LUNA EMG as a Marker of Adherence to Prehabilitation Programs and Its Effect on Postoperative Outcomes among Patients Undergoing Cytoreductive Surgery for Ovarian Cancer and Suspected Ovarian Tumors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Protocol
2.3. Tools
2.4. Prehabilitation Program
2.5. Enhanced Recovery after Surgery (ERAS) Program
2.6. Statistical Analysis
3. Results
3.1. Surgery
3.2. Results of the 6-Minute Walk Test and Muscle Strength Measured with the LUNA Device
3.3. Changes in Laboratory Test Results
3.4. Assessment of Nutritional Status, Anxiety/Depression Symptoms, Frailty, and Quality of Life
3.5. Complications
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hofstetter, G.; Concin, N.; Braicu, I.; Chekerov, R.; Sehouli, J.; Cadron, I.; Van Gorp, T.; Trillsch, F.; Mahner, S.; Ulmer, H.; et al. The Time Interval from Surgery to Start of Chemotherapy Significantly Impacts Prognosis in Patients with Advanced Serous Ovarian Carcinoma—Analysis of Patient Data in the Prospective OVCAD Study. Gynecol. Oncol. 2013, 131, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Purwoto, G.; Dalimunthe, B.E.; Kekalih, A.; Aditianingsih, D.; Mazni, Y.; Wahyudi, I.; Julianti, K. Complications of Ovarian Cancer Surgery in Dr. Cipto Mangunkusumo National Referral Hospital, Jakarta: A Cross-Sectional Study. Ann. Med. Surg. 2022, 77. [Google Scholar] [CrossRef] [PubMed]
- Kengsakul, M.; Boer, N.; Udomkarnjananun, S.; Kerr, S.J.; van Doorn, H.C.; van Beekhuizen, H.J. Factors Predicting 30-Day Grade IIIa–v Clavien–Dindo Classification Complications and Delayed Chemotherapy Initiation after Cytoreductive Surgery for Ad-vanced-Stage Ovarian Cancer: A Prospective Cohort Study. Cancers 2022, 14, 4181. [Google Scholar] [CrossRef] [PubMed]
- Gillis, C.; Ljungqvist, O.; Carli, F. Prehabilitation, Enhanced Recovery after Surgery, or Both? A Narrative Review. Br. J. Anaesth. 2022, 128, 434–448. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.J.; Hackney, R.J.; Lamb, P.J.; Wigmore, S.J.; Christopher Deans, D.A.; Skipworth, R.J.E. Prehabilitation before Major Abdominal Surgery: A Systematic Review and Meta-Analysis. World J. Surg. 2019, 43, 1661–1668. [Google Scholar] [CrossRef] [PubMed]
- Orange, S.T.; Northgraves, M.J.; Marshall, P.; Madden, L.A.; Vince, R.V. Exercise Prehabilitation in Elective Intra-Cavity Surgery: A Role within the ERAS Pathway? A Narrative Review. Int. J. Surg. 2018, 56, 328–333. [Google Scholar] [CrossRef]
- Miralpeix, E.; Mancebo, G.; Gayete, S.; Corcoy, M.; Solé-Sedeño, J.-M. Role and Impact of Multimodal Prehabilitation for Gynecologic Oncology Patients in an Enhanced Recovery after Surgery (ERAS) Program. Int. J. Gynecol. Cancer 2019, 29, 1235–1243. [Google Scholar] [CrossRef] [PubMed]
- Carli, F.; Zavorsky, G.S. Optimizing Functional Exercise Capacity in the Elderly Surgical Population. Curr. Opin. Clin. Nutr. Metab. Care 2005, 8, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Moran, J.; Guinan, E.; McCormick, P.; Larkin, J.; Mockler, D.; Hussey, J.; Moriarty, J.; Wilson, F. The Ability of Prehabilitation to Influence Postoperative Outcome after Intra-Abdominal Operation: A Systematic Review and Meta-Analysis. Surgery 2016, 160, 1189–1201. [Google Scholar] [CrossRef]
