary-breast approach. BMC Surg. 2022, 22, 173. [Google Scholar] [CrossRef]
- Chai, Y.J.; Kim, H.Y.; Kim, H.K.; Jun, S.H.; Dionigi, G.; Anuwong, A.; Richmon, J.D.; Tufano, R.P. Comparative analysis of 2 robotic thyroidectomy procedures: Transoral versus bilateral axillo-breast approach. Head Neck 2018, 40, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Lee, J.; Jung, J.H.; Park, H.Y.; Kim, W.W. Intraoperative assessment of parathyroid perfusion using indocyanine green angiography in robotic thyroidectomy. J. Minim. Invasive Surg. 2022, 25, 112. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, H.; Wang, B.; Sun, B.; Cong, R.; Xia, F.; Li, X. Application of indocyanine green angiography in bilateral axillo-breast approach robotic thyroidectomy for papillary thyroid cancer. Front. Endocrinol. 2022, 13, 916557. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-Y.; Choi, Y.S.; Hwang, Y.M.; Yi, J.W. Robot-Assisted Parathyroidectomy Using Indocyanine Green (ICG) Fluorescence in Primary Hyperparathyroidism. Medicina 2023, 59, 1456. [Google Scholar] [CrossRef]
- Yu, H.W.; Chung, J.W.; Yi, J.W.; Song, R.-Y.; Lee, J.-H.; Kwon, H.; Kim, S.-j.; Chai, Y.J.; Choi, J.Y.; Lee, K.E. Intraoperative localization of the parathyroid glands with indocyanine green and Firefly (R) technology during BABA robotic thyroidectomy. Surg. Endosc. 2017, 31, 3020–3027. [Google Scholar] [CrossRef] [PubMed]
- Dabaghi, E.; Berber, E. An update on the use of near-infrared autofluorescence imaging in endocrine surgical procedures. J. Surg. Oncol. 2024, 129, 40–47. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, S.W.; Kang, P.; Choi, J.; Lee, H.S.; Park, S.Y.; Kim, Y.; Ahn, Y.-C.; Lee, K.D. Near-infrared autofluorescence imaging may reduce temporary hypoparathyroidism in patients undergoing total thyroidectomy and central neck dissection. Thyroid 2021, 31, 1400–1408. [Google Scholar] [CrossRef]
- Wang, B.; Zheng, J.; Yu, J.F.; Lin, S.Y.; Yan, S.Y.; Zhang, L.Y.; Wang, S.S.; Cai, S.J.; Abdelhamid Ahmed, A.H.; Lin, L.Q. Development of artificial intelligence for parathyroid recognition during endoscopic thyroid surgery. Laryngoscope 2022, 132, 2516–2523. [Google Scholar] [CrossRef]
- Sato, K.; Fujita, T.; Matsuzaki, H.; Takeshita, N.; Fujiwara, H.; Mitsunaga, S.; Kojima, T.; Mori, K.; Daiko, H. Real-time detection of the recurrent laryngeal nerve in thoracoscopic esophagectomy using artificial intelligence. Surg. Endosc. 2022, 36, 5531–5539. [Google Scholar] [CrossRef]
- Razavi, C.R.; Russell, J.O. Indications and contraindications to transoral thyroidectomy. Ann. Thyroid 2017, 2, 12. [Google Scholar] [CrossRef]