- Wooten, S.V.; Wolf, J.S.; Mendoza, D.; Bartholomew, J.B.; Stanforth, P.R.; Stanforth, D.; Tanaka, H.; Fleming, R.Y.D. The Impact of a Multimodal Sport Science-Based Prehabilitation Program on Clinical Outcomes in Abdominal Cancer Patients: A Cohort Study. Am. Surg. 2022, 88, 2302–2308. [Google Scholar] [CrossRef]
- Diaz-Feijoo, B.; Agusti-Garcia, N.; Sebio, R.; López-Hernández, A.; Sisó, M.; Glickman, A.; Carreras-Dieguez, N.; Fuste, P.; Marina, T.; Martínez-Egea, J.; et al. Feasibility of a Multimodal Prehabilitation Programme in Patients Undergoing Cytoreductive Surgery for Advanced Ovarian Cancer: A Pilot Study. Cancers 2022, 14, 1635. [Google Scholar] [CrossRef] [PubMed]
- Koh, F.H.; Loh, C.H.; Tan, W.J.; Ho, L.M.; Yen, D.; Chua, J.M.; Kok, S.S.; Sivarajah, S.S.; Chew, M.H.; Foo, F.J. Structured Presurgery Prehabilitation for Aged Patients Undergoing Elective Surgery Significantly Improves Surgical Outcomes and Reduces Cost: A Nonrandomized Sequential Comparative Prospective Cohort Study. Nutr. Clin. Pract. 2022, 37, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, Y.; Jin, T.; Lu, L.; Tong, Y. Effect of Trimodal Pre-Rehabilitation on the Rehabilitation of Patients with Gastro-intestinal Tumors in the Perioperative Period. Am. J. Transl. Res. 2022, 14, 967–978. [Google Scholar]
- Bojesen, R.D.; Grube, C.; Buzquurz, F.; Miedzianogora, R.E.G.; Eriksen, J.R.; Gogenur, I. Effect of modifying high-risk fac-tors and prehabilitation on the outcomes of colorectal cancer surgery: Controlled before and after study. BJS Open 2022, 6, zrac029. [Google Scholar] [CrossRef] [PubMed]
- Leszczak, J.; Wolan-Nieroda, A.; Drużbicki, M.; Poświata, A.; Mikulski, M.; Roksela, A.; Guzik, A. Evaluation of Reliability of the Luna EMG Rehabilitation Robot to Assess Proprioception in the Upper Limbs in 102 Healthy Young Adults. Med. Sci. Monit. 2023, 29, e942439. [Google Scholar] [CrossRef] [PubMed]
- Batista, T.P.; Hsu, H.-C. What Have We Learned after Four Randomized Controlled Trials on Neoadjuvant Chemotherapy for Ovarian Cancer? Int. J. Gynecol. Cancer 2021, 31, 642–643. [Google Scholar] [CrossRef]
- Burr, J.F.; Bredin, S.S.D.; Faktor, M.D.; Warburton, D.E.R. The 6-Minute Walk Test as a Predictor of Objectively Measured Aerobic Fitness in Healthy Working-Aged Adults. Phys. Sportsmed. 2011, 39, 133–139. [Google Scholar] [CrossRef]
- Tomaszewski, K.A.; Püsküllüoğlu, M.; Biesiada, K.; Bochenek, J.; Nieckula, J.; Krzemieniecki, K. Validation of the Polish Version of the EORTC QLQ-C30 and the QLQ-OG25 for the Assessment of Health-Related Quality of Life in Patients with Esophagi-Gastric Cancer. J. Psychosoc. Oncol. 2013, 31, 191–203. [Google Scholar] [CrossRef]
- Julian, L.J. Measures of Anxiety: State-Trait Anxiety Inventory (STAI), Beck Anxiety Inventory (BAI), and Hospital Anxiety and Depression Scale-Anxiety (HADS-A). Arthritis Care Res. 2011, 63 (Suppl. S11), S467–S472. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, S.; Jia, J.; Yang, J.; Song, Y.; Duan, H. Exploring the Malnutrition Status and Impact of Total Parenteral Nutrition on the Outcome of Patients with Advanced Stage Ovarian Cancer. BMC Cancer 2021, 21, 799. [Google Scholar] [CrossRef]
- Uchmanowicz, I.; Lisiak, M.; Jankowska-Polańska, B. Research instruments used in the assessment of the frailty syndrome. Geront. Pol. 2014, 22, 1–8. [Google Scholar]
- Ametejani, M.; Masoudi, N.; Homapour, F.; Rezaei, S.; Moosavi, S.A.; Kafili, E.; Heidar-lou, A.J. Association between Pre-Operative 25-Hydroxy Vitamin D Deficiency and Surgical Site Infection after Right Hemicolectomy Surgery. Surg. Infect. 2022, 23, 829–833. [Google Scholar] [CrossRef] [PubMed]
- Berkel, A.E.M.; Bongers, B.C.; Kotte, H.; Weltevreden, P.; de Jongh, F.H.C.; Eijsvogel, M.M.M.; Wymenga, M.; Bigir-wamungu-Bargeman, M.; van der Palen, J.; van Det, M.J.; et al. Effects of Community-Based Exercise Prehabilitation for Patients Scheduled for Colorectal Surgery With High Risk for Postoperative Complications: Results of a Randomized Clinical Trial. Ann. Surg. 2022, 275, e299–e306. [Google Scholar] [CrossRef] [PubMed]
- Steffens, D.; Young, J.; Riedel, B.; Morton, R.; Denehy, L.; Heriot, A.; Koh, C.; Li, Q.; Bauman, A.; Sandroussi, C.; et al. PRehabIlitatiOn with PReoperatIve Exercise and EducaTion for Patients Undergoing Major Abdominal Cancer SurgerY: Protocol for a Multicentre Randomised Controlled TRIAL (PRIORITY TRIAL). BMC Cancer 2022, 22, 443. [Google Scholar] [CrossRef] [PubMed]
- Carli, F.; Brown, R.; Kennepohl, S. Prehabilitation to Enhance Postoperative Recovery for an Octogenarian Following Ro-botic-Assisted Hysterectomy with Endometrial Cancer. Can. J. Anaesth. 2012, 59, 779–784. [Google Scholar] [CrossRef]
- Minnella, E.M.; Awasthi, R.; Loiselle, S.-E.; Agnihotram, R.V.; Ferri, L.E.; Carli, F. Effect of Exercise and Nutrition Preha-bilitation on Functional Capacity in Esophagogastric Cancer Surgery. JAMA Surg. 2018, 153, 1081. [Google Scholar] [CrossRef] [PubMed]
- López-Baamonde, M.; Arguis, M.J.; Navarro-Ripoll, R.; Gimeno-Santos, E.; Romano-Andrioni, B.; Sisó, M.; Terès-Bellès, S.; López-Hernández, A.; Burniol-García, A.; Farrero, M. Multimodal Prehabilitation in Heart Transplant Recipients Improves Short-Term Post-Transplant Outcomes without Increasing Costs. J. Clin. Med. 2023, 12, 3724. [Google Scholar] [CrossRef] [PubMed]
- Carli, F.; Bousquet-Dion, G.; Awasthi, R.; Elsherbini, N.; Liberman, S.; Boutros, M.; Stein, B.; Charlebois, P.; Ghitulescu, G.; Morin, N.; et al. Effect of Multimodal Prehabilitation vs Postoperative Reha-bilitation on 30-Day Postoperative Complications for Frail Patients Undergoing Resection of Colorectal Cancer. JAMA Surg. 2020, 155, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Bousquet-Dion, G.; Awasthi, R.; Loiselle, S.-È.; Minnella, E.M.; Agnihotram, R.V.; Bergdahl, A.; Carli, F.; Scheede-Bergdahl, C. Evaluation of Supervised Multimodal Prehabilitation Programme in Cancer Patients Undergoing Colorectal Resection: A Ran-domized Control Trial. Acta Oncol. 2018, 57, 849–859. [Google Scholar] [CrossRef]