- Lee, J.; Chung, W.Y. Current status of robotic thyroidectomy and neck dissection using a gasless transaxillary approach. Curr. Opin. Oncol. 2012, 24, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Lee, J.; Lee, S.G.; Choi, J.B.; Kim, T.H.; Ban, E.J.; Lee, C.R.; Kang, S.-W.; Jeong, J.J.; Nam, K.-H. Transaxillary robotic modified radical neck dissection: A 5-year assessment of operative and oncologic outcomes. Surg. Endosc. 2017, 31, 1599–1606. [Google Scholar] [CrossRef] [PubMed]
Author/Year | Sample Size (RT:OT) | Robotic Approach | Tumor Size (cm) | Operative Time (min) | Hospital Stay (days) | Pain (VAS) | Cosmetic Satisfaction | Transient RLN Injury (%) | Permanent RLN Injury (%) | Transient hypoPTH (%) | Permanent hypoPTH (%) | Bleeding (%) | No. of LN Retrieved | Postoperative Tg (ng/mL) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lee et al., 2010 [27] | 41:43 | TA | 8.3:8.9 (NS) | 128.6:98.0 (p = 0.001) | 2.5:3.2 (NS) | 12.2:11.6 † (NS) | 58.5:11.6 (p < 0.001) | 2.4:0.0 (NS) | 0.0:0.0 (NS) | 19.2:15.3 (NS) | 0.0:0.0 (NS) | 0.0:2.3 (NS) | 4.4:4.3 (NS) | NR |
Lee et al., 2012 [48] | 192:266 | TA | 0.6:0.6 (NS) | 133.5:85.8 (p < 0.001) | 3.3:3.3 (NS) | NR | NR | NR | 2.0:0.0 (NS) | 44.4:40.0 (NS) | 0:1.12 (NS) | 1.0:0.0 (NS) | 4.6:5.7 (p = 0.004) | NR |
Foley et al., 2012 [49] | 11:16 | TA | 22.1:16.3 (NS) | 232:109.3 (p < 0.001) | NR | NR | NR | NR | NR | 1.0:1.0 (NS) | NR | NR | NR | 1.0:0.8 (NS) |
Landry et al., 2012 [50] | 25:25 | TA | NR | 121:68 (p < 0.001) | NR | NR | NR | 0.0:0.0 (NS) | 20:16 (NS) | NR | NR | 12:4 (NS) | NR | NR |
Cabot et al., 2012 [29] | 30:30 | TA | 0.7:0.8 (NS) | 165.7:121.1 (p < 0.001) | 5.1:5.1 (NS) | NR | NR | 0:3.3 | NR | 33.3:26.7 (NS) | NR | 0:0 (NS) | NR | NR |
Kang et al., 2012 [51] | 56:109 | TA | 1.14:1.49 (p = 0.004) | 277.4:218.2 (p < 0.001) | 6.0:8.0 (p = 0.008) | NR | NR | 3.6:2.8 (NS) | 0:0 (NS) | 48.2:45.9 (NS) | 0:0 (NS) | 1.8:1.8 (NS) | 37.3:39.4 (NS) | 0.6:0.5 (NS) |
Lee et al., 2013 [26] | 62:66 | TA | 13.9:16.7 (NS) | 271.8:208.9 (p < 0.001) | 6.9:7.9 (NS) | 1.5:2.0 (NS) | 74.2:33.3 (p < 0.001) | 3.2:4.5 (NS) | 0:0 (NS) | 38.7:34.8 (NS) | 0:0 (NS) | 0.0:0.0 (NS) | 38.0:37.9 (NS) | 0.6:0.5 (NS) |
Yi et al., 2013 [52] | 98:423 | TA | 0.8:0.8 (NS) | 175.8:99.2 (p < 0.001) | 4.0:3.4 (p < 0.001) | NR | NR | 53.1: 43.0 (p = 0.046) | NR | 53.1:43.0 (p = 0.046) | 3.1:0.7 (NS) | 0.0:0.5 (NS) | 6.5:7.0 (NS) | 0.5:0.4 (NS) |
Ryu et al., 2013 [19] | 45:45 | TA | 0.96:1.18 (p = 0.041) | 121.8:99.8 (p < 0.001) | 3.1:3.2 (NS) | 3.04:3.82 (p < 0.001) | NR | NR | NR | NR | NR | NR | 5.7:7.0 (NS) | NR |
Lee et al., 2021 [53] | 99:62 | TA | 1.8:2.5 (p = 0.010) | 171.2:182.6 (NS) | 3.6:4.8 (p < 0.001) | NR | NR | 1.0:0.0 (NS) | 0.0:1.6 (NS) | 15.2:29.0 (NS) | 2.0:3.2 (NS) | NR | 43.0:59.3 (NS) | NR |