- Gillis, C.; Li, C.; Lee, L.; Awasthi, R.; Augustin, B.; Gamsa, A.; Liberman, A.S.; Stein, B.; Charlebois, P.; Feldman, L.S.; et al. Prehabilitation versus Rehabilitation. Anesthesiology 2014, 121, 937–947. [Google Scholar] [CrossRef]
- Menz, V.; Marterer, N.; Amin, S.B.; Faulhaber, M.; Hansen, A.B.; Lawley, J.S. Functional vs. Running Lov-Volume High-Intensity Interval Training: Effects on VO2max and Muscular Endurance. J. Sports Sci. Med. 2019, 18, 497–504. [Google Scholar] [PubMed]
- West, M.A.; Wischmeyer, P.E.; Grocott, M.P.W. Prehabilitation and Nutritional Support to Improve Perioperative Out-comes. Curr. Anesthesiol. Rep. 2017, 7, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Dronkers, J.J.; Chorus, A.M.J.; van Meeteren, N.L.U.; Hopman-Rock, M. The Association of Pre-Operative Physical Fitness and Physical Activity with Outcome after Scheduled Major Abdominal Surgery. Anaesthesia 2013, 68, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Jie, B.; Jiang, Z.-M.; Nolan, M.T.; Zhu, S.-N.; Yu, K.; Kondrup, J. Impact of Preoperative Nutritional Support on Clinical Out-come in Abdominal Surgical Patients at Nutritional Risk. Nutrition 2012, 28, 1022–1027. [Google Scholar] [CrossRef] [PubMed]
- Weimann, A.; Braga, M.; Carli, F.; Higashiguchi, T.; Hübner, M.; Klek, S.; Laviano, A.; Ljungqvist, O.; Lobo, D.N.; Martin-dale, R.; et al. ESPEN Guideline: Clinical Nutrition in Surgery. Clin. Nutr. 2017, 36, 623–650. [Google Scholar] [CrossRef] [PubMed]
- Maňásek, V.; Bezděk, K.; Foltys, A.; Klos, K.; Smitka, J.; Šmehlík, D. The Impact of High Protein Nutritional Support on Clinical Outcomes and Treatment Costs of Patients with Colorectal Cancer. Klin. Onkol. 2016, 29, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Balci, B.; Kilinc, G.; Calik, B.; Aydin, C. The Association between Preoperative 25-OH Vitamin D Levels and Postoperative Complications in Patients Undergoing Colorectal Cancer Surgery. BMC Surg. 2021, 21, 369. [Google Scholar] [CrossRef] [PubMed]
- Turan, A.; Hesler, B.D.; You, J.; Saager, L.; Grady, M.; Komatsu, R.; Kurz, A.; Sessler, D.I. The Association of Serum Vitamin D Concentration with Serious Complications after Noncardiac Surgery. Anesth. Analg. 2014, 119, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Zhang, L.; Jia, S.; Lin, T.; Liu, G.; Yue, J.; Huang, X. Effects of Circulating 25(OH)D Status in Advanced Colorectal Cancer Patients Undergoing Chemotherapy: A Systematic Review. Anticancer Res. 2021, 41, 5903–5912. [Google Scholar] [CrossRef]
- O’Doherty, A.F.; West, M.; Jack, S.; Grocott, M.P.W. Preoperative Aerobic Exercise Training in Elective Intra-Cavity Surgery: A Systematic Review. Br. J. Anaesth. 2013, 110, 679–689. [Google Scholar] [CrossRef]
- Singh, F.; Newton, R.U.; Galvão, D.A.; Spry, N.; Baker, M.K. A Systematic Review of Pre-Surgical Exercise Intervention Studies with Cancer Patients. Surg. Oncol. 2013, 22, 92–104. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Prehabilitation Group (n Total = 36) | Control Group (n Total = 34) | p-Value |
---|---|---|---|
Age (years), median [IQR] | 56.6 (49.8, 68.0) | 51.0 (47.2, 64.0) | 0.2 |
BMI (kg/m2), median [IQR] | 26.6 (23.1, 29.1) | 27.3 (25.4, 29.9) | 0.3 |
ECOG 0, n/n total (%) | 33/36 (92) | 31/34 (91) | 1.0 |
Diabetes, n/n total (%) | 7/36 (19) | 2/34 (5.9) | 0.2 |
Hypertension, n/n total (%) | 15/36 (42) | 14/34 (41) | 1.0 |
Ischemic heart disease, n/n total (%) | 5/36 (14) | 3/34 (8.8) | 0.7 |
Smoking, n/n total (%) | 8/36 (22) | 6/34 (18) | 0.6 |
Retired, n/n total (%) | 10/36 (28) | 13/34 (38) | 0.5 |
CA-125 (U/mL), median (IQR) | 175.0 (34.8, 950.3) | 170.0 (30.0, 535.0) | 0.4 |
Albumin concentration (g/dL), median (IQR) | 4.5 (4.2, 4.8) | 4.4 (4.1, 4.6) | 0.3 |
Total protein concentration (g/dL), median (IQR) | 7.3 (7.0, 7.5) | 7.4 (6.8, 7.7) | 0.7 |
Creatinine (mg/dL), median (IQR) | 0.7 (0.6, 0.8) | 0.8 (0.7, 0.9) | 0.1 |
Characteristics | Prehabilitation Group (n Total = 36) | Control Group (n Total = 34) | p-Value |
---|---|---|---|
Duration of surgery, [min], average (SD) | 215.0 (108) | 260.0 (93) | 0.08 |
Type of surgery | 0.13 | ||
Primary surgery, n/n total (%) | 32 (88.9) | 26 (76.5) | |
Interval debulking surgery, n/n total (%) | 4 (11.1) | 4 (11.8) | |
Secondary cytoreduction, n/n total (%) | 0 | 4 (11.8) | |
Residual disease | 0.61 | ||
R0, n/n total (%) | 33 (92) | 32 (94) | |
R1, n/n total (%) | 1 (3) | 2 (6) | |
R2, n n/total (%) | 2 (6) | 0 | |
Aletti complexity score, median (IQR) | 4.0 (2.0, 5.0) | 4.0 (3.0, 5.0) | 0.8 |
PCI, median (IQR) | 9.0 (3.8, 16.8) | 7.0 (2.5, 11.0) | 0.1 |
Characteristics | Prehabilitation Group (n Total = 36) | Control Group (n Total = 34) | p-Value |
---|---|---|---|
Hysterectomy with bilateral Salpingo-oophorectomy, n/n total (%) | 35/36 (97.2) | 29/34 (85.3) | 0.1 |
Fertility preserving surgery, n/n total (%) | 1/36 (2.8) | 1/34 (2.9) | 1.0 |
Omentectomy, n/n total (%) | 31/36 (86.1) | 27/34 (79.4) | 0.5 |
Appendectomy, n/n total (%) | 23/36 (63.9) | 18/34 (52.9) | 0.5 |
Round ligament of the liver resection, n/n total (%) | 25/36 (69.4) | 20/34 (58.8) | 0.5 |
Pelvic peritonectomy, n/n total (%) | 12/36 (33.3) | 8/34 (23.5) | 0.4 |
Diaphragmatic stripping, n/n total (%) | 7/36 (19.4) | 5/34 (14.7) | 0.8 |
Lesser omentum resection, n/n total (%) | 1/36 (2.8) | 1/34 (2.9) | 1.0 |
Pelvic lymphadenectomy, n/n total (%) | 5/36 (13.9) | 10/34 (29.4) | 0.1 |
Paraaortic lymphadenectomy, n/n total (%) | 6/36(16.7) | 5/34 (14.7) | 1.0 |
Splenectomy, n/n total (%) | 3/36 (8.3) | 0/34 | 0.2 |
Colorectal resection, n/n total (%) | 5/36 (13.9) | 8/34 (23.5) | 0.4 |
Intestinal resection, n/n total (%) | 0/36 | 2/34 (5.9) | 0.2 |
Partial liver resection, n/n total (%) | 1/36 (2.8) | 1/34 (2.9) | 1.0 |
Partial pancreatic resection, n/n total (%) | 1/36 (2.8) | 0/34 | 1.0 |
Partial gastrectomy, n/n total (%) | 1/36 (2.8) | 0/34 | 1.0 |
Intestinal anastomosis, n/n total (%) | 3/36 (8.3) | 9/34 (26.5) | 0.059 |
Stoma, n/n total (%) | 2/36 (5.6) | 1/34 (2.9) | 1.0 |
Characteristics | Prehabilitation Group (n Total = 36) | Control Group (n Total = 34) | p-Value |
---|---|---|---|
Ovarian cancer confirmed, n/n total (%) | 28/36 (77.8) | 28 (82.4) | 0.8 |