Lee et al., 2021 [9] | 40:40 | TA | 1.0:1.2 (NS) | 184.9:132.1 (p < 0.001) | NR | NR | NR | 5.0:5.0 (NS) | 0.0:0.0 (NS) | 27.8:25.0 (NS) | 0.0:0.0 (NS) | 0.0:5.0 (NS) | NR | NR |
40:40 | TO | 1.0:1.2 (NS) | 185.6:132.1 (p < 0.001) | NR | NR | NR | 2.5:5.0 (NS) | 0.0:0.0 (NS) | 9.1:25.0 (NS) | 0.0:0.0 (NS) | 25.0:5.0 (NS) | NR | NR | |
Kim et al., 2011 [54] | 69:138 | BABA | 0.6:0.7 (p = 0.03) | 196:81 (p < 0.001) | 3.1:2.8 (NS) | NR | NR | 1.4:0.7 (NS) | 0.0:0.0 (NS) | 33.3:27.5 (NS) | 1.4:2.9 (NS) | 0.0:0.0 (NS) | 4.7:4.8 (NS) | 0.8:0.8 (NS) |
Kwak et al., 2015 [25] | 206:634 | BABA | 0.8:1.0 (NS) | 239:115 (p < 0.001) | 3.4:3.3 (NS) | NR | 84.9: 59.3 (p < 0.001) | 0.5:0.9 (NS) | NR | 14.6:15.0 (p = 0.29) | 0.5:0.3 (NS) | 0.0:0.9 (NS) | 5.8:8.4 (p = 0.001) | 20.2:41.2 (NS) |
Kim et al., 2015 [10] | 300:300 | BABA | 0.6:0.9 (NS) | 175:115 (p < 0.001) | 3.9:3.5 (NS) | NR | NR | 2.6:1.3 (p = 0.08) | 0:0.7 (NS) | 23.0:36.3 (p = 0.01) | 1.3:1.3 (NS) | 0.3:0.3 (NS) | 6.7:8.9 (p < 0.001) | NR |
Cho et al., 2016 [30] | 109:109 | BABA | 0.7:0.7 (NS) | 290:107 (p < 0.001) | 3.5:3.4 (NS) | 3.8:3.8 (NS) | NR | 6.4:5.5 (NR) | 0.9:0.9 (NR) | 33.0:26.6 (NR) | 1.8:1.8 (NR) | 0.9:0.9 (NR) | 3.5:5.2 (p = 0.002) | 0.2:0.3 (NS) |
Chai et al., 2017 [55] | 21:65 | BABA | 2.8:2.8 (NS) | 165.1:93.5 (p < 0.001) | 3.2:3.4 (NS) | NR | NR | 19.0:9.2 (NS) | 0.0:1.5 (NS) | 19.0:33.8 (NS) | 4.8:1.5 (NS) | NR | 6.4:6.1 (NS) | 0.3:0.3 (NS) |
Bae et al., 2019 [56] | 123:246 | BABA | 0.8:0.8 (NS) | 198.4:123.5 (p < 0.001) | 4.1:4.1 (NS) | NR | NR | 31.7:35.8 (NS) | 0.8:3.3 (NS) | 31.7:35.8 (NS) | 1.6:2.8 (NS) | 0:0.8 (NS) | 7.5:8.2 (NS) | 1.2:1.1 (NS) |
Paek et al., 2020 [57] | 28:84 | BABA | 1.0:1.3 (p = 0.020) | 382.3:195.9 (p < 0.001) | 4.5:4.1 (NS) | NR | NR | 10.7:7.1 (NS) | 3.6:2.4 (NS) | 7.1:10.7 (NS) | 0.0:1.2 (NS) | 0:0 | 36.5:40.0 (NS) | 1.7:3.4 (NS) |
Paek et al., 2018 [11] | 71:305 | BABA | 0.83:0.81 (NS) | NR | NR | NR | NR | 4.2:7.2 (NS) | 0.0:0.7 (NS) | 2.8:10.5 (p = 0.042) | 0.0:0.0 (NS) | NR | 7.9:8.5 (NS) | 0.3:0.4 (NS) |
Zhang et al., 2021 [28] | 194:217 | BABA | (NS) | 162.71:93.51 (p < 0.01) | NR | NR | 91.2 vs. 21.6 (p < 0.01) | 0.5:1.0 (NS) | 0.0:0.5 (NS) | 17.9:29.7 (p = 0.016) | 2.0:6.8 (p = 0.043) | 0.5:2.1 (NS) | 9.5:9.3 (NS) | 0.6:0.5 (NS) |
You et al., 2019 [58] | 100:105 | TORT | 0.9:0.9 (NS) | 209.8:97.6 (p < 0.05) | 3.1:2.8 (NS) | 2.6:2.2 (NS) | NR | 1.0:0.0 (NS) | 0.0:0.0 (NS)) | 22.2:19.5 (NS) | 0.0:0.0 (NS) | 1.0:0.0 (NS) | 4.7:9.4 (p < 0.05) | 0.3:0.3 (NS) |
Tae et al., 2020 [59] | 100:207 | TO | 1.0:1.5 (p = 0.001) | 171.7:122.5 (p < 0.001) | NR | NR | 1.5:2.9 (p < 0.001) | 5.0:3.4 (NS) | 0.0:1.0 (NS) | 30.4:31.6 (NS) | 4.3:1.3 (NS) | 1.0:2.8 (NS) | 6.3:6.6 (NS) | 3.6:2.8 (NS) |
Song et al., 2020 [60] | TO | 1.3:1.5 (NS) | 164.6:102.5 (p < 0.001) | NR | NR | NR | NR | NR | 2.4:4.3 (NS) | 0.0:2.1 ((NS) | 0.0:2.1 (NS) | NR | NR | |