Adenocarcinoma serous, n/n total (%) | 14/36 (50) | 12 (42.9) | 0.8 |
Adenocarcinoma mucinous, n/n total (%) | 2/36 (7.1) | 2 (7.1) | 1.0 |
Adenocarcinoma endometrioid, n/n total (%) | 1/36 (3.6) | 4 (14.3) | 0.2 |
Clear cell adenocarcinoma, n/n total (%) | 2/36 (7.1) | 4 (14.3) | 0.4 |
Neuroendocrine adenocarcinoma, n/n total (%) | 1/36 (3.6) | 0 (0) | 1.0 |
Sarcoma, n/n total (%) | 1/36 (3.6) | 1 (3.6) | 1.0 |
Undifferentiated carcinoma, n/n total (%) | 1/36 (3.6) | 1 (3.6) | 1.0 |
Borderline cancer, n/n total (%) | 4/36 (14.3) | 1 (3.6) | 0.4 |
Other, n/n total (%) | 2/36 (7.1) | 3 (10.7) | 0.7 |
Low-grade carcinoma, n/n total (%) | 5/36 (17.9) | 9 (32.1) | 0.2 |
High-grade carcinoma, n/n total (%) | 17/36 (60.7) | 16 (57.1) | 1.0 |
FIGO stages, n/n total (%) | 1.0 | ||
FIGO 1 stage | 8/36 (22.2) | 8 (23.5) | |
FIGO 2 stage | 1/36 (2.8) | 1 (2.9) | |
FIGO 3 stage | 19/36 (52.8) | 17 (50) | |
FIGO 4 stage | 1/36 (2.8) | 1 (2.9) |
Characteristics | Introductory Visit | Day of Admission to Hospital | Change | p-Value |
---|---|---|---|---|
Maximum muscle tension [mV], median [IQR] | 83.7 (51.2, 143.3) | 134.8 (75.1, 166.1) | 20.4 (4.1–50.1) * | <0.001 |
Average muscle tension [mV], median [IQR] | 14.3 (9.8, 26.1) | 21.4 (12.6, 36.2) | 4.3 (0.3–13.3) * | <0.001 |
Muscle tone [mV], median [IQR] | 2.0 (1.2, 2.8) | 2.4 (1.5, 3.3) | 0.3 (0–1.0) * | 0.004 |
Characteristics | Prehabilitation Group (n Total = 36) | Control Group (n Total = 34) | p-Value |
---|---|---|---|
MNA | 0.8 | ||
Normal nutritional status, n/n total (%) | 21/36 (58) | 16/34 (53) | |
At risk of malnutrition, n/n total (%) | 13/36 (36) | 13/34 (43) | |
Malnourished, n/n total (%) | 2/36 (5.6) | 1/34 (3.3) | |
MUST | 0.9 | ||
0, n/n total (%) | 32/36 (89) | 29/34 (85) | |
1, n/n total (%) | 4/36 (11) | 4/34 (12) | |
2, n/n total (%) | 0/36 (0) | 1/34 (2.9) | |
G8, median [IQR] | 14.0 (12.0, 15.0) | 14.0 (12.5, 16.0) | 0.4 |
HADS Anxiety | 0.8 | ||
Mild, n/n total (%) | 8/36 (22) | 7/34 (21) | |
Moderate, n/n total (%) | 7/36 (19) | 5/34 (15) | |
Normal, n/n total (%) | 20/36 (56) | 22/34 (65) | |
Severe, n/n total (%) | 1/36 (2.8) | 0/34 (0) | |
HADS Depression | 0.7 | ||
Mild, n/n total (%) | 3/36 (8.3) | 5/34 (15) | |
Moderate, n/n total (%) | 5/36 (14) | 3/34 (8.8) | |
Normal, n/n total (%) | 27/36 (75) | 26/34 (76) | |
Severe, n/n total (%) | 1/36 (2.8) | 0/34 (0) | |
EORTC-QLQ-C30 QLQ Total, median [IQR] | 84.1 (77.1, 92.2) | 81.8 (72.8, 88.4) | 0.2 |
Characteristics | Beginning of Prehabilitation | End of Prehabilitation | p-Value |
---|---|---|---|
EORTC-QLQ-C30 QLQ Total, median [IQR] | 82.1 (72.8, 88.6) | 84.1 (77.1, 92.2) | 0.2 |
HADS Anxiety | 0.7 | ||
Mild, n/n total (%) | 4/36 (11) | 8/34 (22) | |
Moderate, n/n total (%) | 10/36 (28) | 7/34 (19) | |
Normal, n/n total (%) | 21/36 (58) | 20/34 (56) | |
Severe, n/n total (%) | 1/36 (2.8) | 1/34 (2.8) | |
HADS Depression | 0.7 | ||
Mild, n/n total (%) | 4/36 (11) | 8/34 (22) | |
Moderate, n/n total (%) | 10/36 (28) | 7/34 (19) | |
Normal, n/n total (%) | 21/36 (58) | 20/34 (56) | |
Severe, n/n total (%) | 1/36 (2.8) | 1/34 (2.8) |