You et al., 2021 [61] | 186:186 | TO | 0.8:0.6 (p < 0.05) | 201.8:98.6 (p < 0.05) | 2.9:2.6 (NS) | 3.1:2.6 (p = 0.043) | NR | 0.5:0.0 (NS) | 0.0:0.0 (NS) | 16.6:25.0 (NS) | 0.0:0.0 (NS) | 0.5:0.0 (NS) | 5.0:8.6 (p < 0.05) | NR |
Lee et al., 2023 [62] | 100:100 | TO | 0.9:0.9 (NS) | 196.1:109.3 (p < 0.001) | NR | NR | NR | 0:4.0.0 (NS) | 1.0:1.0 (NS) | 10.0:8.0 (NS) | 2.0:2.0 (NS) | 0.0:3.0 (NS) | 4.6:5.5 (NS) | NR |
Author/Year | Sample Size | Robotic Approach | Tumor Size (cm) | Operative Time (min) | Hospital Stay (days) | Pain | Cosmetic Satisfaction | Transient RLN Injury (%) | Permanent RLN Injury (%) | Transient hypoPTH (%) | Permanent hypoPTH (%) | Bleeding (%) | No. of LNs Retrieved |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Kim et al., 2018 [89] | 43:47 | BABA:TO | 0.9:0.7 (NS) | 151.5:166.3 (NS) | 3.5:3.8 (p = 0.020) | 2.4:1.9 (p = 0.021) | 3.4:3.7 (p = 0.044) | 2.9:0.0 (NS) | 0.0:0.0 (NS) | 23.7:39.1 (NS) | 43.5:46.1(NS) | 0.0:0.0 (NS) | 6.6:5.9 (NS) |
Chae et al., 2020 [22] | 56:14 | BABA:TO | 0.8:0.8 (NS) | 221.6:299.16 (p < 0.001) | 3.2:3.6 (NS) | 2.3:2.7 (p = 0.005) | NR | 10.7:0.0 (NS) | 0.0:0.0 (NS) | 0.0:0.0 (NS) | 0.0:0.0 (NS) | 0.0:0.0 (NS) | 3.3:2.9 (NS) |
Yang et al., 2020 [90] | 316:248 | BABA:TO | 0.9:1.0 (NS) | 243.8:204.1 (p < 0.01) | 3.4:2.8 (p = 0.012) | 3.3:2.7 (p = 0.01) | NR | 2.5:1.2 (p = 0.01) | 0.0:0.0 (NS) | 16:7.1 (p = 0.03) | 0.5:0.0 (NR) | 0.0:0.4 (NS) | 4.2:4.9 (p = 0.01) |
He et al., 2022 [91] | 50:49 | BABA:TO | 5.6:3.5 (p =0.037) | 121.0:190.0 (p < 0.001) | 10.1:9.5 (NS) | 8.1:8.8 (p = 0.000) | NR | NR | NR | NR | NR | NR | 8.3:7.9 (NS) |
Chai et al., 2018 [92] | 50:50 | BABA:TO | 1.1:1.0 (NS) | 301.1:259.2 (p = 0.043) | 3.9:3.4 (p = 0.011) | 3.2:2.8 (p = 0.013) | NR | 4.0:0.0 (NS) | 0.0:0.0 (NS) | 10.8:0.0 (NS) | 0.0:0.0 (NS) | NR | 4.0:4.5 (NS) |
Lee et al., 2021 [9] | 40:40 | TO:TA | 1.0:1.0 (NS) | 185.6:184.9 (NS) | NR | NR | 88.0:86.2 (NS) | 2.5:5.0 (NS) | 0.0:0.0 (NS) | 9.1:27.8 (NS) | 0.0:0.0 (NS) | 2.5:0.0 (NS) | 2.6:4.5 (NS) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Kim, K. Current and Future of Robotic Surgery in Thyroid Cancer Treatment. Cancers 2024, 16, 2470. https://doi.org/10.3390/cancers16132470
Park J, Kim K. Current and Future of Robotic Surgery in Thyroid Cancer Treatment. Cancers. 2024; 16(13):2470. https://doi.org/10.3390/cancers16132470
Chicago/Turabian StylePark, Joonseon, and Kwangsoon Kim. 2024. "Current and Future of Robotic Surgery in Thyroid Cancer Treatment" Cancers 16, no. 13: 2470. https://doi.org/10.3390/cancers16132470
APA StylePark, J., & Kim, K. (2024). Current and Future of Robotic Surgery in Thyroid Cancer Treatment. Cancers, 16(13), 2470. https://doi.org/10.3390/cancers16132470