Characteristics | Prehabilitation Group (n Total = 36) | Control Group (n Total = 34) | p-Value |
---|---|---|---|
Intensive care unit hospitalization, n/n total (%) | 2/36 (6) | 3/34 (9) | 0.7 |
Reoperation, n/n total (%) | 2/36 (6) | 4/34 (12) | 0.4 |
Dehiscence of intestinal anastomosis, n/n total (%) | 1/36 (3) | 2/34 (6) | 0.5 |
Wound dehiscence with eventration, n/n total (%) | 1/36 (3) | 0/34 (0) | 1.0 |
Cardiovascular complications, n/n total (%) | 1/36 (3) | 0/34 (0) | 1.0 |
Pulmonary complications, n/n total (%) | 0/36 (0) | 0/34 (0) | 1.0 |
Lymphocele, n/n total (%) | 0/36 (0) | 0/34 (0) | 1.0 |
Need for blood transfusion, n/n total (%) | 5/36 (14) | 16/34 (47) | 0.002 |
Day of discharge from the hospital, median (IQR) | 5.0 (4.0, 6.2) | 7.0 (6.0, 10.0) | <0.001 |
Readmission within 30 days, n/n total (%) | 1/36 (3) | 4/34 (12) | 0.2 |
Without any complications according to Clavien-Dindo classification, n/n total (%) | 17/36 (47) | 7/34 (21) | 0.02 |
Risk Factor | Univariate Logistic Regression | Multiple Logistic Regression | ||
---|---|---|---|---|
Characteristic | OR (95% CI) | p-value | OR (95% CI) | p-value |
Age (years) | 1.00 (0.96, 1.04) | 0.92 | ||
BMI (kg/m2) | 1.04 (0.93, 1.17) | 0.45 | ||
Prehabilitation | ||||
No | Ref. | Ref. | ||
Yes | 0.29 (0.10–0.81) | 0.018 | 0.20 (0.04–0.80) | 0.031 |
6MWT 1 (m) | 1.00 (0.99–1.00) | 0.32 | ||
FIGO | ||||
1–2 | Ref. | |||
3–4 | 2.49 (0.75–8.40) | 0.13 | 1.87 (0.43–8.53) | 0.4 |
Total protein concentration 1 (g/dL) | 1.62 (0.90–4.11) | 0.12 | 3.15 (1.12–23.2) | 0.2 |
Albumin concentration 1 (g/dL) | 0.37 (0.09–1.18) | 0.094 | 0.45 (0.07–2.32) | 0.4 |
Aletti complexity score | 1.52 (1.09–2.28) | 0.011 | 1.53 (1.00–2.62) | 0.083 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zębalski, M.A.; Parysek, K.; Krzywon, A.; Nowosielski, K. LUNA EMG as a Marker of Adherence to Prehabilitation Programs and Its Effect on Postoperative Outcomes among Patients Undergoing Cytoreductive Surgery for Ovarian Cancer and Suspected Ovarian Tumors. Cancers 2024, 16, 2493. https://doi.org/10.3390/cancers16142493
Zębalski MA, Parysek K, Krzywon A, Nowosielski K. LUNA EMG as a Marker of Adherence to Prehabilitation Programs and Its Effect on Postoperative Outcomes among Patients Undergoing Cytoreductive Surgery for Ovarian Cancer and Suspected Ovarian Tumors. Cancers. 2024; 16(14):2493. https://doi.org/10.3390/cancers16142493
Chicago/Turabian StyleZębalski, Marcin Adam, Krzysztof Parysek, Aleksandra Krzywon, and Krzysztof Nowosielski. 2024. "LUNA EMG as a Marker of Adherence to Prehabilitation Programs and Its Effect on Postoperative Outcomes among Patients Undergoing Cytoreductive Surgery for Ovarian Cancer and Suspected Ovarian Tumors" Cancers 16, no. 14: 2493. https://doi.org/10.3390/cancers16142493
APA StyleZębalski, M. A., Parysek, K., Krzywon, A., & Nowosielski, K. (2024). LUNA EMG as a Marker of Adherence to Prehabilitation Programs and Its Effect on Postoperative Outcomes among Patients Undergoing Cytoreductive Surgery for Ovarian Cancer and Suspected Ovarian Tumors. Cancers, 16(14), 2493. https://doi.org/10.3390/cancers16142493